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Abstract: Degradation of stiffness will occur in sand under cyclic loading. Organic matter-disseminated
sand (OMDS) is a special sand in the northeast and western coastal region of Hainan Island. Through
the stress-controlled dynamic triaxial test, the natural moisture content, vibration amplitude and
consolidation ratio of OMDS under three types of cyclic loads (sine wave, triangular wave and
rectangular wave) were studied. The results showed that the soil stiffness decreases with the increase
in vibration times. The increase in natural moisture content and vibration amplitude, and the
reduction in the consolidation ratio accelerate the softening of soil stiffness. Furthermore, based on
the test results, an empirical formula was derived to reflect the rule of soil stiffness softening.

Keywords: organic matter-disseminated sand (OMDS); dynamic deformation; stiffness degradation;
softening index

1. Introduction

With the construction of the Hainan free trade port, many structures are to be built in
coastal areas. Organic matter-disseminated sand (OMDS) is a special sand in the northeast
and western coastal region of Hainan Island, shown in Figure 1a. Figure 1b shows the
scanning electron microscope photos of OMDS. It can be seen that the surface of the OMDS
particles are obviously smoother, and there are fewer pores in the surface, which indicates
that the organic matter has been immersed in pores and adsorbed to the surface of the
sand particles, forming a film that wraps around the sand particles. The influence of
waves, traffic and earthquakes on OMDS’s foundation should be of concern in engineering.
In a wide range of studies, traffic loads could be approximately equivalent to triangular
waves and sine waves, and wave loads could be equivalent to rectangular waves [1]. With
the increase in dynamic cyclic load amplitude, the dynamic strain, porosity and pore
pressure of soil increase, the internal structure of soil is reshaped as well, which induces
the stiffness degradation of soil [2–4]. Under the cyclic load, the cumulative deformation of
soil varies with vibration cycles [5,6], and due to the nonlinearity of soil, the stiffness acts
in a complicated manner [7,8].

The characteristics of the long-term deformation and stiffness softening of soil un-
der cyclic loading has been researched extensively by various countries’ scholars. Moni-
smith et al. [9] proposed an exponential model for the relationship between the plastic
strain of soft clay and vibration cycles. Introducing dynamic stress and static strength, Li
and Selig [10,11] revised the Monismith function model and established a new function
model. Idriss et al. [12] analyzed the relationship between the degradation index and
vibration cycles, and established a functional relationship to describe the quantitative atten-
uation rule of soil cyclic stiffness. Yao et al. [13] modified the Idriss formula and redefined
the softening index to describe the stiffness degradation of soft clay. Chai et al. [14] and
Parr et al. [15] studied the dynamic characteristics of clay through dynamic triaxial tests,

Sustainability 2022, 14, 11793. https://doi.org/10.3390/su141811793 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141811793
https://doi.org/10.3390/su141811793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4902-7063
https://doi.org/10.3390/su141811793
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141811793?type=check_update&version=2


Sustainability 2022, 14, 11793 2 of 15

and obtained the double logarithmic relationship between dynamic strain and vibration
cycles. Huurman [16] suggested that the stiffness degradation of sand was related to the
cyclic stress ratio and vibration cycles. Yasuhara et al. [17] proposed a modified model
function describing the relationship of the degradation index and vibration cycles based on
the dynamic triaxial test of soil under cyclic loading. Tan et al. [18] analyzed the results of
the cyclic triaxial test and cyclic simple shear test of cohesive soil with different plasticity
indexes. Wang et al. [19] established a functional relationship between the degradation
index and vibration cycles, and obtained the fracture toughness ratio of clay through the
function. Huang et al. [20] introduced the dynamic deviatoric stress parameter into a
functional model describing the relationship of the degradation index and vibration cycles.
Cao et al. [21] established a stiffness degradation function for marine soft soil, and the
relationship of the degradation index and vibration cycles was obtained by the function.
Hong et al. [22] carried out a series of stress-path triaxial tests, with local strain measure-
ments, to achieve path-dependent stiffness degradation curves of medium-dense Toyoura
sand. Iraji et al. [23] modified the nonlinear Pastor–Zienkiewicz–Chan constitutive model
to simulate the stiffness degradation of dense sands at dynamic loading. Mei et al. [24]
analyzed the development laws between the axial permanent strain of coarse-grained soil
and vibration cycles. Liu et al. [25] found that the softening index was exponentially related
to cumulative pore pressure and cumulative strain.

In summary, it can be seen that the stiffness softening of clay, silt and sand under cyclic
loading has been studied, while the dynamic properties of sand with organic matter are
different from those of general sand. There are few reports on its stiffness degradation. In
this study, the degradation laws of skeleton curves on OMDS samples were studied under
three cyclic loadings with various natural moisture contents, consolidation ratios, confining
pressures and vibration amplitudes.
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Figure 1. OMDS photos: (a) on-site photo; (b) SEM photo.

2. Materials and Methods
2.1. Materials

The OMDS [26] was obtained from a site in Hainan Province, the upper layer soil
to 1.2 m depth was cultivated soil, and the lower layer was OMDS, the sand used in this
experimental study was extracted at depth ranging from 2 m to 5 m by thin-walled tube
sampler. The coefficient of uniformity Cu was 2.07, the coefficient of curvature Cc was
1.25, the main physical parameters and particle grading curves are shown in Table 1 and
Figure 2, respectively.
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Table 1. Main physical parameters of OMDS.

Organic
Content/%

Natural Moisture
Content/%

Natural
Density/g·cm−3

Minimum dry
Density/g·cm−3

Maximum Dry
Density/g·cm−3 Specific Gravity

5.32 12.23 1.617 1.570 1.723 2.62

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 15 
 

the main physical parameters and particle grading curves are shown in Table 1 and Figure 
2, respectively. 

Table 1. Main physical parameters of OMDS. 

Organic Content/% 
Natural Moisture 

Content/% 
Natural Den-

sity/g·cm−3 
Minimum dry 
Density/g·cm−3 

Maximum Dry 
Density/g·cm−3 

Specific 
Gravity 

5.32 12.23 1.617 1.570 1.723 2.62 

 
Figure 2. Grading curve of OMDS. 

2.2. Sample Preparation 
The OMDS samples were first air-dried and then passed through a sieve with open-

ing size of 5 mm. Fully mixed with water and placed for 24 h, the sieved soil was cast into 
cylindrical molds which had 39.1 mm diameter and 80 mm height, as shown in Figure 3. 
First, the pumping saturation method was used for saturation, and then the back-pressure 
saturation was carried out by the dynamic triaxial instrument, until the sample saturation 
reached 95%. Lastly, the fully saturated samples were consolidated under the condition 
of isotropic consolidation. 

  
(a) (b) 

Figure 3. Compacted OMDS samples: (a) compaction tool; (b) OMDS samples. 

Figure 2. Grading curve of OMDS.

2.2. Sample Preparation

The OMDS samples were first air-dried and then passed through a sieve with opening
size of 5 mm. Fully mixed with water and placed for 24 h, the sieved soil was cast into
cylindrical molds which had 39.1 mm diameter and 80 mm height, as shown in Figure 3.
First, the pumping saturation method was used for saturation, and then the back-pressure
saturation was carried out by the dynamic triaxial instrument, until the sample saturation
reached 95%. Lastly, the fully saturated samples were consolidated under the condition of
isotropic consolidation.
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2.3. Scheme of Dynamic Triaxial Test

In this study, the dynamic responses of OMDS under multiple cyclic loading waves
were studied, and the influence of vibration amplitude and vibration cycles was considered
as well; therefore, DDS-70 dynamic triaxial test equipment shown in Figure 4 was adopted.
The DDS-70 system can automatically generate sine waves, triangular waves and rectan-
gular waves with various frequencies, the maximum frequency is 10 Hz. The confining
pressure of the test was 100 kPa. Because the frequency had little influence on the sand
sample [27], the test frequency was set 1.0, and the test process was undrained. The test
scheme is shown in Table 2.
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Table 2. Scheme of dynamic triaxial test.

Sample Consolidation
Ratio

Natural
Moisture

Content/%
Wave Form Vibrating

Load/N

OMDS

1.0
10%
18%
24%

sine, triangular, rectangular
sine, triangular, rectangular
sine, triangular, rectangular

25, 70, 110, 150
25, 70, 110, 150
25, 70, 110, 150

1.5
10%
18%
24%

sine, triangular, rectangular
sine, triangular, rectangular
sine, triangular, rectangular

25, 70, 110, 150
25, 70, 110, 150
25, 70, 110, 150

2.0
10%
18%
24%

sine, triangular, rectangular
sine, triangular, rectangular
sine, triangular, rectangular

25, 70, 110, 150
25, 70, 110, 150
25, 70, 110, 150

3. Results
3.1. Skeleton Curve

The skeleton curve demonstrates the relationship between the dynamic shear stress
(τd) and the dynamic shear strain (γd) [28,29], which could be expressed in terms of the
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dynamic axial stress (σd) and the dynamic axial strain (εd), as shown in Equations (1) and
(2) [30,31].

τd = 0.5σd (1)

γd = εd(1 + µ) (2)

where τd is the dynamic shear stress; σd is the dynamic axial stress; γd is the dynamic
shear strain; εd is the dynamic axial strain; and µ is the Poisson’s ratio. Since the lateral
displacement of the samples were not measured in this study, it was not possible to
experimentally determine the Poisson’s ratio value. Therefore, instead of using τd and γd,
σd and εd were used to construct the skeleton curve.

Figure 5 shows the skeleton curves of ODMS samples with varying moisture contents
and consolidation ratios, and under four confining pressure levels when the wave form
was a sine wave. It can be seen that, with the increase in confining pressure, σd became
larger at an identical εd. Moreover, a lower moisture content and larger consolidation ratio
in general resulted in the increase in σd at an identical εd. The above variation law between
dynamic stress and dynamic strain under various wave forms was basically the same.
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3.2. Characteristics of Stiffness Degradation

Dynamic modulus is an important parameter of soil dynamic characteristics, which
can reflect the stiffness characteristics under dynamic loads. Dynamic elastic modulus, Ed,
is one dynamic modulus, which is defined as the ratio between σd and εd, plotted in Figure 6.
It can be seen that, under conditions of the same moisture content and consolidation ratio,
the various wave forms, Ed, became smaller at a given εd when the confining pressure
was reducing.
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The degradation index, δd, can be used to quantify the attenuation of cyclic stiffness [8].
In the stress-controlled dynamic triaxial test, the ratio of the dynamic elastic modulus in
the Nth cycle and the first cycle (i.e., the ratio of EN:E1) is the degradation index δ.

δd =
EN

E1
=

σd/(εd)N
σd/(εd)1

=
(εd)1
(εd)N

(3)

where (εd)N and (εd)1 are the axial dynamic strain in the Nth and 1st cycle respectively, and
σd is the dynamic axial stress.

3.2.1. Effects of Vibration Amplitude

Figure 7 shows the relationship of the degradation index and vibration cycles under
various vibration amplitudes. It can be seen that the degradation index curve decreased
sharply with the increase in vibration cycles under various cyclic loads, which indicates
that the soil would be destroyed with fewer vibration cycles. Since the δd–N relationship
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is largely independent of the vibration amplitude, there was no critical stress for OMDS
under cyclic loading, which was different from clay.
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3.2.2. Effects of Natural Moisture Content

Figure 8 shows the relationship of the degradation index and vibration cycles under
various natural moisture contents. As observed, with the increase in vibration cycles, the
degradation index curve tended to decrease rapidly in a nonlinear form, the variation
range was smaller when the natural moisture content was smaller and the degradation
degree was not obvious; when the natural moisture content reached 24%, the degradation
index was larger than the other groups. This was consistent with the results reported by
Zhong et al. [32] and was attributed to the fact that with the increase in moisture content,
the water film surrounding the sand particles became thick, and the spacing between the
sand particles increased. As a result, the interaction between the sand particles became
weaker, which made the sand particles prone to dislocation deformation and the stiffness
of OMDS prone to delegation. Figure 8 also shows that the curvatures of the degradation
curves of various natural moisture contents were larger than those of vibration amplitude;
the variation in natural moisture content had much influence on the degradation index.
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3.2.3. Effects of Consolidation Ratio

Figure 9 shows the relationship of the degradation index and vibration cycles under
various consolidation ratios. As observed, the degradation index curve decreased rapidly
with the increase in vibration cycles. When the consolidation ratio kc = 2.0, the variation
rate of the degradation index curve was smaller than the other groups, which indicates
that the pores’ volume of soil decreased after consolidation, and the pores’ water pressure
also decreased in order to prevent the soil from instability or failure under vibration load.
This was consistent with the results reported by Huang et al. [33] and was attributed to
the fact that the larger the consolidation ratio, the greater the axial consolidation pressure,
the higher the compaction degree of OMDS sample, the stronger the ability to resist elastic
deformation, and the slower the stiffness degradation of OMDS. Figure 9 also shows that
the curvature of the degradation index curve with different consolidation ratios was larger
than that with different natural moisture contents, which shows a greater influence of the
consolidation ratio on the degradation index.
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3.2.4. Effects of Wave Form

Figure 10 shows the relationship of the degradation index and vibration cycles under
various wave forms. As observed, the degradation index curves of OMDS showed nonlinear
variation with the increase in vibration cycles under three kinds of wave loads. Under the
same vibration cycles, the attenuation degree caused by the rectangular wave load was
significantly greater than that by the sine wave and triangle wave. It was found that the
soil was prone to degrade under the load of the rectangular wave. This was consistent with
the results reported by Cao et al. [21] and was attributed to the fact that the work of the
rectangular wave was much greater than that of the sine wave and triangle wave under the
same vibration frequency, and the energy dissipation of soil was much greater as well.
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4. Degradation Model for OMDS

Based on the analysis of the test results and previous research, the functional relation-
ship between the degradation index and vibration cycles of OMDS was established and is
shown as

δd = 1 + mNn (4)

where m and n are test parameters, obtained by regression analysis; N and δd are the
vibration cycles and degradation index, respectively.

In this paper, Equation (4) was used to calculate the relationship between the degrada-
tion index and vibration cycles of OMDS under various influence factors, and the results
were compared with those of dynamic triaxial test (see Figure 11).

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 
Figure 10. Relationship of degradation index and vibration cycles under various wave forms. 

4. Degradation Model for OMDS 
Based on the analysis of the test results and previous research, the functional rela-

tionship between the degradation index and vibration cycles of OMDS was established 
and is shown as 𝛿d = 1 +𝑚𝑁௡ (4)

where m and n are test parameters, obtained by regression analysis; N and δd are the vi-
bration cycles and degradation index, respectively.  

In this paper, Equation (4) was used to calculate the relationship between the degra-
dation index and vibration cycles of OMDS under various influence factors, and the re-
sults were compared with those of dynamic triaxial test (see Figure 11). 

  
Figure 11. Fitting of degradation index under different cyclic loading wave forms. 

The fitting results show that the application of Equation (4) can effectively simulate 
the softening curves of OMDS under cyclic loads with various amounts of moisture and 
wave forms such as the sine wave, triangular wave and rectangular wave, which can meet 
the needs of engineering construction (Table 3). 

  

Figure 11. Fitting of degradation index under different cyclic loading wave forms.



Sustainability 2022, 14, 11793 12 of 15

The fitting results show that the application of Equation (4) can effectively simulate
the softening curves of OMDS under cyclic loads with various amounts of moisture and
wave forms such as the sine wave, triangular wave and rectangular wave, which can meet
the needs of engineering construction (Table 3).

Table 3. Fitting parameters.

Wave Form Moisture Content/%
Fitting Parameters

m n R2

Sine wave
10
18
24

−0.01416
−0.05232
−0.09039

0.67934
0.47059
0.38753

0.87
0.90
0.89

Triangular wave
10
18
24

−0.00783
−0.00592
−0.00447

1.09822
1.19321
0.8703

0.79
0.82
0.85

Rectangular
wave

10
18
24

−0.00837
−0.00134
−0.00157

1.03818
1.02179
1.00179

0.79
0.82
0.88

5. Discussion

Table 4 compares the degradation models constructed by several researchers, which
were adopted to fit the degradation curve of OMDS with various moisture contents under
sine wave cyclic loading, as shown in Figure 12 and Table 5.

Table 4. Degradation models.

Researcher Degradation Model Reference

Idriss et al. δd = N−d [12]
Yasuhara et al. δd = 1 − dlgN [17]

Yao et al. δd = 10N−T−1 [13]
This paper δd = 1 + mNn Present work
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Table 5. Fitting effect of models based on the experimental data.

Sample Wave Form Moisture Content (%)
Residual Error Square Sum

Idriss Model Yasuhara Model Yao Model This Paper

OMDS Sine wave
10 1.198 1.058 1.279 0.016
18 1.472 1.239 1.617 0.007
24 1.332 1.267 1.427 0.007

It can be seen that the stiffness degrades obviously in the initial stage of cyclic loading,
and the performances of all four models are consistent. However, the stiffness degradation
index of OMDS still decreases faster with the increase in vibration cycles. Then the degra-
dation model of this paper can better represent this feature of OMDS under cyclic loading.
The other three models show that the degradation index tends to stabilize as the vibration
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cycles increases, which is more suitable for the stiffness degradation characteristic of clay
under cyclic loading.

6. Conclusions

The dynamic triaxial test of OMDS under different loads, consolidation ratios, natural
moisture contents and wave forms was studied and analyzed, and the conclusions could
be drawn as follows:

(1) Under cyclic loading, the soil stiffness decreases with the increase in vibration cycles.
The increase in natural moisture content and vibration amplitude, and the reduction in the
consolidation ratio accelerates the degradation of soil stiffness. The reason is that a higher
moisture content results in the reduction in the interaction force between sand particles
so that sand particles are prone to dislocation deformation; a lower consolidation ratio
results in the decrease in sand compactness so that the ability to resist elastic deformation
becomes weaker.

(2) The degradation index of stiffness decreases rapidly with the increase in vibration
cycles, which indicates that the soil can be destroyed with fewer vibration cycles. The
degradation index curves of the four load amplitudes are close to each other, which
indicates that there is not a critical stress, which is different from cohesive soil. The
variation amplitude of the degradation index curve is smaller when the moisture content
is lower. The curvature of the degradation index curve with the same consolidation ratio
is larger than that with different moisture contents. Among the different wave forms, the
rectangular wave has the most obvious effect on the degradation index of OMDS.

(3) A degradation model for OMDS was established. Based on this model, the degra-
dation index under various natural moisture contents and wave forms was fitted and
analyzed. The degradation model of this paper can better represent the features of OMDS
under cyclic loading.
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