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Abstract: Animal–vehicle collision is a common danger on highways, especially during nighttime
driving. Its likelihood is affected not only by the low visibility during nighttime hours, but also by
the unpredictability of animals’ actions when a vehicle is nearby. Extensive research has shown that
the lack of visibility during nighttime hours can be addressed using thermal imaging. However, to
our knowledge, little research has been undertaken on predicting animal action through an animal’s
specific poses while a vehicle is moving. This paper proposes a new system that couples the use of a
two-dimensional convolutional neural network (2D-CNN) and thermal image input, to determine
the risk imposed by an animal in a specific pose to a passing automobile during nighttime hours. The
proposed system was tested using a set of thermal images presenting real-life scenarios of animals
in specific poses on the roadside and was found to classify animal poses accurately in 82% of cases.
Overall, it provides a valuable basis for implementing an automotive tool to minimize animal–vehicle
collisions during nighttime hours.

Keywords: 2D convolutional neural network; animal–vehicle collision; thermal imaging; animal
action prediction; pose detection; nocturnal

1. Introduction

Wildlife–vehicle collision represents a costly and lethal consequence of human tech-
nology interfacing with animal environments. Wildlife to vehicle collisions are estimated to
be responsible for over 35,000 yearly automobile incidents in the United States, resulting in
approximately 200 human fatalities per year [1]. This in turn leads to about 4000 insurance
case filings per year, with an average cost of USD 1000 per individual case. Furthermore,
roadside collisions are the most prominent threat to many endangered species within the
United States [1]. There have been numerous attempts to mitigate these losses through
various methods, such as using electrical mats and wildlife fencing to keep animals from
entering the roadway [2,3]. However, these methods have proven inefficient and ineffec-
tive; none of these proposed solutions have fully solved the issue of vehicle collisions with
wildlife on the roadway.

In this study, a new artificial intelligence system was designed to mitigate the issue
of wildlife–vehicle collisions during nighttime hours, aiming at minimizing financial and
human loss. Research has shown that the risk of wildlife–vehicle collisions can be reduced
by dynamic and transferable state prediction using machine learning [4]. The proposed
system targets classification of animals’ positions using roadside thermal images of the
environment, to determine the risk that an animal in a specific pose presents to a passing
automobile. The system implements a two-dimensional convolutional neural network,
with the data input being thermal images of roadside scenes including wildlife images of
antlered animals on the roadside near to a passing automobile. It should be noted that
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antlered animals were chosen for use within these images as they make up most of the fatal
wildlife-vehicle collisions in the United States [1].

For our purposes, thermal images were collected, processed, and then run through the
system to identify the poses. Thermal imagery is far from a recent technology, having been
developed in the 1950s for application within the medical field [5], and having since found
various applications in medicine, biology, ecology, police use, and military applications [6].
Images are generated by capturing light naturally emitted from heated objects [7] by
using infrared technology, with the thermal images indicating heat emission differences in
captured scenes. Thermal imaging has successfully addressed the issue of observing and
locating animals during the night [8]. Additionally, simulation studies have shown that
vehicle-mounted thermal imaging methods can significantly improve anticipatory driver
control, reducing the likelihood of an automobile accident [9].

The proposed intelligent system uses a two-dimensional convolutional neural network
(2D-CNN) to classify incoming thermal images in real time. Convolutional neural networks
are composed of four layers, i.e., a convolutional layer, a non-linearity layer, a pooling
layer, and a fully connected layer [10]. A 2-D convolutional neural network receives an
image as input and then breaks down the image into features that are sent through the
network layers, resulting in a specific output associated with the task at hand. The primary
motivator for the use of 2D-CNNs in this work was their reported success and efficiency
for image detection and classification [10]. More specifically, 2D-CNNs have demonstrated
a distinct advantage in image classification tasks [11] and have been successfully applied
to create novel animal detection and collision avoidance systems for enhancing driver
safety [12].

2. Literature Review

A variety of systems implementing artificial intelligence methods have been developed
to assist drivers with on-road safety. The coupling of thermal imagery and convolutional
neural networks has successfully been used to identify potholes in the road [13]. That
system’s self-built model used a two-dimensional convolutional neural network to attain
detection of potholes from thermal images, with approximately 63% accuracy. However,
one disadvantage of the system was that it was only trained on images of potholes and
not on images of roadside scenes. Wildlife detection using convolutional neural network
methods has also been successfully applied with roadside thermal images [14]. The pre-
viously described system successfully identified wildlife within roadside scenes, using a
one-dimensional convolutional neural network, with an approximate accuracy of 89%. The
system showcased the advantage of detecting wildlife from roadside scenes that may or
may not contain animals.

Additionally, collision-avoidance systems using convolutional neural networks have
been successfully implemented [12]. The implementation of the collision-avoidance system
achieved an accuracy of 82.5% for detecting cows from the roadway. The disadvantage to
that particular work was the tradeoff between the cost of deployment and cow collision
risk; cows account for barely 6% of fatal human collisions with animals. On the contrary,
antlered animals comprise 94% of deadly crashes, limiting the usefulness of the work in [12].
In direct relation to this current article, other research [15] assessed animals’ orientation
from thermal images taken during nighttime hours to predict the trajectory of an animal’s
movement. Furthermore, animals have been shown to elicit anti-predatory responses
when caught in vehicle headlights [16]. The model described in [15] was shown to be
more efficient for classifying the animal pose than state-of-the-art methods including
histogram of oriented gradients with support vector machine, or the boosted Har-stumps
methodology. Given the success of the idea of using animal pose identification to predicting
animal movement [15], the intelligent system described in the current paper builds upon
this methodology utilizing animal pose classification from thermal images. The image
classification was performed with a 2D-CNN by processing images of complex roadside
scenes as seen by a passing automobile, as opposed to [15] where only pure animal images
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were used (i.e., no roadside scenes). Furthermore, the proposed system can contribute
to the development of autonomous and intelligent vehicle safety methods in the broader
context of smart cities.

The remainder of this article is formed as follows: the methods behind collecting
the thermal image datasets are described in Section 3; the developed intelligent system is
introduced in Section 4; testing results from real roadside scenes are presented in Section 5;
Section 6 concludes the work and outlines the future progression of this topic.

3. Data Description

This section provides a description of the data used for the development of the artificial
intelligence model. Furthermore, the data collection method is also described, together
with the setup utilized for acquiring the images.

3.1. Thermal Image System Setup

This research made use of a Forward-Looking Infrared (FLIR) thermal camera. Specifi-
cally, a FLIR One Pro camera for an IOS device was used to capture the images of roadside
scenes with wildlife during night hours. An example of image capture from this device
is provided in Figure 1. The focus of the FLIR camera ranges from 15 cm to infinity, and
the operating temperature for the FLIR system is between 0 and 35 degrees Celsius with
a dynamic scene range of −120 to 120 degrees Celsius. This FLIR Pro model can capture
images with a thermal sensitivity of 100 mk and is also capable of recording image and
video output in the corresponding MPEG and MOV formats. It should be mentioned that
the use of the FLIR system to implement infrared imaging is not directly affected by light;
hence, the headlights of nearby vehicles would have no impact on the images captured (the
heat generated by lights is too low to affect the images).
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Figure 1. Example thermal image capture.

3.2. Data Collection

This subsection explains the data collection method and the data used for input in
the artificial intelligence system. Images were collected by a passing automobile with
the single FLIR Pro camera mounted onto the right-hand side mirror of the vehicle. The
frame rate of the FLIR One Pro camera was 8.7 Hz per second, meaning that eight or nine
frames were captured in one second. Images were taken from multitude of camera angles
to account for the variety of poses that a wild animal may present in relation to the vehicle’s
direction. The variety of angles contributes to the diversity of the data and thus improves
the generalization ability of our model. The images were captured within the San Antonio
metropolitan area in the state of Texas, United States. The thermal data was collected in
a period from November 2020 to December 2020 and comprised images captured daily
between 6 p.m. and 10 p.m. for two consecutive weeks. In general, the dataset consisted of
a wide variety of pictures including occluded images, low-visibility images, long-distance
images, blurred images, and multi-object images.
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3.3. Difficulties with Data Collection

There were a few difficulties encountered while collecting the dataset used in this re-
search. The data collected indicated general animal inactivity due to various circumstances
such as rain and high-density fog. Furthermore, some of the local wildlife was in a natural
state of hibernation. These difficulties led to a decrease in the number of images we were
able to collect for use within the dataset.

The dataset was then filtered for images to be used in the system input. Images
subject to human or equipment error were removed from the dataset, resulting in around
800 images with potential to be used for the proposed approach. However, further filtering
was needed to accomplish the goal of this research. Images that included multiple objects,
non-determinable poses, or no wildlife were removed from the dataset. Finally, the adopted
dataset consisted of 182 prints. This dataset was then balanced through random selection
to generate equal amounts of data for each corresponding pose. This led to 111 images
remaining to be used for testing our artificial intelligence system. An overview of the data
changes throughout implementation of these methods is provided in Table 1.

Table 1. An overview of changes in data throughout the data processing.

Description No. of Images

Total Images 1000
No. of images after error removal 800

No. of images after filtering 182
Images with animals lying down 37

Images with wildlife facing toward automobile 45
Images with wildlife facing away from automobile 100

No. of images after balancing 111
Total numbers of inputs to network after augmentation 222

3.4. Data Processing

Determination of the image set was followed by further processing of the data. Specif-
ically, images were cropped and then resized to a smaller scale. After the images were
cropped and resized, they were converted from the RGB heatmap image to a grayscale
image, as shown in Figure 2. Following these changes, the resulting dataset was trans-
formed and supplemented by mirroring the previously processed images. The mirror
function utilized in this work added a set of extra images by mirroring the images from left
orientation to right. The result of this data augmentation was the doubling the dataset for
use within the proposed artificial intelligence system. This step was performed because
data augmentation techniques have been successfully employed to combat input variability
and to allow convolutional neural networks to perform efficient deep learning [17]. The
result was 222 different inputs for the proposed system, as shown in Table 1.
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4. Methodology

The following section presents and discusses the proposed artificial intelligence system
for pose identification. The subsections are organized as follows: the convolutional neural
network is described in Section 4.1; the methodology behind calculating the accuracy is
provided in Section 4.2; Section 4.3 provides a complete overview of the system.

4.1. 2D-CNN

Convolutional neural networks are generally considered to be one of the most influ-
ential innovations in the field of artificial intelligence for image classification and object
detection [18–20]. In the proposed system, a processed thermal image is provided as the
input, and then the features are extracted by the convolutional neural network. The block
diagram of the system is depicted in Figure 3.
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Figure 3. Generalized block diagram of the overall system.

A convolutional neural network consists of multiple perceptron layers through which
the extracted features of an image pass and are implicitly processed. This processing
throughout the convolutional neural network is regarded as the deep learning process
for image classification. Each convolutional layer extracts features that are subsequently
passed to the next convolutional layer of the neural network. Many convolutional network
paradigms exist, such as one-dimensional, two-dimensional, and three-dimensional con-
volutional networks [18,21]. In the proposed system, a two-dimensional convolutional
network is utilized. The architecture of the CNN consists of filters, layer output, feature
vector dimension, batch normalization, dropout, max-pooling, dense layers, and final
production. A detailed overview of the 2D-CNN can be found in Figure 4.
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Within the architecture of the 2D-CNN itself, max pooling, batch normalization, and
dropout are used. Pooling reduces the size of a feature map, which is beneficial as the
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convolutional neural network is more susceptible to recognizing variance within an in-
put [22,23]. Furthermore, without the use of pooling, the accuracy of deep learning models
suffers severely. Batch normalization is a method of applying normalization to smaller
batches of the layer output. This was carried out as previous research has shown that
batch normalization tends to improve accuracy and speed during the training process
of a convolutional neural network, by enhancing the neural network’s stability [24,25].
Meanwhile, dropout is a method of breaking down a more extensive model by continu-
ously sampling and training smaller sub-models, and has been shown to reduce model
overfitting [26]. Given this reasoning, the addition of dropout was tested and implemented
as its application was found to enhance model performance.

Multiple different activations were applied at different layers within the 2D-CNN. A
Rectified Linear Unit (ReLU) activation was involved for each convolutional layer. ReLU
is a fast-learning activation function and is one of the most successful and broadly used
activation functions [27,28]. The ReLU function has also been shown to eliminate the issue
of vanishing gradients [29]. The process works by returning the input element if it is greater
than zero, or returning zero if the input variable is less than zero, as shown below:

ReLU function:

f (xi) =

{
xi, i f xi ≥ 0
0, i f xi < 0

(1)

Furthermore, the SoftMax activation function was applied to the output layer of the
neural network. This is a function used in multi-classification models; its output is the
probability of each class that is being categorized, and it returns the class with the highest
likelihood. The SoftMax function is modeled [29] as follows:

SoftMax function:

f (xi) =
exi

∑ e(xj)
(2)

Many different functions were applied to the model for quantifying the loss (i.e., error
in classification) and to further ensure that the data could be processed throughout the
model. To address the loss function, categorical cross entropy was used. Cross-entropy
loss is a measure of the difference between the actual labels of an input and the predicted
labels [30]. Due to the multi-classification nature of the 2D-CNN the categorical cross-
entropy measure was adopted in the current research. The analytical form of the cross
entropy is given below [30]:

Cross entropy
L(ŷ, y) = −∑ yi log(ŷi) (3)

Finally, flattening was applied to the dense, fully connected layers of the CNN. Flat-
tening is the method of converting the layers’ output data to a one-dimensional output.
This was adopted in our system, where we designed the layers of our network to process
one-dimensional inputs.

4.2. Accuracy Calculation

An explanation of the methodology behind the calculation of the network’s accuracy is
provided in this subsection. A confusion matrix was constructed to determine the accuracy
of the model’s tests. A confusion matrix is a table in which rows represent the actual classes
and columns denote the predicted classes [31]. The true positive (T.P.), true negative (T.N.),
false positive (F.P.), and false negative (F.N.) values from the confusion matrix were taken
into account to determine the precision and accuracy of the corresponding models. With
the multi-classification nature of the model, only true positives were considered in the
accuracy calculation.

Given that the classification had three varying classes, each class had its corresponding
actual positive value. The resulting equation for calculating the accuracy of the model is
expressed as Equation (4) [32,33]:
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Accuracy Equation:

Accuracy =
TP1 + TP2 + TP3

Total
(4)

Overall, the confusion matrix allows the detection accuracy of the model to be calcu-
lated, and the model’s misdetections to be explicitly detailed.

4.3. General Overview

This section provides a concise explanation of the methodology behind the functional-
ity of the proposed intelligent system. The system was encoded using python v3.9.7 [34],
and for illustration purposes an example of the initial input to the system is given in
Figure 5.
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Figure 5. Example of thermal image input (Top left—towards the road, Top right—towards the side,
bottom middle—sitting).

Initially, the thermal input images were acquired and were then labeled by being
placed in labeled directories. The images then underwent conversion to grayscale, cropping,
and resizing. The features were extracted, and all the components were appended into
vector values. The data were then augmented by constructing a mirror copy of the dataset.
The mirrored and original vectors were combined into a single dataset, with the resulting
size of the dataset being 222 input vectors for the system. The dataset was split into training
and testing datasets, respectively comprising 80% and 20% of the total. Then, 20% of the
training data was used for creating the validation set for our system.

The created feature vectors were then input into the 2D-CNN [33], and subsequently
applied for training across varying epochs, processed using the activation functions, filters,
dropout, batch normalization, and max-pooling. Finally, the model’s accuracy was deter-
mined through calculations using the measure formula shown in Equation (4). The list of
steps using the image data that were followed to develop the system are summarized below:

1. Acquire data.
2. Categorize into folder directories.
3. Process images through resizing, cropping, and conversion to grayscale.
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4. Acquire vector values of images.
5. Mirror vectors and combine mirror dataset with the original dataset.
6. Divide the data into training and test datasets with an 80/20 split.
7. Use 20% of the training data for validation data.
8. Train the model with feature vector input to enhance performance through hyperpa-

rameters.
9. Run the model with test data and determine the accuracy of the model through the

accuracy formula.

5. Results and Discussion

This section includes the results analysis, an outline of the solution to the problem,
and a consideration of the impact of this study. The results section provides examples of
inputs within each described system category. It includes a tabulation of the results, an
accuracy graph, and a confusion matrix for training and testing the 2D-CNN.

5.1. Overall System Description

This section describes the combination of data methods and the artificial intelligence
model, along with the system specifications. As mentioned in the introduction, the wildlife–
vehicle collision cost consistently increases each year. To address this issue, a system
to avoid automobile collisions with wildlife during the night hours is proposed in this
study. Implementation of the design began with acquiring the thermal image data during
nighttime hours. These collected thermal images were then processed and filtered into a
dataset, with the wildlife in the thermal image labeled in their respective categories, such
as facing away from the automobile, facing towards the automobile, and lying down. The
images from this dataset were then turned into feature vectors that were forwarded through
the 2-D CNN for training and testing the model.

The device used for the training, validation, and testing of the 2D-CNN was a Windows
desktop computer with the following hardware specifications:

Processor AMD Ryzen 9 3900x 12-Core Processor 3.79 GHz
Memory 16.0 GB 2666 MHz
Graphics NVIDIA GeForce RTX 3080 10GB

5.2. CNN Model Parameters

This section is an overview of the parameters within the artificial 2D-CNN. The re-
sulting parameters provided by the output of a line of source code execution are outlined
in Figure 6. Figure 6 shows the neural network specifics acquired through usage of the
model. Each row represents the corresponding layer type, including the number of convo-
lutional layers, activation, batch normalization, flattening, max-pooling layers, dropout,
and dense layers.

Every individual layer is presented together with the parameters detected in that layer.
The same parameters were used in the training, validation, and testing of the 2D-CNN.
It should be noted that the SoftMax function was adopted as the activation function in
the output layer, as indicated at the foot of Figure 6 (i.e., above the parameter “count”).
Furthermore, the figure also showcases the output shape of each layer of the neural network.
The resulting trainable and non-trainable parameters are shown at the bottom of Figure 6.
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5.3. Results Analysis

The results section provides an example of possible inputs to the system and a descrip-
tion of the outputs of the artificial intelligence model. Examples of an animal in a roadside
scene from each of the respective categories of the dataset are shown in Figure 7.

The resulting images pictured in Figure 7 were then converted to feature vectors
and fed through the artificial intelligence system. The model went through 30 trials of
testing, validating, and training, with 100 epochs per trial and a batch size of 32. The
resulting accuracies from the training and testing dataset run through the 2D-CNN model
are indicated in Figure 8.
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In Figure 8, the training and test accuracies are shown as percentage per epoch, where
1.0 stands for 100%. The model’s training began from around 40% accuracy, then varied
and dropped, but eventually increased to approximately 89% accuracy. The same pattern
was followed throughout the 30 trials, with variations in accuracy. The representation in
Table 2 presents the model’s overall performance across the 30 different trials.

Table 2 presents the confusion matrix (i.e., the true positive values for each category)
and the accuracy for each of the 30 different trials of the model, after 100 epochs per trial.
True positive for category 1 is labeled TP1, true positive for category 2 is marked as TP2,
and true positive for category 3 is labeled TP3. The total number of test inputs was 45. The
test accuracy was calculated using the formula and rounded to the nearest whole number,
shown in the final column. A breakdown of an individual confusion matrix from trial 30 is
provided in Figure 9.
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Table 2. Confusion matrix and accuracy per trial run of the model.

Trial No. Confusion Matrix TP 1 TP 2 TP3 Accuracy

1
[[15 3 1]
[ 0 15 0]
[ 1 0 10]]

15 15 10 89%

2
[[15 4 0]
[ 0 15 0]
[ 1 1 9]]

15 15 9 87%

3
[[19 0 0]
[ 6 9 0]
[ 5 1 5]]

19 9 5 73%

4
[[18 1 0]
[ 0 15 0]
[ 0 4 7]]

18 15 4 89%

5
[[16 3 0]
[ 0 15 0]
[ 2 1 8]]

16 15 8 87%

6
[[13 6 0]
[ 0 15 0]
[ 0 4 7]]

13 15 6 78%

7
[[14 5 0]
[ 0 15 0]
[ 1 2 8]]

14 15 8 82%

8
[[13 6 0]
[ 0 15 0]
[ 1 2 8]]

13 15 8 80%

9
[[14 5 0]
[ 0 15 0]
[ 0 4 7]]

14 15 7 80%

10
[[14 5 0]
[ 0 15 0]
[ 1 3 7]]

14 15 3 80%

11
[[14 5 0]
[ 0 15 0]
[ 0 2 9]]

14 15 9 84%

12
[[15 4 0]
[ 0 15 0]
[ 1 1 9]]

15 15 9 87%

13
[[15 4 0]
[ 0 15 0]
[ 0 2 9]]

15 4 15 87%

14
[[13 6 0]
[ 1 14 0]
[ 1 3 7]]

13 14 7 76%

15
[[15 4 0]
[ 0 15 0]
[ 1 3 7]]

15 15 7 82%

16
[[15 0 4]
[ 0 4 11]
[ 1 0 10]]

15 4 10 64%

17
[[15 4 0]
[ 0 15 0]
[ 1 2 8]]

15 15 8 84%
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Table 2. Cont.

Trial No. Confusion Matrix TP 1 TP 2 TP3 Accuracy

18
[[14 5 0]
[ 0 15 0]
[ 0 1 10]]

15 15 10 87%

19
[[15 4 0]
[ 0 15 0]
[ 0 2 9]]

15 15 9 87%

20
[[15 3 1]
[ 0 15 0]
[ 2 3 6]]

15 15 6 80%

21
[[11 8 0]
[ 0 15 0]
[ 1 6 4]]

11 15 8 67%

22
[[14 4 1]
[ 0 14 1]
[ 0 3 8]]

14 14 8 80%

23
[[15 3 1]
[ 0 15 0]
[ 2 1 8]]

15 15 8 84%

24
[[14 5 0]
[ 4 11 0]
[ 2 1 8]]

14 11 8 73%

25
[[14 5 0]
[ 0 15 0]
[ 0 4 7]]

14 15 7 80%

26
[[11 8 0]
[ 0 15 0]
[ 1 3 7]]

11 15 7 73%

27
[[15 4 0]
[ 0 15 0]
[ 1 3 7]]

15 15 7 82%

28
[[15 4 0]
[ 0 15 0]
[ 0 2 9]]

15 15 9 87%

29
[[15 4 0]
[ 0 15 0]
[ 0 1 10]]

15 15 10 89%

30
[[15 3 1]
[ 1 14 0]
[ 0 0 11]]

15 14 11 89%

Figure 9 presents the overall picture of an individual trial’s confusion matrix. The
highlighted boxes in gray represent the actual positive values for each category. For
example, the exact positive count for animals classified as lying down was 15, the actual
positive count for animals classified in the facing away category was 15 also, and the exact
positive count for animals in the facing toward classification was 11. To determine the
accuracy, the sum of these values was then calculated and divided by 45, which is the total
count of the values within the confusion matrix. Overall, the accuracy of this trial was
estimated to be 89%. The number of total missed classifications is represented by the sum
of the values that are not considered valid positive values for the respective categories. In
this case, the resulting number of misdetected values was calculated to be five.
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5.4. Discussion

Overall, the deep learning model achieved maximum accuracy of 89%, confirmed by
testing the data as per Table 3. The minimum accuracy for the model was 64%. Generally,
the trials that performed poorly overall did so as a result of the random data selection
process used within the training and test datasets. The lower accuracy can be explained
by the randomly selected dataset, which contained inadequate numbers of images in
individual classes for the system to learn efficiently and identify different image classes.
F possible, we intend in future research to collect more images to expand the dataset.
Furthermore, the model achieved an average of 82% accuracy based on the provided test
data, while the maximum accuracy attained within the set of 30 trials was 89%. Overall,
the results showcase the model’s ability to successfully classify animal poses from thermal
images of roadside scenes.

Table 3. Summary of Model Performance for testing accuracy.

Average 82%
Maximum 89%
Minimum 64%

6. Conclusions

The AI system presented in this article can be utilized to classify an animal pose
from a thermal image to determine the risk an animal presents to a passing automobile
during nighttime hours. The implementation of the system involves acquiring thermal
images of roadside scenes containing wildlife, and processing them through an artificial
intelligence model to classify the pose of the animal in the roadside image. The study used
a two-dimensional convolutional neural network to organize accurately and efficiently the
animals’ poses from the acquired thermal images. The use of thermography within the
system allowed the detection of animal poses during nighttime hours, even with limited
visibility during these times. The overall methodology involved the collection of thermal
images along with their processing and filtering into a novel dataset. These images were fed
through the two-dimensional convolutional neural network to garner the results. Overall,
the results from the developed system suggest that artificial intelligence methods can
successfully determine animal poses from thermal images of wildlife in roadside scenes.
The artificial intelligence method enables systems to consider whether animals threaten
to enter the roadway in front of a passing automobile, based on their pose. Their pose
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determines whether they have the potential to run into the vehicle, or be spurred into
motion from a standing position and come into contact with the vehicle, or present no
threat at all if they are lying down. Overall, the potential of a crash is greatly reduced as
the determination of the possibilities of an animal’s actions allows preemptive warnings
about oncoming wildlife to be sent to the driver, who will be alert to mitigate the possibility
of a crash. In a potential application of the system, alerts can be sent to the driver as a
warning display or issued as an audio cue that the vehicle plays to make the driver aware
of the potential threat posed by an animal on the side of the road [34]. Furthermore, the
application of this methodology is potentially immense as the system provides a precursor
to creating further automated safe nocturnal driving methods to avoid wildlife-to-vehicle
collisions. This article also suggests how thermal imaging and artificial intelligence methods
can be used successfully to identify nighttime driving risks.

Furthermore, the model’s results showcase the accuracy of animal pose classification
from roadside scenes, allowing an assessment of the amount of risk an animal presents to a
passing automobile. In a specific context, engineers at the forefront of creating advanced
artificial intelligence methods for automated driving could find these results helpful in
their efforts to address prominent safety concerns. More generally, a warning system built
into automobiles could be applied alongside this proposed system to alert the driver if an
animal threatens to collide with the vehicle. In summary, the proposed approach reveals
the potential of the coupling of thermal imagery and artificial intelligence methods for
classifying animal poses and mitigating risks associated with nighttime driving.

A few limitations of the study allow the possibility of future improvements to the
system. The first and most prominent limitation was the size of this novel dataset. The data
acquisition process can be repeated to provide more data for training the deep learning model.
Furthermore, multiple animals in different poses were not considered in this dataset and
within the classification. This allows the research to be extended and improved upon by adding
the capability to classify every individual animal within a roadside scene. Moreover, the
research only considered data collected within the San Antonio, Texas area in the United States,
and future work should incorporate roadside scenes from rural non-city regions. In summary,
future work should be undertaken to increase the size of the dataset, to consider multiple
animals in different poses, and to incorporate rural data to address the study’s limitations.

Author Contributions: Formal analysis, D.M.; Funding acquisition, M.A.; Methodology, Y.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was part of the REU program at UTSA funded under NSF award #2051113.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huijser, M.P.; McGowan, P.; Hardy, A.; Kociolek, A.; Clevenger, A.P.; Smith, D.; Ament, R. Wildlife-Vehicle Collision Reduction Study:

Report to Congress; Federal Highway Administration: McLEan, VA, USA, 2017.
2. Seamans, T.W.; David, H.A. Evaluation of an electrified mat as a white-tailed deer (Odocoileus virginianus) barrier. Int. J. Pest

Manag. 2008, 54, 89–94. [CrossRef]
3. Stein, L. Oh, Deer! U.S. News World Rep. 2003, 135, 19.
4. Pagany, R. Wildlife-vehicle collisions-Influencing factors, data collection, and research methods. Biol. Conserv. 2020, 251, 108758.

[CrossRef]
5. Barnes, R.B. Thermography, thermography & its clinical applications. Ann. N. Y. Acad. Sci. 1964, 121, 34–48. [PubMed]
6. McCafferty, D.J. The value of infrared thermography for research on mammals: Previous applications and future directions.

Mammal. Rev. 2007, 37, 207–223. [CrossRef]
7. Lloyd, J.M. Thermal Imaging Systems; Springer Science & Business Media: Berlin, Germany, 2013.
8. Cilulko, J.; Janiszewski, P.; Bogdaszewski, M.; Szczygielska, E. Infrared thermal imaging in studies of wild animals. Eur. J. Wildl.

Res. 2013, 59, 17–23. [CrossRef]

http://doi.org/10.1080/09670870701549624
http://doi.org/10.1016/j.biocon.2020.108758
http://www.ncbi.nlm.nih.gov/pubmed/14237524
http://doi.org/10.1111/j.1365-2907.2007.00111.x
http://doi.org/10.1007/s10344-012-0688-1


Sustainability 2022, 14, 12133 15 of 15

9. Hollnagel, E.; Källhammer, J.E. Effects of a night vision enhancement system (NFS) on driving: Results from a simulator study. In
Proceedings of the Driving Assessment Conference, Park City, UT, USA, 21–24 July 2003; Volume 2.

10. Albani, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [CrossRef]

11. Xin, M.; Wang, Y. Research on image classification model based on deep convolution neural network. J. Image Video Proc. 2019,
2019, 40. [CrossRef]

12. Sharma, S.U.; Shah, D.J. A practical animal detection and collision avoidance system using computer vision technique. IEEE
Access 2016, 5, 347–358. [CrossRef]

13. Bhatia, Y.; Rai, R.; Gupta, V.; Aggarwal, N.; Akula, A. Convolutional neural networks-based potholes detection using thermal
imaging. J. King Saud Univ. Comput. Inf. Sci. 2019, 34, 578–588.

14. Munian., Y.; Martinez-Molina., A.; Alamaniotis., A. Intelligent system for detecting wild animals using HOG and CNN in
automobile applications. In Proceedings of the 2020 11th International Conference on Information, Intelligence, Systems, and
Applications (IISA), Piraeus, Greece, 15–17 July 2020.

15. Wagner, R.; Thom, M.; Gabb, M.; Limmer, M.; Schweiger, R.; Rothermel, A. Convolutional neural networks for nighttime animal
orientation estimation. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (iv), Gold Coast, QLD, Australia, 23–26
June 2013; pp. 316–321.

16. DeVault, T.L.; Seamans, T.W.; Blackwell, B.F. Frontal vehicle illumination via rear-facing lighting reduces potential for collisions
with white-tailed deer. Ecosphere 2020, 11, e03187. [CrossRef]

17. Hernández-García, A.; König, P. Further advantages of data augmentation on convolutional neural networks. In International
Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2018; pp. 95–103.

18. Gomez, A.; Diez, G.; Salazar, A.; Diaz, A. Animal Identification in Low-Quality Camera-Trap Images Using Very Deep Convolu-
tional Neural Networks and Confidence Thresholds. In Proceedings of the Advances in Visual Computing: 12th International
Symposium, ISVC 2016, Las Vegas, NV, USA, 12–14 December 2016; Springer International Publishing: New York, NY, USA, 2016;
pp. 747–756.

19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

20. Zilkha, M.; Spanier, A. Real-time CNN-based object detection and classification for outdoor surveillance images: Daytime and
thermal. In Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications, Strasbourg, France, 19
September 2019; Volume 11169, p. 1116902.

21. Kim, D.; Kwon, D.S. Pedestrian detection and tracking in thermal images using shape features. In Proceedings of the 12th
International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyangi, Korea, 28–30 October 2015; pp. 22–25.

22. Akhtar, N.; Ragavendran, U. Interpretation of intelligence in CNN-pooling processes: A methodological survey. Neural Comput.
Appl. 2020, 32, 879–898. [CrossRef]

23. Munian, Y.; Martinez-Molina, A.; Alamaniotis, M. Design and implementation of a nocturnal animal detection intelligent
system in Automobile Applications. In International Conference on Transportation and Development 2021—Transportation Operations
Technologies and Safety; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2021; pp. 438–449. [CrossRef]

24. Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How does batch normalization help optimization? In Proceedings of the Advances
in Neural Information Processing Systems, Montreal, Canada, 2-8 December 2018.

25. Bjorck, N.; Gomes, C.P.; Selman, B.; Weinberger, K.Q. Understanding batch normalization. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018.

26. Srivastava, N. Improving Neural Networks with Dropout. Master’s Thesis, The University of Toronto, Toronto, ON, Canada, 2013.
27. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. Available online:

http://arxiv.org/abs/1710.05941 (accessed on 2 July 2022).
28. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
29. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice and research for

deep learning. arXiv 2018, arXiv:1811.03378.
30. Koidl, K. Loss Functions in Classification Tasks; School of Computer Science and Statistic Trinity College: Dublin, Ireland, 2013.
31. Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PCM: Multiclass confusion matrix library in Python. J. Open-Source Softw.

2018, 3, 729. [CrossRef]
32. Munian, Y.; Martinez-Molina, A.; Miserlis, D.; Hernandez, H.; Alamaniotis, M. Intelligent System Utilizing HOG and CNN for

Thermal Image-Based Detection of Wild Animals in Nocturnal Periods for Vehicle Safety. Appl. Artif. Intell. 2022, 36, 2031825.
[CrossRef]

33. Munian, Y.; Martinez-Molina, A.; Alamaniotis, M. Active Advanced Arousal System to Alert and Avoid the Crepuscular Animal
Based Vehicle Collision. Intell. Decis. Technol. 2021, 15, 707–720. [CrossRef]

34. Python 3.9.7. 2021. Available online: https://www.python.org/downloads/release/python-397/ (accessed on 25 June 2022).

http://doi.org/10.1109/ICEngTechnol.2017.8308186
http://doi.org/10.1186/s13640-019-0417-8
http://doi.org/10.1109/ACCESS.2016.2642981
http://doi.org/10.1002/ecs2.3187
http://doi.org/10.1145/3065386
http://doi.org/10.1007/s00521-019-04296-5
http://doi.org/10.1061/9780784483534.038
http://arxiv.org/abs/1710.05941
http://doi.org/10.1038/nature14539
http://doi.org/10.21105/joss.00729
http://doi.org/10.1080/08839514.2022.2031825
http://doi.org/10.3233/IDT-210204
https://www.python.org/downloads/release/python-397/

	Introduction 
	Literature Review 
	Data Description 
	Thermal Image System Setup 
	Data Collection 
	Difficulties with Data Collection 
	Data Processing 

	Methodology 
	2D-CNN 
	Accuracy Calculation 
	General Overview 

	Results and Discussion 
	Overall System Description 
	CNN Model Parameters 
	Results Analysis 
	Discussion 

	Conclusions 
	References

