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Abstract: Remanufacturing has emerged as a way to solve production problems, as raw material
costs increase and environmental pollution caused by discarded equipment occurs. The process can
extend product lifetime and prevent waste of resources. In particular, it has economical efficiency
for large equipment such as GIS (Gas Insulated Switchgear). The crucial points in remanufacturing
are determining replaceable parts and economic valuation. To address these issues, we propose a
framework for remanufacturing GIS with remaining lifetime prediction. We construct a regression
model for remaining useful life (RUL) in the proposed framework using GIS sensor data. The cost
of the replacement parts is estimated with the selected sensors. To validate the effectiveness of the
proposed framework, we conducted accelerated life testing on a GIS for data acquisition and applied
our framework. The experimental results demonstrate that the tree-based RUL regression model
outperforms the others in prediction accuracy. In the simulation of part replacement, the important
sensor-based decision-making improves RUL significantly.

Keywords: remanufacturing; gas-insulated switchgear; remaining useful life regression; accelerated
life testing; replacement simulation

1. Introduction

Reliable power supply for metropolitan areas has become increasingly crucial as
urbanization has progressed [1]. Substations play a vital role in reliable power supply by
safely converting power from a power plant located outside of cities to power for urban
homes. Gas Insulated Switchgear (GIS) is one of the essential pieces of equipment in the
substation, which isolates dangerous high-voltage current from external contact using
sulfur hexafluoride (SF6) gas [2]. In addition, when a fault current occurs, a circuit breaker
in GIS can instantly cut off the current.

In the 1970s, a large number of GISs were installed in response to a rapid increase
in electricity demand in the Republic of Korea. Most GISs have recently exceeded their
design life; thus, the demand for a new product or broken parts replacement dramatically
increased. However, the production of new GIS equipment entails considerable costs due
to a rapid rise in raw material prices. The destruction process of GIS also releases harmful
gases, leading to environmental pollution [3]. Moreover, multinational corporations should
follow regulations about eco-friendly management [4].

Therefore, remanufacturing has been proposed as one of the reasonable solutions
to these problems. Remanufacturing is reusing parts that can be utilized in existing
equipment as-is, and replacing damaged parts [5]. This method is cost effective because it
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can significantly extend the product’s life and minimize the energy required for assembly [6].
Industry-specific criteria for remanufacturing differ. In the case of a grinding machine, for
instance, the remanufacturing criteria include economic feasibility, technical feasibility, and
resource environment feasibility [7]. In this paper, the criteria for remanufacturing in GIS
are an improvement in product life and the economic feasibility of part replacement.

The expected improvement in product life after GIS parts replacement can be estimated
using RUL analysis, which has been utilized to inspect and monitor equipment conditions
in various industries, including automobiles, engines, and electronic devices [8]. The RUL
prediction is classified as knowledge based, data driven, and hybrid [9]. Data-driven RUL
prediction employs multiple regression models of machine learning algorithms and is
applied to the collected signal data. Based on the correlation between the input sensor data
and the RUL, the models can be constructed without expert knowledge. Deep learning
models with huge amounts of training data have demonstrated superior performance [10].
In the real-world data from manufacturing factories, tree-based models are generally
employed because these models can calculate feature importance based on the relationship
between input and output data, as indicated by the amount of impurity reduction, and can
interpret the prediction results [11]. In this study, we derive an expected RUL after GIS
parts replacement using the RUL regression model based on sensor data.

There are several studies for the GIS equipment based on sensor data. However, most
researchers have focused on fault detection. One of the significant faults in GIS is partial
discharge causing tremendous damage to the entire substation [12,13]. These studies use
ultra-high-frequency sensors to measure electromagnetic waves from 300 MHz to 3 GHz
generated by partial discharge. Some studies for real-time fault diagnosis of the high-
voltage circuit breaker in GIS are proposed using the current waveform during open/close
operations [14,15]. These researchers construct fault detection models of Support Vector
Machine, Kernel Principal Component Analysis Random Forest, and Autoencoder. Like-
wise, latent inner insulation defects could be detected from analysis of SF6 decomposition
using photoacoustic spectroscopy gas sensors [16].

A few studies have utilized signal data to detect the degradation of GIS. To evaluate
an optimal design robust to insulation degradation, several cases of voltage and insulation
thickness configuration were examined [17]. A limitation of this research is that they only
used a voltage sensor. Zhang et al. proposed a remaining lifetime estimation method
using sensor parameters responsive to degradation [18]. They demonstrated a failure rate
function that can calculate a remaining lifetime according to Weibull distribution. However,
this method required expert knowledge on a circuit breaker in detail. Moreover, when the
entire data of this study change, it is hard to determine whether modeling based on the
Weibull distribution is valid or not.

In this study, we acquire and utilize seven signal data from each position relative to
GIS failure. Next, RUL regression models based on six machine learning algorithms are
constructed to estimate the remaining useful life. Finally, we propose a process suggest-
ing the most reasonable replacement parts. The following is a summary of this study’s
main contributions:

• To the best of our knowledge, this is the first attempt to propose a data-driven reman-
ufacturing decision-making framework in GIS equipment. With the test R-squared
0.999, the RUL regression model shows state-of-the-art prediction performance.

• We acquire signal data from GIS with accelerated life testing by setting up a laboratory.
The data consist of seven signal data crucially related to the degradation of GIS.

• The replacement simulation confirms that the proposed framework is valid for im-
proving RUL economically.

2. Proposed Framework

The proposed remanufacturing decision-making consists of two steps, as shown in
Figure 1. In the first step, we acquire sensor signal data from GIS, then construct an RUL
regression model. To acquire data, we attach several sensors to main positions of GIS.
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Each collected datum from sensors is subjected to a preprocessing procedure that includes
noise elimination and time windowing. The preprocessing is performed according to the
frequency of each sensor. For the regression model, the inputs are sensor data and the
output is the RUL. This framework compares six machine learning models. After training,
the best-performing model is determined for a sensor replacement simulation.

Figure 1. Overall decision-making framework for data-driven remanufacturing .

In the second step, the sensor replacement simulation is performed with the optimal
model. We can calculate RUL increment and RUL increment per cost based on the model.
The ratio of each cost to the total cost is calculated instead of using an actual cost, because
of confidentiality issues. We set the increment of RUL per cost for each sensor as a remanu-
facturing criterion. Lastly, we validate a relation between the sensor importance and the
increment of RUL. Thus, the framework provides a priority list of sensors that are the most
cost effective after replacement.

2.1. Data Collection

The GIS comprises insulators, manipulators, actuators, a circuit breaker, and a frame.
The circuit breaker can stop the circuit so that the fault current does not affect the other
power equipment when a short circuit accident occurs. In accordance with the type of
force that cuts the circuit, there are three categories: pneumatic mechanism, hydraulic
mechanism, and spring mechanism. A procedure of circuit breaking has three operations,
as shown below: (1) converting electrical signals to mechanical signals; (2) producing
operating force by actuating valves (pneumatic or hydraulic) or springs; (3) applying
the operating force to the circuit breaker and link. This work uses the GIS with a spring
mechanism circuit breaker, because most aging GIS was manufactured with this circuit
breaker. This equipment includes a hook, motor, open/close shaft, springs, and limit switch.
Each part is used in the circuit-breaking procedure (1), (2), or (3) described above.
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To validate the data-driven remanufacturing decision making, we set up accelerated
life testing (ALT) on GIS with a spring mechanism circuit breaker. Due to limited resources
and time, we acquired sensor data from the circuit breaker, which is the most crucial
GIS part for degradation. The dataset was collected from our laboratory because this
research is the first attempt to construct a new framework on GIS equipment. ALT is
necessary to acquire the dataset for RUL regression because the life of GIS is between 30
and 50 years. ALT is one of the most well-known methods of reducing the time of data
acquisition by exposing equipment to an extreme environment [19,20]. These extreme
environments usually are obtained by increasing temperature, pressure, humidity, voltage,
or the number of operations to be harsher than the normal usage conditions [21]. In our
case, we constructed that the number of operations is main stress of ALT. Until the GIS was
broken, the ALT had been conducted for five months. We use one type of 170 kV 50 kA
60 Hz specification GIS with a spring mechanism circuit breaker. Based on a GIS Failure
Modes and Effects Analysis (FMEA) result, each sensor is attached to a position highly
related to failure during open/close operations. FEMA is usually used as a guideline for
reducing the occurrence of failures in equipment parts design [22].

Table 1 shows the sensor list, including sensing position, value, and type. There are
seven sensor positions, and three types of sensor devices exist. The overall process of data
flow from stroke data is shown in Figure 2. The Stroke measurement consists of contact
type (rotary sensor) and non-contact (laser distance sensor). As shown in Figure 3a, we
used a laser distance (LD) sensor to get stroke information. The LD sensor is generally
used for non-contact distance measurement by controlling laser beams [23]. The measuring
position of the LD sensor is an open spring compression plate where a linear reciprocating
motion occurs. This sensor has high durability and can minimize vibrations of the sensor
caused by open/close operations. Hence, this sensor can measure more accurately and
stably than contact-type sensors. As shown in Figure 3b, every current from the open/close
trip coil and the auxiliary coil was collected via direct current transformer (DC CT) sensors.
A current transformer (CT) sensor is widely used to measure high current in alternating
current. In particular, the DC CT is a sensor developed to measure current in direct current.
In our experiment, the measured current data are used to verify a trip speed and damping
level after contact points are opened. The auxiliary contact signal of the open/close state can
be acquired from a mechanical auxiliary contact, and we digitized this contact information.
By measuring the motor current using DC CT, it is possible to monitor the state of the
motor. In addition, we can analyze whether the motor overheated through the motor
temperature sensor.

Figure 2. The illustration of stroke sensor data flow processing on spring mechanism GIS.
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Table 1. Data description of each sensor.

No. Sensing Position Sensing Value Sensor Type

1 Simulated load Distance LD sensor
2 Open trip coil Current DC CT
3 Close trip coil Current DC CT
4 Auxiliary coil Current DC CT
5 Auxiliary contact Contact signal -
6 Motor current DC CT
7 Motor temperature Temperature detector

Figure 3. (a) LD sensor for measuring stroke distance. (b) DC CT sensor for measuring current of
open/close trip coil and auxiliary coil.

2.2. Data Preprocessing

To train the RUL regression model, we preprocessed our data in a proper form. The
entire preprocessing process has three steps, as stated below: (1) defining input data,
output data, and each observation; (2) splitting data into train, valid, and test sets; (3) data
normalization.

First, input data consist of six signals, except for the auxiliary contact signal. The
auxiliary contact signal is excluded because the information only verifies whether the
open/close operation works well. In our experiment, we use RUL as output data. RUL is
generally calculated based on the number of operations until a machine fails. To calculate
the RUL of a lithium-ion battery, for instance, the number of charging and discharging
cycles until failure is required [24]. Likewise, the number of open/close operations until
failure is necessary for calculating the RUL of GIS. In this paper, M is defined as the
maximum number of open/close operations before the GIS fails. RUL can be calculated
based on the following assumption. Our study assumes that the RUL and the cumulative
number of open/close operations have a linear relation, as shown in Figure 4. Therefore,
the RUL of GIS decreases proportionately to the cumulative number of operations. GIS
manufacturing experts confirmed our assumption of the GIS degradation process. Thus,
the RUL can be defined as:

RULk = (1 − k
M

)× 100, for k = 1, 2, 3, ..., M (1)

k is the cumulative number of open/close operations.
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Figure 4. RUL linear function of GIS equipment.

We define an observation consisting of input and output data during each open/close
operation. The total number of observations is 14,359, equal to the maximum number of
operations. For each observation, all signal data except motor current follow 10,000 Hz
and have a 0.28 s duration. Motor current signal data follow 1000 Hz and have 26 s
duration. In addition, there is a time interval of 150 s between every observation, as
shown in Figure 5, because ALT needs to have the time interval for its stability despite
time inefficiency. To handle the issue of the different sensors’ duration, signal data from
each observation is equally divided into ten splits. In every split, we extracted seven
types of statistics, including mean, standard deviation, minimum, first quartile, second
quartile (median), third quartile, and maximum. Figure 6 shows examples of ten splits of
each sensor. Therefore, 70 statistics are extracted from ten splits, so one observation has
420 statistics as features.

Figure 5. (a) is a sampled signal datum using 10,000 Hz sensor and represents 0.28 s duration per
each operation. The stroke sensor is used as an example of visualization (a), and the other sensors,
including trip coil, auxiliary, and motor temperature, also have the same frequency and duration.
(b) is a sampled signal datum from motor sensor using a 1000 Hz sensor and represents 26 s duration
per each operation. (c) is a visualization of time interval between operations.
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Figure 6. Visualization of splitting sensor signal data into ten to extract statistics during one
open/close operation.

Next, we partitioned the entire dataset into training, validation, and testing data.
Before extracting statistics, noises of input sensor data were reduced by employing the
moving average smoothing method. This method is commonly used for noise reduction in
time series data [25]. In this experiment, we configured that a window length is 13. This
means that the values of each data point are changed to the average value of the previous
13 data points. To evaluate RUL regression model, 60% of the data were used for training,
20% for validation, and the remaining 20% for testing. Then, we conducted normalization
on an extracted statistic from input data. Standard scaling was employed for preprocessing
input data. Standard scaling is a method in which input data are transformed to be centered
around a mean with a unit of standard deviation. In this experiment, we established that
means equal to zero and standard deviation is equal to one.

2.3. Remaining Useful Life Regression

We compare six regression algorithms (linear, Ridge, least absolute shrinkage and
selection operator (LASSO), Elastic Net, Random Forest, and extreme gradient boost
(XGBoost)) for application to GIS data. The prediction results suggest the best model
that can find meaningful patterns between RUL and input signal. In addition, sensor
importance is derived from the six models to interpret results. More details are stated
as follows.

Linear regression is fundamental and widely employed for regression analysis. The
least square estimates coefficients of a linear equation. Linear regression may underperform
because of the overfitting to the training data [26]. Therefore, various regularization
techniques have been proposed to avoid overfitting. Ridge regression simultaneously
minimizes a sum of squared error and squared coefficient [27]. Adding an L2 penalty
in basic linear regression can alleviate variance and achieve superior performance. The
LASSO regression uses the coefficients’ absolute value to regularize the linear model [28].
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Unlike Ridge regression, LASSO can select features and reduce the dimensionality of data.
Elastic Net combines both the L1 and L2 penalty to improve performance than a model
with either one or the other penalty [29]. This algorithm can select important features
and mitigate multicollinearity. Therefore, the Elastic Net is generally preferred over Lasso
regression when several features are highly correlated.

Random Forest is an ensemble algorithm trained with a large number of decision
trees [30]. This method is often employed for classification and regression. In regression, the
final predicted value is determined by the average of each tree’s predicted values. Random
Forest uses bootstrap aggregation (bagging), which reduces variance. Consequently, this
model handles large amounts of data effectively and improves model performance by
addressing the overfitting issue. XGBoost is another ensemble algorithm based on trees.
Gradient boosting is used to iteratively construct this model from weak decision tree
models to make it robust [31]. This technique can predict the residuals of previous models,
and predicted values are combined to produce the final result.

2.4. Gis Parts Replacement Simulation

When the performance of the best regression model is superior to a certain threshold,
we consider this model as a base of replacement simulation. Then, the model calculates
the sensor’s importance. To determine the quantitative criterion of remanufacturing, first,
we simulate that each sensor datum is exchanged with a new one. Second, we compute
an increment of RUL when stimulation occurs, as shown in Figure 7. One sensor data
are modified to an initial value and utilized as the input data to compute the increment.
Then, the RUL increment is stated as the difference between the RUL value before and after
changing the sensor data. Thus, RUL increments are obtained for all sensors. We can verify
whether a tendency of an RUL increment and sensor importance has a common property.
Finally, we calculated an increment of RUL per cost by each sensor based on the cost ratios
of each GIS part.

Figure 7. Illustration of GIS Parts replacement simulation and RUL increment.

3. Results

We compare the RUL regression results to evaluate which of the six models produces
the best performance. Mean square error (MSE), mean absolute error (MAE), and R-Squared
(R2) are frequently employed for regression performance comparison. MSE is one of the
most common metrics, which is also used for model training loss. MAE can confirm a mean
of every residual between predicted RUL and actual RUL by model. R2 in the regression
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model is an indicator that shows how well the input features explain the output feature.
Cross-validation was conducted 20 times to verify the experimental results’ consistency,
and we reported the averaged values. Key performance indicators (KPI) of MSE and R2

were set to 2 and 0.95, respectively. As reported in Table 2, Random Forest outperformed
the other machine learning models in terms of all metrics, including MSE, MAE, and R2,
and was set to a base model for the replacement simulation.

Table 2. Comparisons of results using six regression algorithms, in terms of MSE, MAE, and R-
Squared. The best performances are in bold and the mean and standard deviations are reported.

Model MSE MAE R2

Linear Regression 46.824 (53.815) 2.324 (0.101) 0.940 (0.068)
Ridge 32.196 (40.842) 2.351 (0.091) 0.959 (0.051)
Lasso 87.764 (1.789) 7.519 (0.091) 0.887(0.002)

Elastic Net 85.772 (1.924) 7.433 (0.101) 0.890 (0.003)
Random Forest 0.463 (0.143) 0.263 (0.014) 0.999 (0.000)

XGBoost 0.765 (0.176) 0.509 (0.018) 0.999 (0.000)

Table 3 presents a list of GIS parts which are related to each sensor. For instance, the
stroke sensor is affected by GIS parts, including the close shaft, open shaft, dashpot, and
link. To change stroke sensor data to initial values, we should replace the four parts with
new ones. The cost of replacement is the sum of costs replacing every part affecting the
corresponding sensor. For example, the cost ratio of replacement stroke sensor is 0.529
(=0.225 + 0.215 + 0.075 + 0.014) from Table 3. Note that the cost in dollars is confidential
information, so we report the proportion of the cost of parts against the whole parts.

Table 3. List of parts that affect each sensor data. The RUL increment per cost is reported. Xmark
means sensor and corresponding parts are closely related.

Parts

Sensor
Stroke Open Trip Coil Close Trip Coil Auxiliary Coil Motor

Temperature Motor Current Cost Ratio

Gear X X 0.135
Open/close hook X X X 0.125
Close shaft/spring X X X 0.225
Open shaft/spring X 0.215

Dashpot X 0.075
Link X 0.014

Frame X 0.211

Sum cost 0.529 0.125 0.125 0.125 0.571 0.36 1
RUL increment 24.09 0.11 0.02 0.23 0.12 96.88 -

RUL increment
per cost 45.53 0.88 0.16 1.84 0.21 269.11 -

Table 3 also shows the RUL increment per cost, which is calculated by dividing the
RUL increment by the cost ratio. The higher value means the corresponding sensor is more
cost effective to replace than others. The result verifies that the motor current sensor is the
most cost effective because an RUL increment per cost is 269.11. The value is greater than
the second-best value by approximately six times.

We depicted the importance of each sensor in terms of the Random Forest, as shown
in Figure 8. The values are computed as the mean of accumulation of the impurity decrease
within each tree. The motor current sensor is considerably more important than other
sensors, and the stroke sensor is the second most important sensor. The other sensors show
insignificant values. The RUL increment for each sensor is specified in Table 3. Interestingly,
we confirmed that RUL increment and sensor importance are highly correlated as shown
in Figure 9. The result implies that the Random Forest precisely found out the patterns of
relations between RUL and sensor inputs.
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Figure 8. Feature importance sorted by descending order from the Random Forest.

Figure 9. RUL increment sorted by descending order from the Random Forest.

4. Discussion

The sensor signal is a type of time series data, and it is common to use models
extracting sequential features. For instance, there are traditional ARIMA, deep-learning-
based Long Short-Term Memory (LSTM), and Transformer [32] models. Nonetheless,
we used multivariate analysis models. In the dataset, there is an interval where no data
are collected between each open/close operation during the ALT. Since we assumed one
open/close operation as one observation, every observation may have a few time series
features. To evaluate whether the input data are suitable for time series models, we
constructed an LSTM model for RUL regression using raw signal data. LSTM is based on a
structure of a recurrent neural network that learns continuous information and is robust
to information loss. The model is one of the deep learning algorithms mainly used for
handling signal data [33]. However, the LSTM model performed poorly in our validation
process, so it could not be used in the proposed framework (R2 = 0.105). We guessed that
the signal length of each observation is quite long, so it may have been difficult for the
LSTM model to extract features properly. Another conjecture was as follows. As shown in
Figure 10, statistics from each split might be more meaningful information for predicting
the number of open/close operations than continuous features such as the shape of the
waveform. The motor current value used for statistics appears to be different, even though
the waveform is nearly the same as the number of operations increases.

We excluded the time series models for RUL regression for the same reason. Thus, we
constructed six RUL regression models that use the seven statistics extracted from each
observation as input values. The tree-based models achieved the best performance and
explainability among the six regression models.
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Figure 10. (left) A graph of the corresponding motor current values when 1000, 7000, and
14,300 open/close operations are conducted. (right) Zooming into the 0 to 11 second range and the 0
to 9 motor current value range.

An ability to interpret a model’s result is particularly crucial in a real-world industrial
application such as remanufacturing decision making. It is possible to confirm which sensor
affects degradation quantitatively, and this can be easily seen via visualization. Motor
current, for example, is the most significant sensor, and can be classified as the top priority
using post-analysis. Figure 10 depicts the current value of the motor is comparable near
the start of the experiment (1000) and the middle (7000) of the total number of operations.
However, the current value near the experiment’s start (1000) differs near the end of the
experiment (14,300). In detail, the highest current value can be observed just before the
failure. According to the expert’s assessment, two possible explanations exist for the
rise in the motor current. First, degradation of the gear part can cause a rise in motor
current. In this case, the motor compressing the spring deteriorated. Then, the spring is not
properly compressed, so more motor current flow is required. Second, a degradation of
the close shaft/spring part could cause higher motor current occurrence. If the spring’s
elasticity decreases, the motor cannot compress it adequately with the same current value.
Consequently, a higher current is essential to compress the spring effectively.

5. Conclusions

In this study, we proposed the framework for GIS remanufacturing decision making
based on the quantitative criterion. To validate our framework, we conducted the ALT and
acquired actual GIS data from seven sensors in our laboratory. The comparison results of
six regression models were reported by computing MSE, MAE, and R2. In this experiment
setting, Random Forest achieved the best performance against the others. In the simulation
study, we calculated the increasing RUL value per cost to determine which parts are to be
replaced. The process determined the most cost effective and critical parts to replace.

The framework includes sensor data collection, preprocessing, RUL regression, and
cost-efficient replacement. We expect that this framework will apply not only to the electric
power industry, but also to several manufacturing industries. In the robot and automobile
industries, for instance, remanufacturing decisions can be made if data from sensors
attached to each part can be collected. The collected data are used to predict the RUL of
robots or automobiles in advance. As verified in our work, the predictive analytics results
can be used for predictive maintenance, which reduces considerable maintenance costs.

The limited number of GIS types is the drawback of this paper. Although each
experiment of ALT generally takes five months and requires a high cost, we are planning
to conduct more ALT for data acquisition not only for the spring mechanism, but also for
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the pneumatic mechanism, and for hydraulic types of circuit breakers. We will integrate
frameworks for all kinds of circuit breakers in the future.
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