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Abstract: The large amounts of construction waste (CW) generated yearly and its high landfilled
proportion worldwide motivate the search for sustainable solutions. Thus, the effect of sandy soil
partial replacement for construction waste in cemented mixtures was assessed in the present work in
terms of mechanical behavior and microstructure. Distinct cement contents, compaction efforts, and
curing periods were evaluated from soil-waste proportion of S75W25, S50W50, and S25W75. Tests
of unconfined compression strength (UCS), indirect tensile strength (ITS), ultrasonic pulse velocity,
water absorption, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM)
were conducted. The presence and increase in the amounts of cement and construction waste increase
the optimum moisture content of the mixture. In contrast, only the CW content significantly affects
maximum dry density. Both S75W25 and S50W50 mixtures resulted in similar UCS and ITS values,
which was proven to be statistically equal by analysis of variance (ANOVA) at a 0.05 significance level,
favoring CW replacing soil up to 50%. MIP and SEM results explained the sharp mechanical behavior
transition obtained in 75% of CW. Cementation reactions resulted in macropores peak reduction
and/or peak area translation to the left of the horizontal axis of the PSD curve, while its translation to
the right indicates the cement mainly acting as filler, which was supported by SEM tests.

Keywords: recycling; mechanical properties; microstructure; sustainability; construction waste

1. Introduction

Generated by one of the most relevant economic sectors around the world, civil
construction waste (CW) causes severe socio-environmental impacts. Globally, more than
10 billion tons of CW are produced yearly. China yields about 2.3 billion tons, the United
States contributes over 700 million tons, and the European Union engenders more than
800 million tons [1–3]. Although CW generation in Brazil is much less than in the countries
mentioned above, at approximately 44.5 million tons per year, comparing performance
indicators with those countries has shown poor construction waste management [4,5].

In many countries, landfill is the primary treatment for waste generated from the con-
struction industry, as illustrated by the United Kingdom (44%), Australia (44%), and Brazil
(40%) [6]. Worldwide, the average construction waste landfilled is estimated to be around
35% [3]. Besides the low rate, this scenario indicates the need for integrated management
since the material can be reused in the production chain, increasing the useful life of landfills,
and it motivates the search for solutions toward sustainable development [1,7–9].

The recycling and posterior incorporation of construction waste in engineering applica-
tions is an effective alternative to move forward. CW in construction can collaborate to reduce
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raw materials consumption, environmental impacts, land space occupation, energy and non-
energy resources consumption, landfill depletion, and air, soil, and water pollution [10–13].

Several researchers indicate that CW aggregate has a great potential to be reused in
engineering works, for example, recycled coarse aggregate for concrete production [14–18],
backfilling material [19–21], and pavement layering [22–31].

The properties of construction waste are highly affected by the geological resources
and the local construction technology, requiring physical, chemical, and mechanical charac-
terization where the material is collected to assess its potential for use [32]. Leite et al. [31]
investigated the feasibility of applying construction waste in pavements from its geotechni-
cal characterization and mechanical behavior. They identified that the compaction process
promoted a partial crushing and breakage of the aggregate, which contributed to an im-
provement in densification and, consequently, the bearing capacity, resilient modulus, and
permanent deformation.

Arulrajah et al. [33–35] conducted an extensive experimental program to characterize
distinct types of construction waste materials for pavement application. Their experimental
program revealed the viability of recycled concrete aggregate, waste rock, and crushed brick.
Similarly, the potential for stabilizing construction waste with cement kiln dust, fly ash,
polymers, and recycled plastic was investigated by the authors [36–38]. Through compaction,
California Bearing Ratio (CBR), and resilient modulus (RM) essays, similar feasibility was
reported by Esfahani [26], who used a mixture of natural aggregate and CW. Cabalar et al. [25]
enhanced unconfined compression strength by adding clay in recycled concrete aggregate,
although the UCS results were only adequate for road pavement subgrade.

Based on previous experience in improving natural soil support capacity and me-
chanical behavior with cementing agents [39–43], researchers have investigated distinct
combinations of these agents in mixtures of soil and CW [24,29,44]. Hasan et al. [44] con-
ducted a series of UCS to evaluate the effect of ground granulated blast furnace slag and
construction waste on stabilizing bentonite clay. They found an optimum proportion of 5%
slag and 20% construction waste. Lukiantchuki et al. [29] partially replaced lateritic soil
with construction waste in fiber-reinforced cement mixtures, leading to better geotechnical
performance compared to natural soil.

Notwithstanding the advantages reported by the current studies, few works have explored
the microstructural effect of CW incorporation in cemented soils and its mechanical response.
Thus, the work aims to assess the feasibility of sandy soil partial replacement by CW in cemented
mixtures. The current research contributes to explaining the interactions of the construction
waste residue in cemented mixtures from a microstructural point of view and its effects on
macro behavior, proposing a viable solution to sustainable applications in engineering.

2. Materials and Methods
2.1. Materials

The current experimental study was accomplished using sandy soil, construction
waste, and Portland cement (Figure 1).
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Figure 1. Materials used in this research: (a) sandy soil; (b) construction waste; (c) Portland cement.
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The soil used in this research, clayey sand, was extracted near Federal Highway BR-
487, northwest of the state of Parana, Brazil (23◦48′50.3” S, 52◦59′58.8” W, 410-m altitude).
The chemical characterization of X-ray fluorescence indicated the presence of Si (48.7%), Al
(27.7%), Fe (19.5%), and Ti (3.2%), following the mineral composition identified through
X-ray diffraction, which mainly consisted of quartz (SiO2), iron oxide (Fe2O3), and kaolinite
(Al2Si2O5(OH)4). Additionally, the soil presented specific gravity of 2.89, liquid limit of
24.5%, and plasticity index of 10.0%, agreeing with previous works [45–48].

The construction waste was collected from a recycling site in Londrina, in the state
of Parana, Brazil. It is mainly composed of Ca (38.2%), Si (24.5%), and Fe (22.6%) from
ceramic products, as well as concrete and cementitious mortar, presenting a specific gravity
of 2.45. The CW water absorption was 21.50% due to the high specific area caused by the
smaller particle size and the interconnected voids resulting from the cement paste attached
to the surface of the aggregate particles [10,49].

Portland cement of high initial strength (Type III) was used as the cementing agent,
presenting specific gravity of 3.24 [50]. Distilled water was used to characterize and
homogenize the mixtures during the compaction process.

The particle-size distributions of clayey sand (S100) and construction waste (W100)
are presented in Figure 2 [51,52]. The grain size distribution of the mixtures is shown based
on soil and waste proportions of 25/75, 50/50, and 75/25.
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Figure 2. Particle-size distribution curve of the natural soil (S100), construction waste (W100), and
mixtures (S75W25, S50W50, and S25W75).

According to the Unified Soil Classification System (USCS) and American Association
of State Highway and Transportation Officials (AASHTO), the soil can be classified as clay
sand (SC) and it belongs to group A-2-4.

2.2. Specimen Preparation

Samples with cement contents of 8%, 10%, and 12%, in relation to the dry mass of soil–
CW, were used. The maximum dry density (ρd max) and optimum moisture content (ωopt) for
natural soil, soil–CW, and soil–CW–cement were defined by Proctor compaction tests under
standard (600 kJ/m3) and modified (2700 kJ/m3) efforts, SE and ME, respectively [53,54].

It is noteworthy that particle breakage was not evaluated in this work, although the
same procedure was employed in all conditions, intended to eliminate bias between the
results. Similarly, it is believed that the soil matrix can reduce the potential breakage effect
in soil–CW and soil–CW–cement mixtures.
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The experimental conditions investigated and the average pH of each material/mixture
are demonstrated in Table 1 [55]. It is essential to mention that the cement addition al-
tered the acidic character presented by the natural tropical soil to an alkaline environment,
favoring the cement chemical reactions [56].

Table 1. Experimental conditions investigated in the current study.

Material/Mixture pH Soil (%) Waste (%) Cement (%)

S100 5.27 100 0 0
S75W25 8.85 75 25 0
S50W50 10.29 50 50 0
S25W75 11.05 25 75 0

W100 11.23 0 100 0
S75W25C8 11.98 75 25 8
S75W25C10 12.24 75 25 10
S75W25C12 12.31 75 25 12
S50W50C8 12.40 50 50 8
S50W50C10 12.52 50 50 10
S50W50C12 12.65 50 50 12
S25W75C8 12.50 25 75 8
S25W75C10 12.59 25 75 10
S25W75C12 12.73 25 75 12

Specimens of 105-millimeter height and 50-millimeter diameter were prepared and
compacted for mechanical tests based on the maximum dry density and optimum moisture
content. Samples with compacting degree tolerances of 100 ± 2% and optimum moisture
content variations (∆ω) of ±1.0% were wrapped in waterproof plastic and stored in a wet
room at a temperature of 23 ± 2 ◦C and air relative humidity equal to or greater than 95%.
The curing periods were 7 and 28 days.

2.3. UCS and ITS

Unconfined compression strength (UCS) tests for compacted natural soil and mixtures
were conducted following the ASTM D 2166 [57], in triplicate, under standard and modified
efforts (Figure 3). After the curing stage, the mixtures were immersed in water for 4 h to
assure a high saturation degree and decrease the suction effects on mechanical results. The
test occurred under a controlled deformation of 1.27 mm/min.
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The indirect tensile strength (ITS) for both energy efforts was assessed per the Brazilian
test method [58]. Tests were performed following a similar procedure as used for UCS tests,
with two repetitions per experimental condition. It is important to emphasize that no differ-
ence was observed in previous tests to verify the accuracy between the ITS results obtained



Sustainability 2022, 14, 12438 5 of 16

in a universal testing machine and those obtained by the adaptation made (Figure 3d). The
same procedure was verified and performed by other researchers [59,60].

As an acceptance criterion for UCS and ITS tests, it was stablished that the strength
of the replicates, molded with the same characteristics, should not deviate more than 10%
from the average strength.

2.4. Ultrasonic Tests

Ultrasonic tests were performed using Pundit Lab equipment in specimens referred to
as the ITS since the tests are nondestructive (Figure 4). The test measures the ultrasonic
pulse velocity (P-wave) emitted and received through two transducers (emitter/receptor)
located on opposing faces of the specimen—via direct transmission. Before testing, the
equipment was calibrated as follows: transducer frequency of 54 kHz, pulse width automat-
ically adjusted, and a correction factor of 1 (standard recommended by the manufacturer),
according to ASTM C 597 [61].
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To minimize the effects of refraction and reflection of the ultrasonic pulse occasioned
by the presence of air between the surfaces of the sample and transducer, a fine layer of
industrial gel was applied on both surfaces prior to testing [60].

2.5. Microstructural Tests

Microstructural analyses assessed the cementation and voids distribution by construc-
tion waste in the medium. The specimens used in scanning electron microscopy (SEM) and
mercury intrusion porosimetry (MIP) were broken into small fragments after the UCS test
and they were dried before the SEM and MIP tests (Figure 5).
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The SEM tests were conducted on the specimens of soil–CW–cement mixture molded
under modified compaction effort and presented a fixed cement amount of 10% with a
curing period of 28 days. An FEI-QUANTA 200 electronic microscope was used with
an accelerating voltage of 25 kV. The small samples were sprayed with gold to become
conductive and allow the analysis.

Besides natural soil and soil–CW samples, specimens of soil–CW–cement with 8%
and 12% at 28 days of curing, under both compaction efforts, were tested in an automated
AutoPore V MIP, with a pressure range from 0.1 to 60,000 Psia. The tests were conducted
according to ASTM D 4404 [62].

3. Results and Discussion
3.1. Compaction Parameters

The average results for maximum dry density (ρd max) and optimum moisture content
(ωopt), considering the standard (600 kJ/m3) and modified (2700 kJ/m3) efforts, are presented
in Figure 6 for natural soil, construction waste, soil–CW, and soil–CW–cement mixtures.
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In general, adding CW to soil decreases the maximum dry density and increases the
optimum moisture content, regardless of the compaction effort. The decrease in maximum
dry density is due to the low specific gravity of construction waste compared with the soil.
In contrast, the optimum moisture content increase is associated with the high amount of
water absorption of recycled aggregate.

The cementing agent contributes to increasing the surface to be hydrated, demanding
more water [24,59]. Regarding the maximum dry density, the cement addition has no
significant effect, which was also reported by Lukiantchuki et al. [29]. Thus, the same trend
can be observed for the results in both compaction efforts. Nevertheless, the modified
effort generates a more densified structure, leading to higher maximum dry densities, and
consequently, it reduces the void volume and the optimal moisture content.

3.2. UCS and ITS

The effect of construction waste incorporation on the unconfined compressive strength
(UCS) and indirect tensile strength (ITS) of the soil is presented in Figure 7. As shown, both
UCS and ITS decreased while CW content increased, except the ITS values for the mixture
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S75W25. When comparing the same experimental conditions, the increase in compaction
effort leads to higher UCS and ITS results.
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Figure 7. UCS and ITS of the compacted natural soil, CW, and uncemented mixtures.

For the soil–CW proportion of 75/25, it is believed that the increase in the percentage
of coarse grains and the clay portion reduction do not compromise the mixture’s structural
arrangement. For the 50/50 proportion, it is assumed that CW increases the voids in the
mixture and that the continuous decline in the clay portion also decreases the bonding
between the materials, which affects the resistance, as Cabalar et al. [25] observed when
using construction and demolition materials with clay soil.

The analysis conducted to evaluate the influence of partial soil replacement by CW on
the mechanical behavior of cemented mixtures is presented in Figure 8.
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Figure 8. UCS and ITS of the cemented mixtures at 7 (7 d) and 28 days (28 d) of curing, using standard
and modified compaction effort, SE and ME, respectively.
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The cement addition developed a substantial improvement on both strength pa-
rameters studied. The UCS values for cemented mixtures were about 4.9 times higher
(S25W75C8, 7 d, ME) and 12.1 times higher (S50W50C12, 28 d, ME) than the compacted
natural soil. Considering the ITS, the gains were 30.8 (S25W75C8, 7 d, ME) and 140.9 times
higher than the compacted soil (S75W25C12, 28 d, SE). From this analysis, it is possible
to imply that the soil–CW–cement solution is more efficient in improving the soil tensile
strength behavior, therefore, becoming a viable alternative for geotechnical applications,
such as pavement layering [24–26,29].

The increases in cement content and compaction effort resulted in increments of
UCS and ITS in all experimental conditions. It is important to note that cemented mixture
S25W75 showed a reduction in the parameters when analyzed for other mixtures, indicating
a limitation on the CW proportion.

Due to the similarity of unconfined compression strength and indirect tensile strength
values between the S75W25- and S50W50-cemented mixtures, a variance analysis (ANOVA)
at the significance level (α) of 0.05 was conducted, comparing the set of values for the same
compaction effort and curing age. The p-values obtained for all statistical analyses were
higher than 0.05 (Table 2), indicating the averages are statistically equal.

Table 2. Analysis of variance (ANOVA) of the UCS and ITS of cemented mixtures with soil-CW
proportion of 75-25 and 50-50.

Compaction Effort Curing Age (Days) Factor p-Value

SE
7

UCSS75W25C:UCSS50W50C

0.7107
28 0.6393

ME
7 0.4551

28 0.5268

SE
7

ITSS75W25C:ITSS50W50C

0.9544
28 0.2482

ME
7 0.7682

28 0.3305

Hereupon, soil replacements for CW up to 50% are more suitable for the experimental
conditions evaluated in this study since they promote greater use of construction waste
without significant losses on mechanical properties compared to the S75W25-cemented
mixture. Therefore, they provide a technical and socio-environmental solution to the
problems associated with residue disposal and natural resources exploration.

3.3. UPV and Water Absorption

The P-wave velocity and water absorption (WA) for soil–CW–cement mixtures are shown
in Figure 9, considering the standard and modified efforts, and curing periods of 7 and 28 days.
It is essential to highlight that water absorption is related to the partial filling of inter-aggregate
open pores with water and it does not include the intra-agglomerate micropores.

It is well-established that cemented mixture S75W25 resulted in superior values of
p-wave velocity, which is related to a denser mixture. Conversely, the water absorption
was lower for this mixture, showing good agreement of inversely proportional results.

As the construction waste proportion increases, the p-wave decreases, indicating
the voids in the mixtures are increasing. The wave does not propagate through the mix-
ture voids; thus, the increase in voids reduces the velocity. On the other hand, when
interconnected, these voids result in greater water absorption, as indicated in Figure 9.
Both compaction energy increment and cement content addition tend to lower this effect
through cement hydration products and the pozzolanic reaction that occurs during the
curing period.
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Figure 9. P-wave velocity and water absorption values of cemented mixtures, considering distinct
curing periods (7 and 28 days) and compaction efforts (standard and modified).

Figure 10 shows the relation between indirect tensile strength and p-wave velocity,
considering standard (Figure 10a) and modified (Figure 10b) efforts. The linear correlations
obtained (R2 0.72) demonstrated that the incorporation of construction waste in the mixtures
did not affect the well-established trend presented by cemented soils [60,63–66].
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Figure 10. Relation between ITS and p-wave velocity for the cemented mixtures with soil and CW
proportion of 25/75, 50/50, and 75/25, considering: (a) standard compaction effort—SE; (b) modified
compaction effort—ME.
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The construction waste addition causes an increase in the slopes of the curves for
mixtures compacted at standard effort (Figure 10a), which demonstrates that increasing the
amount of residue significantly impacts the mechanical behavior of the mixture.

The slope reduction in the tendency line for the modified energy compaction
(Figure 10b) indicates a smaller p-wave variation for this experimental condition. As
velocity is a measurement associated with both densification and voids distribution in the
mixture, compaction can be seen as the main factor affecting the p-wave. On the other
hand, the cementation effect is noticed in the ITS behavior.

3.4. Pore Size Distribution

The improvement in mechanical behavior for soil–CW mixtures by the compaction effort
and cement hydration products can be seen through the pore size distribution (PSD) of MIP
tests (Figure 11), considering standard and modified compaction effort, SE and ME, respectively.
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Figure 11. Pore size distribution of natural soil, soil–CW, and soil–CW–cement, at standard (SE) and
modified compaction efforts (ME) for the mixtures: (a) S75W25; (b) S50W50; (c) S25W75.
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In general, the CW incorporation in the soil resulted in growth in the peak areas for
SE. At the same time, the increment in the compaction energy reduced the pore growth
sensibility for CW addition. The S75W25 mixture compacted at ME indicated pore closure
for natural soil (Figure 11a), which reasonably explains the similarity between UCS values
and the improvement of ITS by S75W25 when compared to compacted natural soil.

Independently on the compaction effort and the cement presence and amount, the
pore size distribution tendency is bimodal and approximately concentrated at 0.003 µm
and 10 µm. The class of pore diameters in these peak regions may be attributed to intra-
agglomerate micropores and inter-agglomerate macropores, respectively, prevailing the
macropores. From this perspective, the increase in CW proportion tends to elevate the
peaks for uncemented mixtures.

The cement acts on the reduction in frequency and width at the peak regions, mainly in
inter-agglomerate macropores, as observed by Lemaire et al. [42]. For the same compaction
effort, an increase in the amount of cement leads to a decrease in the peaks, since more
cementing agent is available to perform primary and secondary chemical reactions.

The exception to this behavior occurred for the soil–CW–cement mixtures with a
soil and CW proportion of 25/75 (Figure 11c), using ME, in which the cement addition
increased pore size and peak in the macropore region, translating this area to the right of
the horizontal axis.

The S25W75 proportion increased the mixture pore size, reducing the cement reaction
effects and resulting in voids filling as the main contribution, which is proven through the
overlapping curves of S25W75C8 and S25W75C12 mixtures in the modified energy. Because
cement is a very thin material, its effect occurs on the void adjacent surface, narrowing the
macropore strip width, as the curve shape shows in Figure 11c.

In a simplified approach, the translation of the peak to the left and/or its reduction
in the inter-agglomerate macropores region can be understood as a cementation effect, as
there is a reduction in the number of pores or the pore size is reducing. In contrast, the
translation of the peak to the right in the pore size diameter axis indicates the cement is
mainly acting as filler.

3.5. Microstructural Images by SEM

SEM images were taken from the soil–CW–cement mixtures with 28 days of curing
(Figure 12). A dense structure is seen in the mixture S75W25C10 (Figure 12a), in which
the soil texture is modified and considerably covered by cement hydration products and
pozzolanic reaction, as calcium silicate hydrate crystal (C-S-H), calcium hydroxide (CH),
and ettringite (Aft), forming a netted structure that spans broad zones.

The same products from hydration and pozzolanic reactions on a smaller scale are
observed in mixtures S50W50C10 (Figure 12b), indicating the construction waste rise affects
the aggregates surface coverage and bonding by the reticulate and fibrous structure of CSH,
CH, and ettringite, which increases the volume of pores.

Especially in S25W75C10 (Figure 12c), it is possible to observe a weakly packed and
more porous structure compared to the other mixtures. Regardless of the cementitious
products identified in its structure, larger pores prevent the formation of a netted structure
and, therefore, negatively affect the mechanical behavior. Further, it is necessary to clarify
that a part of the voids in the mixture is the result of intrinsic porosity in the old cement
pastes from the recycled aggregate [10,16], in which the effect is expected to be more
significant on S25W75C10 due to its higher CW proportion.
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4. Conclusions

From the results and analyses presented in this paper, it is possible to conclude that:

• The optimum moisture content of the mixtures was affected by both the presence and
increase in the amounts of construction waste and cement, while only the CW content
contributed to significant differences in maximum dry density.

• The improvement in mechanical behavior by cement is more evident in indirect
tensile strength (30.8–140.9 times higher) than unconfined compressive strength
(4.9–12.1 times higher). Thus, cemented soil-waste mixtures demonstrate viable appli-
cations, such as pavement layers.

• From 75% CW in the mixture, a limitation in the improvements is observed due to the
reduction in cementation effects.

• UCS and ITS of S75W25- and S50W50-cemented mixtures proved to be statistically
identical. Therefore, the mix with 50% of construction waste is most suitable, since it
advances the use in civil applications.

• The results of p-wave velocity and ITS show satisfactory correlation, demonstrating the
cemented mixtures with CW insertion follow the established trend of cemented soils.

• The natural soil, soil–CW, and soil–CW–cement mixtures presented a bimodal ten-
dency in pore size distribution. Both increases in cement amount and compaction
effort resulted in pore closure, reflecting in UCS and ITS gains.

• The peak reduction located in the macropores region on the PSD curves and/or
translation of this region to the left of the horizontal axis indicates the occurrence of
cement hydration products and pozzolanic reaction. On the other hand, its translation
to the right reflects the performance of cement as a filler in general.

Based on the experimental program limitations, future studies could explore the follow-
ing: investigating lower cement levels, replacing soil with residues of distinct compositions,
and evaluating other cementing agents.
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