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Abstract: We developed an optimized system for solving engineering problems according to the
characteristics of data. Because data analysis includes different variations, the use of common features
can increase the performance and accuracy of models. Therefore, this study, using a combination
of optimization techniques (K-means algorithm) and prediction techniques, offers a new system
and procedure that can identify and analyze data with similarity and close grouping. The system
developed using the new sparrow search algorithm (SSA) has been updated as a new hybrid solution
to optimize development engineering problems. The data for proposing the mentioned techniques
were collected from a series of laboratory works on samples of steel fiber-reinforced concrete (SFRC).
To investigate the issue, the data were first divided into different clusters, taking into account common
features. After introducing the top clusters, each cluster was developed using three predictive models,
i.e., multi-layer perceptron (MLP), support vector regression (SVR), and tree-based techniques. This
process continues until the criteria are met. Accordingly, the K-means–artificial neural network 3
structure shows the best performance in terms of accuracy and error. The results also showed that
the structure of hybrid models with cluster numbers 2, 3, and 4 is higher than the baseline models in
terms of accuracy for assessing the punching shear capacity (PSC) of SFRC. The K-means–ANN3-SSA
generated a new methodology for optimizing PSC. The new proposed model/procedure can be used
for a similar situation by combining clustering and prediction methods.

Keywords: cluster; K-means; sparrow search algorithm; artificial neural network; SFRC; PSC

1. Introduction

Reinforced concrete slabs can be used in different civil engineering projects such as
office blocks, residential buildings, and parking stations; the structure produced by two-
way poured-in-place concrete slabs can offer an economical structural system for architects
and also engineers [1,2]. Rebar as well as formwork can be installed easily by different
features of the reinforced concrete slabs such as flat soffit [3]. In addition, the total height
of the story can be reduced due to these structures. Several researchers have worked on
the reactions of such structures in experimental and theoretical studies due to the benefits
of flat slabs produced from the reinforced concrete [4–6]. The available literature shows
that the slab–column connections have a striking shear capacity, as the highest strength of
a reinforced concrete flat slab is usually determined [1]. On the other hand, a slab has a
significantly lower residual strength after punching than the punching load. Thus, after the
slab is punched at one of the columns, one can overload the adjacent columns rapidly, and
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the failure state can be developed once it is punched, resulting in the increasing breakdown
of buildings using flat slab components [1]. Several building collapses were reported
due to the failure of punching, leading to deaths and also significant economic loss. For
instance, Schousboe [7] reported the collapse of a 24-story building in 1973 in Virginia
once it was constructed. The investigations of the incident reported that a shear failure in
the slab component used on one of the top floors caused the collapse. In addition, King
and Delatte [8] reported that a building complex with 16 stories in the U.S. broke down
due to the very low punching shear strength of the flat slab component. These cases of
collapse can be prevented, as shown in several studies that recently focused on the failure
mechanism of such structures for improvement of the PSC of slabs and improvement of
the design process of flat slabs, as shown in the conventional empirical equations. On the
other hand, the popularity of steel fibers has increased in structural engineering [9]. Hence,
the PSC of concrete flat slabs can be improved using fibers with such reinforcement in
them [10–12]. It is also worth noting that some experimental studies (e.g., [3]) have shown
that the PSC can be improved by using steel fibers to reinforce concrete flat slabs. As a result,
steel fiber-reinforced concrete flat slabs have been applied widely in different engineering
building projects. However, the slab–column connection has one important issue: the initial
creation of the design codes which are presently followed for such structures (e.g., the
ACI 318-11 standard [13]) for conventional concrete buildings. For that reason, the current
codes should be modified to comply with the design process related to the steel fiber-
reinforced concrete (SFRC) slabs. In this respect, an equation was proposed by Narayanan
and Darwish [14] based on the strength of the compressive zone on the sloping cracks.
The pull-out shear forces were applied on the steel fibers along such cracks, and the shear
forces were also applied by actions of membrane for determination of the PSC of the
concrete slabs reinforced by the steel fiber. In addition, a design equation was proposed
by Harajli et al. [15] using linear regression to analyze the effect of using the concrete and
the fibers on the total punching shear strength. On the other hand, a theoretical study was
performed by Choi et al. [16] to evaluate the effectiveness of a design equation based on the
assumption of the response of tensile reinforcement before punching shear failure occurred.
Furthermore, Maya et al. [3] acquired the empirical data in the literature by evaluating
and contrasting three different prediction equations for the calculation of the punching
shear capacity. Furthermore, an experimental study by Gouveia et al. [17] focused on
how the steel fiber-reinforced concrete flat slabs behaved due to failure during the focused
loading. In addition, a kinematic theory was proposed by Kueres and Hegger [18] in
reinforced concrete slabs without shear reinforcement using two different parameters for
the punching shear. Einpaul et al. [19] proposed a new experimental approach to record
how cracks were created and progressed in punching test samples. Furthermore, the
measurements were analyzed by Simões et al. [20] for the crack development and the
kinematics corresponding to the punching failures. A mechanical model was established
using the results obtained from this analysis to better understand the punching shear
failures. Reviewing the related literature shows that the PSC of steel fiber-reinforced
concrete is predicted using simple statistical methods and modified design equations, and
it is necessary to assess the relationship between the PSC of concrete reinforced by steel
fiber and the factors affecting it using theoretical prediction models. It is necessary to
note that a complex phenomenon, punching shear behavior, necessitates evaluating other
estimation and approximation methods. Since there are several effective variables in the
dominant mechanism of PSC of flat slabs, other sophisticated data-based approaches should
be investigated to improve the accuracy of the prediction and contribute significantly to
the available literature. Since structural and civil engineers more commonly use machine
learning [21–41], this sophisticated data analysis approach is proposed in the present study
to estimate the shear punching capacity. An artificial neural network (ANN) method is a
highly effective method for nonlinear modeling [42–50], but one cannot easily explain and
understand its configuration as a black-box model.
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It is possible to become familiar with the application of a variety of prediction models
for data analysis by reading the works that came before it. On the other hand, the findings
of this research present a novel strategy for data analysis that is based on the selection
of dataset attributes. In this work, the clustering technique, which is one of the data
selection techniques based on closely related features, was utilized to give a system for
the solution of problems requiring more accurate analysis and evaluation. The machine
learning models that were discussed earlier can be trained and validated utilizing a dataset
that contains 140 experimental data samples taken from the works that have come before
this one. The dataset contains six features (inputs), namely the effective depth of the slab,
the reinforcement ratio, the length of the column, the depth of the slab, the fiber volume,
and the compressive strength of the concrete used for the assessment of the measured
punching shear force. All of these features are used to determine the punching shear force
that was measured. This research presents this methodology, analyzes it in comparison
with various models of artificial intelligence, and, as a last step, demonstrates how well the
models function.

2. Experimental Setup
2.1. Governing Equations

The critical shear crack theory can be used to estimate the PSC of SFRC. Slabs without
any transverse reinforcement are considered in [51], and slabs with transverse reinforcement
are described in [52]. Fernández and Muttoni [52] stated that one can express the PSC for
reinforced concrete slabs without transverse reinforcement as:

VR,C =
3
4

b0d
√

fc
1(

1 + 15 ψd
dg0+dg

) (1)

where d represents the effective depth of the slab and Ψ denotes the maximal rotation of
the slab. In addition, bo denotes the control perimeter at a distance of d/2 from the column
face. Furthermore, dg denotes the aggregate size and dg0 denotes the reference aggregate
size, set as 16 mm. The following equation can be used to obtain the PSC:

VR = VR,C + VR,f (2)

where VR, f denotes the contribution of the fibers while VR, C shows the contribution of the
concrete. Moreover, a formulation was presented by Voo and Foster [53] to quantify the
tensile strength of the fibers generated on a plane with the unit area. One can express this
equation as:

σtf = Kf.αf.ρf.τb (3)

where ρf denotes the fiber volume, Kf represents the factor of global orientation, τb is the
bond stress between the concrete mix and the fibers, and finally, to define the aspect ratio
for the steel fibers, αf is used. The following equation shows that the fibers contribute to
the total punching shear computed as follows [3]:

VR,f =
∫

AP
σtf(ψ, ξ)dAP (4)

In addition to the concept of the kinematic assumption and average bridging stress [54],
for computing the effect of the fiber, the equation presented below can be used [3]:

VR,f = APσtf

(
ψd
6

)
(5)
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A simplified equation was proposed by Maya et al. [3] to compute the contribution
from the concrete using the above equation. One can express this equation as follows by
considering 1.5 for γc (the partial safety factor of the concrete):

VR,C =
2b0d

√
fC

3γc

1

1 + 20 ψd
dg0+dg

(6)

2.2. Dataset Study

The machine learning models can be trained and verified using a dataset with 140 test
specimens and six features of the PSC, i.e., the reinforcement ratio (ρ), the effective depth of
the slab (d), the depth of the slab (h), the compressive strength of the concrete (fc), the fiber
volume (ρf), and the length of the column (bc). As summarized by [3], the experimental
studies in the literature described the data points in this dataset.

Figures 1 and 2 provide statistical information and data distribution. The parameters
ρ and ρf have the lowest values among the data. The ranges of these data are ρ = [0− 2]
and ρf = [0.37− 2.53]. Changes in the data cause different relationships between input and
output parameters. The more varied these changes are, the more complex it is to derive a
relationship between them and it is necessary to use appropriate and flexible techniques.
In the figures, it can be seen that the data dimensions of this issue are highly varied, so we
tried to create the best performance for these data using intelligent models.
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3. Methodology
3.1. K-Means

In some datasets, features can be extracted that do not initially have a clear structure,
which can be explored by unsupervised learning. This technique shows that significant
information can be obtained from variables with which appropriate structures can be
designed. One of these methods is data clustering. Clustering means dividing data into
groups that are most compatible with each other so that groups with similar characteristics
can be examined and analyzed together. Clustering is one of the most important techniques
in data mining and is used to group, cluster, or split data using distance functions.

K-means has become one of the most popular methods of unsupervised learning
used to cluster data. This technique creates a simple path for segmenting the dataset by
considering a specific number of clusters (k clusters). The main goal is to define k centers
for each cluster that must be determined so that the best performance can be achieved. The
best performance is when the centers are the farthest apart. In the next step, the points
that are closer to the centers are assigned to that section. Once all the points have been
determined, this step is completed. This process is repeated until the specified criteria are
reached so that there is no change in the location of the center k. It should be noted that
this process does not always need to achieve the best or the most optimal solution, and this
algorithm is sensitive to the initial choices of the centers. The K-means algorithm can be
summarized as follows:

(1) Placing the points of centers (k) in the computing space so that the primary centers
can be determined by them.

(2) Assigning the points that have the most similarity (in terms of proximity or distance)
to these defined points.

(3) Recalculating the positions of the centers after the end of the point allocation process.
(4) Stages (2) and (3) will continue until there is no change in the centers. This process

seeks to find better groups or clusters.

Considering the idea of using the closeness that exists between different features in the
data, we attempted to create a new analysis to increase the accuracy of predictive models.
Therefore, we used the three models ANN, SVR, and Random Tree, which are described
below, to examine the changes in each model.

3.2. Multi-Layer Perceptron (MLP)

MLP is one of the most common artificial neural networks (ANNs). ANN, inspired
by the biological neural network, was first developed in 1949 [55]. ANN is prominently
superior, relying on the fact that the nonlinear mapping can be performed over a dataset
when using it [56]. The MLP neural network has been successfully applied in different
research fields owing to its merit [23,45,57,58]. The implementation of an ANN generally
uses two types of data, i.e., training and testing sets. The training data can be used to fit
the neural networks; after that, the testing data can be used to assess the quality of the
neural networks. The back-propagation (BP) [59] method is a common way to carry out
the training procedure. The main role of BP is to minimize the predictive errors (i.e., the
differences between the estimated and actual outputs) through a backward propagation
algorithm. Mastering the iterations of ANN can have its parameters generate a more
compatible output. Moreover, three factors, i.e., activation function, the number of epochs,
and learning law, also control the performance of ANN. More details of MLP are given
in [60,61].

3.3. Random Tree (RT)

The RT approach, first suggested by Breiman [62], is utilized according to ensemble
learning, for example, the random forest (RF). In the RT approach, several learners work
independently. In order to provide a collection of samples, a decision tree is built based on
the idea of bagging. Due to the different nodes’ splitting, the RF and standard trees differ
significantly. This splitting in the RF is based on the best predictor among a selection of
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predictors. However, the elite split is used in the common tree across all variables. The RT
can deal with classification and regression applications. The input data are delivered to the
tree classifier as a result of the RT algorithm being run. Finally, the system will produce
the highest frequency class. The performance of the training phase is calculated without
the need for bootstraps or cross-validation due to the internal computation of the training
error. The results obtained for the output of the models of the studied problems are based
on the mean response of all members [63].

3.4. Support Vector Regression (SVR)

Support Vector Regression (SVR) is one of the leading algorithms in the field of ma-
chine learning and has various applications in the field of engineering [45,64–66]. The SVR
model is widely used to solve classification and regression problems. Data are generally
mapped for SVR with an f(x) function to transform a low-dimensional nonlinear dataset to
a high-dimensional linear problem in feature space. In this research, the SVR model is used
to solve a regression problem.

Assume that a training dataset is T ={(x1, y1), (x2, y2), . . . , (xk, yk) }, where yi and xi
represent the output and input, respectively, then yi ∈ R and xi ∈ Rn, and k signifies
the training observations. The SVM model for the regression problem can be represented
as follows:

f(x) = a.δ(x) + b (7)

where a.δ(x) indicates the kernel function. Table 1 contains a set of common kernels for the
SVR model. The task of these kernels is to transform the data from the lower dimension
to the higher dimension so that analysis and relationship extraction can be conducted
more effectively.

Table 1. A set of common kernels for SVR models.

Kernel Function Parameter

Linear X, Y -
Polynomial (gX.Y + c)d g, c, d
Radius basis function (RBF) exp(−g |X− Y|2) g
Sigmoid tanh(gX.Y + c) g, c

Then, the following problem must be solved:

max ∑k
i=1 yi( ε̂i − εi)− η( ε̂i − εi)−

1
2 ∑k

i=1 ∑k
j=1( ε̂i − εi)

(
ε̂j − εj

)
δ
(
xi, xj

)
(8)

Here, 
k
∑

i=1
( ε̂i − εi) = 0

0 ≤ εi, ε̂i ≤ C, i = 1, 2, . . . k
(9)

where the penalty factor (C) coefficient is defined to determine the model with proper
performance. To map the dataset, the conditions of Karush–Kuhn–Tucker should be met by
Equation (10) [67] as: 

εi(f(xi)− yi − η−ωi) = 0
ε̂i(yi − f(xi)− ε− ω̂i) = 0
εi ε̂i = 0; ωi ω̂i = 0

(C− εi)ωi = 0; (C− ε̂i) ω̂i = 0

(10)

Finally, according to the following equations, the SVM model is implemented for
regression problems:

f(x) =
k

∑
i=1

( ε̂i − εi).δ
(
xi, xj

)
+ b (11)
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b = yi + η−
k

∑
i=1

( ε̂i − εi).δ
(
xi, xj

)
+ b (12)

3.5. Sparrow Search Algorithm (SSA)

The idea of this algorithm is based on sparrows, which are generally found in most
places where humans live. This type of bird, which has different varieties, uses seeds as its
main source of food. Sparrows are classified as intelligent birds into two types: domestic
producers and scroungers. The first group seeks food sources, and the second group collects
food identified by the first group. There is reciprocal behavior between these two groups,
and they always act according to a suitable and flexible strategy.

Obtaining a mathematical pattern between these behaviors leads to the development
of a new algorithm to find solutions to various problems. Mathematical models adhere to
the following basic assumptions and rules.

(1) The first group (producers), due to their high energy, identify susceptible areas that
have high food sources for the second group (scroungers). The energy level is determined
according to the specific characteristics of the suitable conditions.

(2) Once the hunter is identified, the other group is alerted to go to safer areas. A
criterion is defined for the risk limit.

(3) In general, the ratio of producers and scroungers in the whole process remains
constant. However, any sparrow can act as a producer to reach better resources.

(4) A group of producers who have higher energy and starving scroungers search for
food to gain more energy.

(5) The scroungers generally follow the first group to obtain the best answers and
resources. Some scroungers may just be spectators and compete with other groups after
identifying the source. This is to increase the chance of predation.

(6) In general, when in danger, the sparrows at the edge of the group move quickly to
safe areas, while the middle members of the group walk randomly to draw closer to others.

Figure 3 summarizes the process that this algorithm performs to find food sources and
the interactions that exist between group members.

Sustainability 2022, 14, x 8 of 23 
 

 
Figure 3. The process of SSA for finding food sources; (A): searching for food, (B): when an 
individual detects a predator, gives a chirp to other, (C): entire group files away and get food. 

With the above rules, the relations to describe this algorithm are as follows. 
First, the position of the sparrow, which is denoted by the number n and the size of 

the variables d, is represented by the following matrix: 

X =   x  x  … … x    x  x  … … x  ⋮ ⋮ ⋮ ⋮ ⋮ x  x  … … x    (13) 

Similarly, the fitness value of each row of the sparrow is defined as the following 
matrix: 

Fx =  f(  x  x  … … x  )f(   x  x  … … x  )⋮ ⋮ ⋮ ⋮ ⋮ f( x  x  … … x  )  (14) 

In any search, the appropriate iteration (t) is required to run this algorithm so that 
each producer’s position can be updated for new responses. Equation (15) provides this 
according to Rules (1) and (2): 

X , = X , . exp ( −iα. iter ),      if R ST X , + Q. L                    if R ST  (15) 

where Xti,j specifies the jth dimensions of the ith row, α is a constant coefficient that is 
selected randomly in the range from 0 to 1, and itermax is known as the maximum 
repetition limit. L is a 1 × d matrix in which each element is equal to 1. Q randomly follows 
the normal distribution and J changes from 1 to d. R2 and ST, which are used for the alarm 
value and safety limit, are defined as between 0 and 1 and between 0.5 and 1, respectively. 
Finally, the position of the scrounger and the initial position of the sparrows are given in 
the following mathematical formula: 

Figure 3. The process of SSA for finding food sources; (A): searching for food, (B): when an individual
detects a predator, gives a chirp to other, (C): entire group files away and get food.



Sustainability 2022, 14, 12950 8 of 21

With the above rules, the relations to describe this algorithm are as follows.
First, the position of the sparrow, which is denoted by the number n and the size of

the variables d, is represented by the following matrix:

X =


x11 x12 . . . . . . x1d
x21 x22 . . . . . . x2d

...
...

...
...

...
xn1 xn2 . . . . . . xnd

 (13)

Similarly, the fitness value of each row of the sparrow is defined as the following
matrix:

Fx =


f([ x11 x12 . . . . . . x1d ])
f([ x21 x22 . . . . . . x2d ])

...
...

...
...

...
f([xn1 xn2 . . . . . . xnd ])

 (14)

In any search, the appropriate iteration (t) is required to run this algorithm so that
each producer’s position can be updated for new responses. Equation (15) provides this
according to Rules (1) and (2):

Xt+1
i,j =

{
Xt

i,j. exp
(

−i
α.itermax

)
, if R2 < ST

Xt
i,j + Q.L if R2 ≥ ST

(15)

where Xt
i,j specifies the jth dimensions of the ith row, α is a constant coefficient that is

selected randomly in the range from 0 to 1, and itermax is known as the maximum repetition
limit. L is a 1 × d matrix in which each element is equal to 1. Q randomly follows the
normal distribution and J changes from 1 to d. R2 and ST, which are used for the alarm
value and safety limit, are defined as between 0 and 1 and between 0.5 and 1, respectively.
Finally, the position of the scrounger and the initial position of the sparrows are given in
the following mathematical formula:

Xt+1
i,j =

Q. exp
(

Xt
worst−Xt

i,j

i2

)
, if i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣.A+.L Otherwise
(16)

Xt+1
i,j =


Xt

best + β.
∣∣∣Xt

i,j − Xt
best

∣∣∣ if fi > fg

Xt
i,j + K.

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
(fi−fw)+ε

)
if fi = fg

(17)

4. Simulation

This section describes the various steps taken to develop hybrid models to evaluate
the punching shear capacity. This research aims to provide a common system for better
data analysis by combining two different systems called K-means and intelligent models
(ANN, Tree, and SVR). Each section needs to be developed separately so that it can be
well developed with greater accuracy. Therefore, each model performs different imple-
mentations to achieve the desired results. The repetition of trends indicates an increase in
accuracy and a decrease in computational error performed by various researchers [57,68,69].
Finally, to better compare the models, various statistical criteria are used to provide and
obtain the performance and flexibility of these systems. In this study, three criteria of
RMSE, MAE, and R2 were allocated to study this issue, and are presented in the following
formulas [70–76]:

RMSE =

√
∑N

i=1(Pi −Mi)
2

N
(18)
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MAE =
1
N

N

∑
t=1
|Mi − Pi| (19)

R2 = 1− ∑N
i=1(Pi −Mi)

2

∑N
i=1
(
Mi −Mi

)2 (20)

where M i and P i represent the measured and predicted values of the PSC for this research.
Moreover, N and M i signify the number of data and average of measured values. The
general steps of this research are illustrated in Figure 4.
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4.1. Clustering Step

To develop K-means-based hybrid models, the input data are evaluated in the first
step. The data that are introduced to the system as features are divided into different
clusters by K-means. Clustering has the advantage of putting the most compatible data
together to develop models that fit the same cluster with closely related features. For this
issue, six features that are introduced as input data to the system are examined in this
study. To determine different clusters, different values of k from two to seven clusters
were used for the data of this study. Figure 5 shows the different views obtained based
on clusters. According to this figure, the range of changes for each cluster and the mean
of each are obtained. If the interference area can be expressed less and the changes can
be expressed more simply, the importance and superiority of the cluster can be shown.
It can be seen in all figures that the two parameters ρf and ρ have little change and with
different clusters, they can not be separated well. As the number of clusters increases, it
becomes more difficult to distinguish between them, as can be seen in clusters 5, 6, and
7. This makes the problem more difficult and complicates the achievement of the desired
result and convergence. Figure 6 also shows a presentation of the division based on the
heat map. In this figure, it is also clear that the elementary clusters 2, 3, and 4 can provide
the best segmentation for the data so that they can be analyzed with less complexity.
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The Silhouette analysis method was used to select the best classes. Given that the
value of k was examined between 2 and 7, each cluster has its own characteristics. These
features make it easy to divide the features used. With Silhouette analysis, it is possible to
find out how much each point or feature is related to its respective cluster and how well
the clusters are divided. Figure 7 shows the results of this scoring. As can be seen, the best
performance is obtained for the values k = 2, 3, and 4. To determine the PSC data of SFRC
used in this study, these three classes are used to further develop the models. Each of these
three selected categories divides the data into categories with a specified number. Figure 8
shows how many data points each category contains for model development. The number
of data points in each category varies in responses and analysis. As can be seen, in the
Class 3 section, the third category of data is obtained from the second category in the Class
2 section. The same thing occurs in Class 4, where category 4 is produced from the first
category in Class 2 or 3. This creates a correlation in data segmentation, which indicates
that the data are divided into appropriate segments with the least complexity.
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4.2. K-Means Models

This section develops predictive models to determine the PSC of SFRC. As mentioned
earlier, the three basic models as the primary system for this research are Tree, SVR, and
ANN. In the first step of designing this system, the data, which included six different
features, were divided into different clusters by k-means and scored. The top three clusters
for these data were k = 2, 3, and 4. Scoring showed that the data for these three items
have the highest level of coordination; thus, these three models were used to evaluate the
parameters of the models. After this step, each of these clusters was entered into the base
models, and the prediction model was developed separately. This process continues until
the best performance of each model is achieved. Therefore, the process was subjected to
numerical analysis to find the model with high accuracy and less error. Table 2 provides the
output of the developed hybrid models, which are divided into K-means–Tree, K-means–
SVR, and K-means–ANN categories. As can be observed in this table, the models were
developed based on the number of clusters and their subdivisions.
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Table 2. Results of various hybrid K-means models.

Number of Class Sub-Section Models R2 MAE RMSE

2

1
Tree 0.959 14.836 18.638
SVR 0.916 18.61 26.584

ANN 0.973 9.327 15.118

2
Tree 0.979 9.156 12.371
SVR 0.98 7.933 12.123

ANN 0.992 4.893 7.416

3

1
Tree 0.851 19.424 21.643
SVR 0.98 5.454 7.951

ANN 1 0.014 0.018

2
Tree 0.956 6.091 8.292
SVR 0.977 3.779 5.989

ANN 0.999 0.689 1.418

3
Tree 0.959 14.836 18.638
SVR 0.916 18.61 26.584

ANN 0.973 9.327 15.118

4

1
Tree 0.959 14.259 17.677
SVR 0.928 14.585 23.343

ANN 0.994 3.038 6.458

2
Tree 0.966 12.757 17.56
SVR 0.934 14.665 24.52

ANN 0.975 10.321 15.134

3
Tree 0.851 19.424 21.643
SVR 0.98 5.454 7.951

ANN 1 0.014 0.018

4
Tree 0.956 6.091 8.292
SVR 0.977 3.779 5.989

ANN 0.999 0.689 1.418

The results show that the performance of the models is generally acceptable for
determining the PSC of SFRC. The ranges are presented in Table 3 as the average for each
cluster. In general, K-means–ANN hybrid models provide higher performance for all three
clusters. Following are the K-means–SVR and K-means–Tree models. Cluster 3, for the
K-means–ANN model, is less accurate than Cluster 4, but the error results show that it
performed better. The MAE and RMSE error values of the K-means–ANN models for
Cluster 3 were 3.343 and 5.518, respectively, which are less than the K-means–ANN model
for Cluster 4 with MAE = 3.516 and RMSE = 5.757. This indicates that these conditions can
almost be accepted and coordinated with the scoring of the previous step to determine
the clusters and their effect on obtaining predictive models for more accurate evaluation
and with less error for PSC of SFRC. Using the same dataset and the same input data,
Hoang [77] developed sequential piecewise multiple linear regression (SPMLR) models
to predict PSC of SFRC. The results of the best model are R2 = 0.96, MAE = 15.76, and
RMSE = 20.78. By comparing this research, we can point out the acceptable results and the
improvement of PSC prediction.
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Table 3. Average results of various hybrid K-means models.

Class Models
Average

R2 MAE RMSE

2
Tree 0.969 11.996 15.505
SVR 0.948 13.272 19.354

ANN 0.983 7.11 11.267

3
Tree 0.922 13.450 16.191
SVR 0.958 9.281 13.508

ANN 0.991 3.343 5.518

4
Tree 0.933 13.133 16.293
SVR 0.955 9.621 15.451

ANN 0.992 3.516 5.757

4.3. Comparison Step

Hybrid models based on K-means clusters have been shown to provide acceptable
and accurate PSC of SFRC for forecasting and evaluation. For comparison, the three base
models, Tree, SVR, and ANN, were developed based on similar data as in the previous step.
These models were compared based on three criteria, R2, MAE, and RMSE, to determine
their performance in forecasting and their capabilities. Figures 9–11 present the results of
six models, which include three basic models and three hybrid models developed in this
research. All models show adequate performance for these data in general. Using the data
clustering process, acceptable growth is seen in the results of ANN and SVR models. The
biggest impact on SVR hybrid models is that the results of the base model for R2 = 0.905
increased to more than R2 = 0.95. According to Figures 9 and 10, it can be concluded that
in all hybrid models that used clusters, the error was reduced. In addition, ANN hybrid
models have undergone the most changes and have been able, for example, to reduce the
base model MAE from 9.034 to 3.34. This suggests that the performance of hybrid models
that have used K-means to evaluate the PSC of SFRC is acceptable and can be used in a
variety of other ways.
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Finally, Figure 12 shows a graph of the impact of parameter changes on hybrid
models. For example, the K-means–ANN3 model was used to investigate the changes.
To significantly investigate this issue, the effect of each of the input parameters on the
result was changed between 0 and 1. Using this diagram, the impact of each parameter,
the number of changes, and important ranges can be identified. For example, the three
parameters ρf, fc, and d are almost linearly effective in the model, while the other three
parameters have nonlinear changes in the model. This can help provide the best design
conditions according to the developed model and input parameters for the PSC of SFRC.
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4.4. Optimization Step

In this section, the SSA optimization algorithm is connected to the K-means–ANN3
model, and the optimal results and corresponding parameters are identified. For this
process, the K-means–ANN3 model is performed as a function, and then, according to
the initial parameters, the results are searched by SSA to find the optimal points. To use
SSA, parametric analysis was performed to obtain the best structure for SSA. The two
main parameters of this algorithm, namely the number of iterations and the number of
population, were obtained by trial and error. This process is performed for the initial
optimization of the algorithm. For this problem, the number of iterations was 800 and
the optimal number of population was 60. The dimensions of this problem have six
different variables, determined in the SSA algorithm, which seeks the best conditions by
considering all of them simultaneously. Other important coefficients were fixed: ST = 0.8
and SD = 15%. The optimal values for PSC of SFRC were determined according to Table 4.
As can be seen, this table contains the best of the PSC of the SFRC and the parameters
considered in accordance with the K-means–ANN3 function. By increasing the accuracy
of the previous step function, more accurate results can be achieved by the optimization
algorithm. Using this methodology to optimize engineering issues can reduce costs and
increase design accuracy.

Table 4. The optimum result of SFRC.

Optimum Parameters Optimum
Functionh d bc fc ρ ρf

74.2078 130.7832 109.6579 50.2084 1.7756 1.6347 854.7517

5. Conclusions

We presented here a new system combining clustering methods and intelligent models.
The purpose of this work was to increase accuracy and reduce errors to solve engineering
problems. In this study, a dataset consisting of 140 data points and six features (inputs)
was used to evaluate the punching shear capacity (PSC) of steel fiber-reinforced concrete
(SFRC). In the first step of this system, the K-means algorithm divided the studied data
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into clusters with the most similar features. The clusters that had the best performance
were selected. The selected clusters in the next step acted as filters for intelligent models
(ANN, SVR, and Tree), and various structures were used to predict the parameters. Each
structure was trained separately so that the sub-sections could be well represented for the
performance of the models. The main results of this research are as follows:

− The performance of all hybrid models implementing clusters 2, 3, and 4 were improved.
Moreover, K-mean–ANN structures obtained accuracy up to R2 = 0.992 to predict
SFRC flat slabs.

− The error of the models was significantly reduced compared to the base models, which
confirms that the common data perform better with each other.

− Finally, a diagram was presented showing the effect of input parameters on the K-
mean–ANN3 structure that performed the best among all models. Using it, the effects
of linearity and nonlinearity of the data on the structure of this selected model were
determined.

− This study presents a new methodology for a specific engineering problem. Different
methods of clustering, classification, and basic predictive models including deep
learning can be used to develop this methodology in future research.
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