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Abstract: This paper presents an analysis and control of chaos in the boost converter controlled
with zero average dynamics, fixed-point induced control, and time-delayed autosynchronization
techniques. First, the existence of chaos is demonstrated numerically when positive Lyapunov
exponents are found in the controlled system, for a range from k1 = −0.26 to k1 = 0.4387, when
k2 = 0.5. Additionally, chaos is also found for a range from k1 = −0.435 to k1 = 0.26, when k2 = −0.5.
Subsequently, fixed-point-induced control and time-delayed autosynchronization techniques are
used to control the chaos. The results show that both techniques are useful to control the chaos in
the boost converter. Furthermore, the fixed-point-induced control technique allows better regulation
than the time-delayed autosynchronization technique. Moreover, when only the fixed-point induced
control technique is used on the boost converter with a time delay, the results were not good enough
to stabilize orbits. The stability is validated by calculating the Lyapunov exponents.

Keywords: bifurcation diagrams; periodic orbits; boost converter; system stability; biparametric diagram

1. Introduction

Boost converters are devices used to step up the output voltage and deliver energy
to the load. They are usually utilized to condition renewable energy sources like solar
panels [1]; however, they are used in several applications such as computer power sources,
battery chargers, automotive lighting systems, and power factor correction [2–5]. Static
power converters are commonly used because of their efficiency, affordability, ease of
implementation, programmability, and controllability [6].

These devices can be controlled with pulse-width modulation (PWM), a method to
vary the duty cycle of a signal (defined as the time the switch is in the ON position), to
control the output voltage with an equivalent fixed frequency. However, boost DC-DC
converters are nonlinear systems because of their commutation device. The converter may
slip into the discontinuous conduction mode in cases of low loads, which occurs when the
inductor current crosses zero. Bifurcation and chaotic events have been demonstrated in
DC-DC converters because of the nonlinear switching action and types of controllers [7–10].
Consequently, they show different behaviors when the parameters and operating conditions
change or the system presents perturbations [11].

Some authors have studied the behavior of power converters and established the
conditions when the system presents changes in stability or periodicity (periodic, quasi-
periodic, or chaotic orbits) [12–14]. The implementation of various control techniques helps
test modern controllers, such as nonlinear control techniques [15]. Recently, techniques
such as Zero Average Dynamics (ZAD) have been used to control DC-DC converters, as
presented in [15–17], both for the pulse to the center and the pulse to the side.

ZAD has been used to regulate different types of systems. For instance, in [15] the
authors described the design, robustness analysis, and implementation of a ZAD and
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sliding mode control (ZAD–SMC) for a multiphase step-down converter. Hence, in [6],
the authors studied a two-dimensional system defined by a boost converter controlled
with ZAD. They discovered saturated periodic orbits and a period addition event. In [16],
the authors use a boost converter to study the period addition phenomena in a model
with parasitic resistances, similar to the results obtained from the experimental model.
Additionally, the authors of [18] presented a switching surface that incorporates the current
in the capacitor and a fixed-point induction control (FPIC) technique to respond to chaos.

Moreover, the boost converter can present saturated periodic orbits and period ad-
dition phenomena. This issue has been studied partially in [6] and reported in one-
dimensional discrete dynamical systems. The boost converter controlled with ZAD has
shown complex dynamics when the parameters change [11], and it is required to know the
proper operating condition. Additionally, the time-delayed autosynchronization (TDAS)
technique has been applied previously to stabilize any unstable balance [19], showing good
results to control buck converters [12].

All these techniques have shown good results when applied to the buck and boost con-
verter due to the benefit they offer. Hence, Table 1 presents the advantage and drawbacks
of using these three techniques to control chaos in the boost converter.

Table 1. Advantage and drawbacks of the proposed control techniques.

Controller Advantage Drawbacks

ZAD The technique is useful to obtain a low steady-
state error and maintain a fixed switching frequency
[20–22].

It is not robust when the system parameters change
and for real-time application necessitates a high sam-
pling rate and signal sensing synchronization with a
PWM working in centered symmetric mode [20,22].

FPIC This technique is very useful for stabilizing higher
period and order orbits, and also for controlling
chaos [20–22].

This technique lacks feedback from the regulated
variables and is not robust enough to respond to
changes in the system parameters [20,22].

TDAS It is useful to stabilize unstable periodic orbits and
steady states [12,23–25]. It allows feedback and does
not require rapid switching operations [26]. It is not
necessary to have a reference signal according to the
orbits [25,26].

As the control uses the current state and one delay
period, when the perturbation is small it presents
low-quality stabilization, for example during high
periodic orbits [27].

From the literature reviewed it is observed that there is no numerical analysis that
evaluates the behavior of the controlled system with ZAD and FPIC where a biparametric
analysis is made, looking for the areas where there is chaos and where the system is stable.
In addition, there is no analytical study of the ZAD-FPIC and ZAD-TDAS control, seeking
to carry out an analysis of the behavior based on control parameters. Therefore, this paper
presents an analysis and control of chaos in the boost converter with ZAD, FPIC, and TDAS.
The contributions in this paper are as follows:

• Existence of chaos is demonstrated numerically for positive Lyapunov exponents.
• Chaos in the boost converter controlled with ZAD and FPIC is minimized, increasing

the parameter N of the FPIC.
• FPIC is used to control the system when there is a time delay in the sampling of signals.
• Bifurcation diagrams are used to visualize the chaos is reduced when the value of N is

increased from 0.1 to 0.6.
• A biparametric diagram that considers N versus k1 is used to study the boost behavior,

showing that for greater values of N, the system is more stable. In addition, when k1,
chaos can be presented for small values of N.

• A biparametric diagram that considers the control constant TDAS versus the control
parameter k1 is used to show that for negative values of TDAS (close to −0.2) and
small values of k1 (close to 0) the system is stable.
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The rest of the paper was divided into three more sections. Section 2 includes the
mathematical formulation of the boost converter, the duty cycle for the three control tech-
niques (ZAD, FPIC, and TDAS), and a definition of chaos. Subsequently, Section 3 presents
the results and analysis, where simulations of chaos in the boost converter demonstrate the
presence and control of chaos in the boost converter. Finally, in Section 4 the conclusions
are presented.

2. Materials and Method

In this section, the materials and methods are focused on presenting the different
mathematical models of the boost converter with the ZAD, FPIC, and TDAS.

2.1. Boost Converter

The studied system is a boost converter, which basic diagram can be represented as in
Figure 1. In this figure, the term Vin is the input voltage, S is the switch, L is the inductor,
C the capacitor, i is the current in the inductor, and v is the output voltage. When the
switch S is closed (ON), the coil L stores energy from the voltage source Vin, while the load
is supplied through the capacitor C. When the switch is open (OFF), the current passes
through the diode D and feeds the capacitor C and the load R. In addition, k1 and k2 are
the control parameters of the ZAD, N is the control parameter of the FPIC, and d∗n is the
duty cycle.

ZAD, FPIC, TDAS

Parameters

PWM

controller

Controller

k1, k2, N

+

−

L

i

S v
+

−
RVin C

d∗n

i

v

u

Bosst Converter

Figure 1. Boost converter with the ZAD, FPIC, and TDAS.

According to the diagram in Figure 1, the boost converter is governed by the following
differential equations defined in Equations (1) and (2). The state space in which the system
described by the boost converter evolves is a subset S1 ×R2 (where S1 is the unit circle).

dv
dt

= − 1
RC

v +
1
C

i(1− u), (1)

di
dt

= − 1
L

v(1− u) +
Vin
L

. (2)

Equations (3)–(5) consider that x1, x2, and s are in function of the system variables Vin
and i, the time response t, and the different parameters of the boost converter presented in
Figure 1 and represented mathematically in Equations (1) and (2).

x1 =
v

Vin
, (3)

x2 =

√
L
C

i
Vin

, (4)

s =
√

LCt. (5)

Then, a new expression is obtained by performing the first derivative of the variables
defined in Equation (3), and represented in Equation (4) as ẋ1 and ẋ2. This equation can
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consider a parameter γ =
√

L
R2C to simplify the mathematical expression, as presented in

Equation (6). (
ẋ1
ẋ2

)
=

(
−γ 1− u
u− 1 0

)(
x1
x2

)
+

(
0
1

)
. (6)

From a theoretical standpoint, as the boost converter is a voltage booster, v>Vin, so
x1> 1. Therefore, when simulating the system, it is stated that the initial voltage condition
must be strictly greater than 1. When u changes in the set {0, 1}, a piecewise linear system
is obtained. For instance, when u = 1 the result is Equation (7):

Ẋ(t) =A1X(t) + B, (7)

and when u = 0 the result is Equation (8):

Ẋ(t) =A2X(t) + B. (8)

These two last expressions are simplified by considering that the matrices A1, A1, and
B have the terms as presented in Equations (9)–(11). The terms consider the previously
established parameter γ.

A1 =

(
−γ 0
0 0

)
, (9)

A2 =

(
−γ 1
−1 0

)
, (10)

B =

(
0
1

)
. (11)

The expressions represented in Equations (7) and (8) are differential equations given
by the general Equation (12). The result of this expression is defined according to the
system topology, as expressed in Equations (7) and (8).

Ẋ = A1X + B + (A2 − A1)Xu. (12)

The solution for each topology (u in the set {0, 1}) can establish a solution in time
by integrating the terms between t0 and t (Equation (13)), where φi(t− t0) =eAi(t−t0) and
ψi(t− t0) =

∫ t
t0

eAi(t−τ)Bdτ [28].

Xi(t) =φi(t− t0)X(t0) + ψi(t− t0). (13)

With each topology and the calculation of the transition matrix, a new expression is
established, as presented in Equation (14). Herein, the term I2 is the identity matrix with a
size of 2× 2.

ψ1(t− t0) =B(t− t0) and ψ2(t− t0) =A−1
2

(
eA2(t−t0) − I2

)
B. (14)

Then, by considering the terms defined in Equation (6), two solutions are obtained
when u changes in the set {0, 1} and form two main topologies as follows:

For the topology 1 (u= 1):

x1(t) =x1(t0)e−γ(t−t0), (15)

x2(t) =x2(t0) + (t− t0)., (16)
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For the topology 2 (u = 0):

x1(t) = e−
γ
2 (t−t0)

[
(x1(t0)− 1) cos ω(t− t0)

− γ

2ω

(
x1(t0)− 1− 2

γ
x2(t0)

)
sin ω(t− t0)

]
+ 1,

(17)

x2(t) = e−
γ
2 (t−t0)

[
(x2(t0)− γ) cos ω(t− t0)

+

(
γ

2ω
(x2(t0)− γ)− 1

ω
(x1(t0)− 1)

)
sin ω(t− t0)

]
+ γ.

(18)

In these two last expressions, the term ω = 1
2

√
4− γ2. In addition, it is assumed that

4− γ2> 0; otherwise, the solution will get unwanted solutions.
Moreover, a topology 3 is obtained when i = 0, as expressed in the following equation:

x1(t) =x1(t0)e−γ(t−t0), (19)

x2(t) = 0. (20)

However, this third topology corresponds to the discontinuous conduction mode, and
it will not be considered in this research, as the work focuses on performing analysis in the
continuous condition mode.

2.2. Duty Cycle

The duty cycle is the percentage of time the system works and is created by a switching
system. The formulation of the duty cycle dc is presented in Equation (21) to determine the
system operation, similar to that used in [29].

dc =
2s(x(nT)) + Tṡ2(x(nT))
ṡ2(x(nT))− ṡ1(x(nT))

. (21)

A topology is obtained according to the duty cycle value calculated. Table 2 presents
the different criteria evaluated according to the value of dc, the decision taken, and the
resulting system topology. For example, if the duty cycle is lower than the minimum value,
the system saturates, and the duty cycle must be equal to zero. In addition, if the duty
cycle is greater than the maximum value T, the system saturates, and it is forced to be
T. Other values in the range are accepted and the final decision is defined according to
Equation (21).

Table 2. System topology according to the duty cycle value.

Criteria Decision Topology

dc>T dc = T 1
dc< 0 dc = 0 2

0 ≤ dc ≤ T dc = dc 1 and 2

2.3. Definition of Chaos

The study of chaos basically begins with the mathematical models developed by
Edward N. Lorenz to study certain behaviors of convection. The most complete results on
chaos have been obtained in nonlinear circuits because the design conditions facilitate their
implementation and also because the circuits can be represented by ordinary differential
equations or applications with few variables [28].
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Hence, two types of chaos are differentiated: chaos and strong chaos. The first
definition is easier to check numerically and can be found, for example, in [30]. The
second definition is more complex, numerically and analytically, and can be found in [31].
However, there is no universally or scientifically accepted criterion for what chaos is. In
this research, it is assumed that a system is chaotic if (1) it has positive Lyapunov exponents,
(2) it has sensitive dependence on initial conditions in its domain, and (3) it is bounded [31].

Lyapunov exponents allow measuring the separation of two orbits that were initially
very close. If the orbits are initially very close and, in the future, they are also close, then
the associated Lyapunov exponents will be negative; and if the trajectories diverge, there
will be at least one positive Lyapunov exponent. In this way, the Lyapunov exponents give
a measure of the sensitivity of a system to initial conditions.

On the other hand, chaotic behavior is confirmed by the presence of a Lyapunov
exponent in a system whose trajectories evolve in a confined region of the state space.
Furthermore, in a chaotic attractor, the sum of all Lyapunov exponents is negative [32,33].
It is known that if a system is dissipative, then the sum of the Lyapunov exponents will
be negative. Consequently, the study on the existence of chaos in the boost converter will
be carried out through the numerical calculation of the Lyapunov exponents. Next, the
definition of Lyapunov exponents is displayed as follows.

With DF(x) as the Jacobian matrix of the Poincaré application and qi(DF(x)) the
i−eigenvalue of DF(x). The Lyapunov exponent λi for each eigenvalue is given by

λi = lim
n→∞

(
1
n

n

∑
k =0

log|qi(DF(x(k)))|
)

. (22)

2.4. Control of Chaos with FPIC

In order to stabilize the unstable orbits, a chaos control approach must guarantee that
the eigenvalues of the Jacobian matrix of the Poincaré application stay inside the unit circle
(stability frontier). Therefore, some control techniques have been designed such as TDAS
and FPIC which are used to control the chaos that the boost converter with ZAD. Then, the
following discrete dynamic system given by Equation (23) is considered.

xk+1 = f (xk, u(xk)), (23)

where xk ∈ Rn, u:Rn → R, f :Rn+1 → Rn, and u is an external signal that excites the system.
Now, suppose that the system has a fixed point:

(x∗, u(x∗)):=(x∗, u∗). (24)

The following expression is obtained by computing the Jacobian of the system at this
fixed point:

J = Jx + Ju, (25)

where

Jx =

(
∂ f
∂x

)
(x∗ ,u∗)

and Ju =

(
∂ f
∂u

∂u
∂x

)
(x∗ ,u∗)

. (26)

If the spectral radius of the matrix Jx is less than 1, that means, if ρ(Jx), a signal control
exists. This guarantees the stability of the fixed point (x∗, u∗) for any N ∈ R+.

û(k) =
u(x(k)) + Nu∗

N + 1
. (27)

The discretization of the system corresponds to a sample of it every T seconds (Poincaré
application). The Poincaré application together with its Jacobian can be expressed as in
Equation (28).
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xn+1 = P(xn, dn), JP =
∂P
∂xn

+
∂P
∂dn
· ∂dn

∂xn
. (28)

where y∗ = (x∗, d∗) is a fixed point of the Poincaré application. To apply the FPIC technique,
the following equation must be considered:

ρ

(
∂P
∂xn

∣∣∣∣
y∗

)
< 1. (29)

If the relation in Equation (29) complies, then, the FPIC technique ensures the existence
of a control signal.

d∗n =
dn + Nd∗

N + 1
. (30)

Therefore, the system:

xn+1 = P(xn, d∗n) (31)

It has a y∗ as a stable fixed point. In Equation (30), d∗ corresponds to the duty cycle in
the steady-state operation given by Equations (32)–(35):

d∗ =
T
(

k1(− γx1re f + x2re f ) + k2(− x1re f + 1)
)

k1x2re f − k2x1re f
, (32)

d∗ =
T
(
(k1x2re f − k2x1re f )− γk1x1re f + k2

)
k1x2re f − k2x1re f

, (33)

d∗ = T

1−
γk1x1re f − k2

x1re f

(
γk1x1re f − k2

)
, (34)

d∗ = T

(
1− 1

x1re f

)
. (35)

It is important to find the spectral radius of the matrix to apply the FPIC technique:

∂P
∂xn

= φ1

(
dn

2

)
φ2(T − dn)φ1

(
dn

2

)
. (36)

This last equation is evaluated in a fixed point y∗ of the Poincaré application to verify
if the value is less than 1.

2.5. Control of Chaos with TDAS

The technique is based on applying feedback to the variable delayed in time [23]. As
the variable that induces instability is associated with the duty cycle, when applying the
TDAS technique the following expression is written:

d(n) = d + η(d(n)− d(n− 1)), (37)

where d(n) is the duty cycle to be applied, d is the duty cycle given by Equation (21),
d(n − 1) is the duty cycle in the previous iteration and η is the feedback factor. From
Equation (37) is obtained the expression defined in Equation (38).

d(n) =
d− ηd(n− 1)

1− η
. (38)
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The Jacobian of the new system is calculated to numerically find the values of η
that guarantee the stability of the 1T-periodic orbit. By calculating the duty cycle using
Equation (38), a new system with the Poincaré application has the form expressed in
Equation (39).

X(n + 1) =P(X(n),d(X(n),X(n− 1))). (39)

where Z1 = X(n), Z2 = X(n − 1). A new signal is obtained from variable-dependent
control Z1 and Z2:

d(n + 1) =
d(Z1(n))− ηd(Z2(n))

1− η
. (40)

The following systems are obtained:

Z1(n + 1) =P(Z1(n),d(Z1(n),Z2(n))), (41)

Z2(n + 1) =Z1(n). (42)

The Jacobian of the new system defined in Equation (42) is given as in Equation (43).

J =

(
∂P
∂Z1

+ ∂P
∂d

∂d
∂Z1

∂P
∂d

∂d
∂Z2

I O

)
. (43)

where I and O are the identities and the null matrices of size 2× 2, respectively. With this
Jacobian (which will be implemented in Matlab) its eigenvalues are studied, which allows
for determining the system stability.

All these equations presented in this section are used to control the boost converter
with ZAD, FPIC, and TDAS. Starting from the duty cycle in Equation (21) that corresponds
to the system controlled with ZAD, it is expected to vary the control parameter k1 to find a
zone where chaos is presented. In addition, with Equation (30) the system is controlled with
ZAD and FPIC to seek to control the chaos. In addition, with Equation (40), the ZAD-TDAS
control is performed, seeking to stabilize the chaos when there is a period of delay.

3. Results and Analysis

This section presents the results of the simulations performed on the boost converter
to determine the chaos and control with the proposed techniques. First, the section presents
the chaos in the boost converter. Next, chaos is controlled by using the FPIC. Then, the
chaos is controlled by using the FPIC with a time delay. Even more, the chaos is controlled
by considering TDAS. Finally, the results include an analysis with bifurcation diagrams.

3.1. Chaos in the Boost Converter

Figure 2 shows the presence of chaos in the boost converter in a certain range of vari-
ability of the parameter k1, due to the presence of positive Lyapunov exponents. This case
is generated considering a positive parameter k2 = 0.5. The result shows that the stability is
lost when the parameter k1 = − 0.26 and the values of the Lyapunov exponents increase.

In addition, Figure 3 confirms the existence of chaos in the boost converter for a range
of the parameter k1, due to the presence of positive Lyapunov exponents. This case is
generated considering a negative parameter k2 = −0.5. Similar to the previous figure, the
result shows that the stability is lost when the parameter k1 = 0.26 and the values of the
Lyapunov exponents increase.
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Figure 2. Variation of the Lyapunov exponents as a function of k1 and considering the positive
parameter k2 = 0.5.

Figure 3. Variation of the Lyapunov exponents as a function of k1 and considering the negative
parameter k2 = −0.5.

3.2. Control of Chaos with FPIC

After detecting that the system presents chaos in zones of the parameters, then a
control technique is used to determine the response. In this case, FPIC is applied to the
boost converter controlled with ZAD. Hence, Figures 4 and 5 show that the area with
chaotic behavior decreases when N = 0.1. These graphs show the stability of the system
when the parameter k1 is lower than the value 0.26. Then, when the parameter is higher
than the value, the system losses stability, and chaos is presented.
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Figure 6 shows the evolution of the system in the state space when applying FPIC
with N = 0.1, and Figure 7 shows evolution of the duty cycle applying FPIC with N = 0.1.

Figure 4. Voltage variation depending on k1 with N = 0.1.

Figure 5. Variation of the duty cycle depending on k1 with N = 0.1.
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Figure 6. Evolution of the system in the state space when applying FPIC with N = 0.1.

Figure 7. Evolution of the duty cycle applying FPIC with N = 0.1.

Figure 8 considers the regulation capacity improvement when the FPIC is applied.
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Figure 8. Regulation of the system applying FPIC with N = 0.1.

From Figures 9 and 10, the area where the system exhibits chaotic behavior has
considerably decreased for N = 0.2. In addition, the 1T-periodic orbit is stable over a larger
range of the parameter k1.

Figure 9. Voltage variation depending on k1 with N = 0.2.
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Figure 10. Variation of the duty cycle depending on k1 with N = 0.2.

Figures 11 and 12 show that the zone in which the system presented chaos with
k2 = 0.5 has practically disappeared.

Figure 11. Voltage variation depending on k1 with N = 0.6.
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Figure 12. Variation of the duty cycle depending on k1 with N = 0.6.

Figure 13 gives the bounds at which the FPIC technique controls the chaos of the
system. As expected, for N = 0 the FPIC technique has not started to act. From this
value, the FPIC technique begins to control the chaos. The blue color corresponds to areas
where chaos is controlled, and the red to the presence of chaos. It is observed that for an
approximate value of N = 0.7735, the chaos has already been controlled.

Figure 13. Biparametric diagram of the ZAD and FPIC controllers.
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3.3. FPIC Control with Time Delay

Once, the presence of chaos in the boost converter is found, the FPIC technique is
applied with a time delay to evaluate the capacity of controlling chaos. Some simulations
are performed in this research as follows. Figure 14 shows the variation of the Lyapunov
exponents as a function of the parameter k1, when a time delay is considered and the FPIC
control is implemented.

Figure 14. Lyapunov exponents for boost with time delay and FPIC control.

It is observed that by increasing the control constant N, the range of values of the
parameter k1 in which there are positive Lyapunov exponents increases. For example, if
N = 0.1 positive Lyapunov exponents are obtained for k1 ∈ [− 0.2406, 0.3844]; if N = 0.3,
positive Lyapunov exponents are obtained for k1 ∈ [− 0.3101, 0.389], if N = 0.6 positive
Lyapunov exponents are obtained for k1 ∈ [ − 0.3575, 0.3791], and if N = 0.8 positive
Lyapunov exponents are obtained for k1 ∈ [− 0.3535, 0.3895].

The result above shows that the variability range of k1 is lost in which the 1T-periodic
orbit is stable. Consequently, when applying the FPIC technique to the boost converter with
time delay, satisfactory results are not obtained in terms of the stability of unstable orbits.

3.4. Control of Chaos

Figure 15 shows the variation of the spectral radius of the matrix ∂P
∂xn

for various values
of γ.
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Figure 15. Spectral radius as a function of γ.

Figures 16 and 17 correspond to the evolution of voltage and duty cycle as a function
of k1, choosing η = 0.1. The area where the chaotic regime occurs has increased, suggesting
that negative values for the feedback factor η should be chosen.

Figure 16. Voltage variation depending on k1 for η =0.1.
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Figure 17. Variation of the duty cycle depending on k1 for η = 0.1.

In Figures 18 and 19, η = − 0.1 has been chosen. The area where the system operates
in a chaotic regime has been reduced.

Figure 18. Variation of the duty cycle depending on k1 for η = −0.1.
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Figure 19. Voltage variation depending on k1 for η = −0.1.

In Figures 20 and 21, η = − 0.2 has been chosen and a considerable decrease in the
area where chaos is present can be seen.

Figure 20. Variation of the duty cycle depending on k1 for η = −0.2.
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Figure 21. Voltage variation depending on k1 for η = −0.2.

Figure 22 gives the bounds for the constant η, where the chaos control is conducted.
Once there is a maximum value k1 of chaos control (corresponding to an approximate value
of η = − 0.24), the area where the TDAS technique can control the chaos begins to decrease.
From an implementation standpoint, this is an inconvenience due to the choice of the zone
where the control of chaos is performed. This does not happen with the FPIC technique
because, as Figure 13 shows, starting at N = 0.7735, the chaos is already controlled.

Figure 22. Biparametric diagram for the ZAD and TDAS controllers.
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Figures 23–25 show the evolution of the system when η = − 0.1 is chosen as feedback
constant. To perform this, the same initial conditions with which the chaotic attractor
of Figure 6 was obtained. It is observed that for this value of η the attractor has not yet
been fragmented into two pieces, as it happened with the FPIC technique. The duty cycle
appears in a chaotic regime. Compared with Figure 8, the system regulation is very similar
applying TDAS and FPIC. However, from this same figure, the area where the system
operates in a chaotic regime is smaller when the FPIC control is applied.

Figure 23. Evolution of the system in the state space with TDAS and η = −0.1.

Figure 24. Evolution of the duty cycle with TDAS and η = −0.1.
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Figure 25. System regulation with TDAS and η = −0.1.

Figures 26 and 27 correspond to biparametric diagrams where zones are represented
in which the boost converter regulates when applying the FPIC and TDAS techniques,
respectively. White corresponds to regulation with an error greater than 7%, blue to the
regulation of 7%, green to the regulation of 6%, cyan to the regulation of 5%, magenta at 4%
regulation, black at 3% regulation, yellow at 2% regulation, and red at 1% regulation. For
Figure 26 a control constant N = 0.2 was chosen and in Figure 27 η = − 0.2 was chosen. It
is observed that the area where the TDAS technique regulates 1% is greater. However, the
areas where the FPIC technique regulates 7%, 6%, and 5% are greater than with the TDAS
technique. The zones where both techniques regulate 2%, 3%, and 4% are almost the same.

Figure 26. Biparametric diagram for the regulation of the system with FPIC control.
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Figure 27. Biparametric diagram for the regulation of the system with TDAS control.

4. Conclusions

This paper presented an analysis and control of chaos in the boost converter controlled
with ZAD, FPIC, and TDAS. The existence of chaos is demonstrated numerically by calcu-
lating the Lyapunov exponents. Then, the FPIC and TDAS techniques are used to control
the chaos implemented in the center pulse width modulation. The results show that both
techniques are efficient to control the chaos. However, the FPIC technique presented better
regulation of the system than the TDAS technique. In addition, the FPIC technique allows
a greater range of variability of the parameter k1 in which the 1T-periodic orbit is stable.
When applying the FPIC technique to the boost converter with time delay, satisfactory
results were not obtained in terms of stabilization of unstable orbits. The validity of a
new chaos control technique was proposed and analytically demonstrated, which does not
require measurement of state variables or prior knowledge of periodic orbits. The results
on stability were corroborated by calculating the Lyapunov exponents.
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