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Abstract: During the exploitation of deep resources, rocks are often in a high-temperature, high-
pressure environment. It is of great significance to study the acoustic emission (AE) characteristics of
thermal damaged rock under load to improve the accuracy of monitoring in practical engineering.
In this paper, sandstone was heated at different temperatures, before a uniaxial compression test
was performed and the AE in the process was monitored. The results show that the strength and
AE energy of sandstone decrease gradually with an increase in heating temperature. Through
frequency domain analysis of the AE waveform at the time of failure, it was found that the frequency
and intensity of AE also showed a downward trend with an increase in temperature. In addition,
multifractal theory is introduced to deconstruct the waveform data. The multifractal characteristics of
the waveforms decrease with an increase in temperature. It provides new parameters for waveform
analysis, which can be combined with frequency analysis as parameters to more accurately identify
rock failure in engineering practice. The attenuation of AE of thermally damaged sandstone may be
related to an increase in porosity and a decrease in elastic energy release.

Keywords: acoustic emission; frequency domain; multifractal; thermal damage; rock fracture

1. Introduction

The rock mass in the deep part of the stratum is often in the mechanical environment
of high temperature and high pressure, which brings great challenges to the engineering
stability of underground development activities such as coal resource mining, tunnel
construction, and deep drilling [1–4]. In the process of geothermal energy exploitation,
temperature effect and rock damage evaluation are especially important [5,6]. Therefore,
the mechanical properties and fracture behavior of rock under high temperatures are of
great concern for scholars.

Extensive research shows that high-temperature treatment will damage rock and
reduce a series of mechanical parameters such as compressive strength, tensile strength,
and elastic modulus [7–9]. Moreover, there may be a temperature threshold of 200 ◦C for
sandstone and granite. Below this threshold, the rock damage can be ignored [10]. The
higher the temperature, the more serious the rock damage. Pyrolysis of some minerals leads
to an increase in porosity and decrease in P-wave velocity. When the temperature exceeds
600 ◦C, quartz will undergo phase transformation, resulting in a significant reduction
in rock strength [6,11]. Related research involves different rocks such as granite [12,13],
sandstone [14,15], shale [5], etc. In addition, many scholars have explored rock characteris-
tics under different temperature levels [16], different cooling methods [17], cyclic thermal
shock [11], and other conditions.
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The acoustic emission (AE) signal will be generated when the rock fractures. It is
a transient elastic wave generated by the rapid release of energy from the local source
in the material [7,11,12,18–20]. It is widely used in the field of underground engineering
disaster monitoring and material nondestructive monitoring [21,22]. By monitoring and
analyzing AE signals, rock damage can be evaluated and rock fracture behavior can be
inversed [18]. The analysis methods of AE signals generally include parameter analysis and
waveform analysis. Waveform analysis refers to the frequency domain performance of the
signal obtained by time-frequency transformation. The fracture scale of rock is generally
inversely proportional to the AE frequency. There have been recent reports [6,11,12] on the
AE characteristics of heat-damaged rocks, especially the performance of parameters such
as count and energy. The AE signal generally has good activity in the crack initiation and
propagation stage loading, which is closely related to the stress drop process [19]. Kong
et al. [23] also studied the nonlinear characteristics of the time-varying process of the AE
signal in the uniaxial compression process of sandstone after high-temperature treatment.
However, few studies have paid attention to the attenuation behavior of AE signals of rock
during loading after thermal damage, especially the analysis of waveform.

Therefore, standard samples of red sandstone were processed in this paper, and they
were heated at 0 ◦C (no treatment), 300 ◦C, 600 ◦C, and 900 ◦C, respectively. The AE signals
were then monitored and analyzed when they were loaded in the unconfined condition.
In particular, the waveforms at the time of failure were analyzed by multiple methods. In
addition to the common time-frequency transform analysis of the waveform, including
fast Fourier transform (FFT) [22] and short-time Fourier transform (STFT) [24], multifractal
theory [25,26] was introduced to deeply deconstruct the nonlinear characteristics of the
waveform data. The research results are of great significance in improving the accuracy
of rock damage monitoring in the process of sustainable development of deep energy
engineering.

2. Specimen Preparation and Test System

The rock used for the test was red sandstone, and it was obtained from the Linfen
area of ShanXi, China. Its density was approximately 2545.65 kg/m3. Large blocks with
no obvious cracks on the surface were selected for drilling and coring. Further, standard
specimens of 50 mm in diameter and 100 mm in height were cut and made for mechanical
testing of uniaxial compression. The top- and bottom-end faces were smoothed according
to the standards of the International Society of Rock Mechanics (ISRM).

Next, the specimens were divided into four groups, with two replicate experiments
performed in each group. One group of specimens (Group S25) was not subjected to heat
treatment. We regard the treatment temperature as the room temperature at the time of the
experiment, which was 25 ◦C. The other three groups were heated in a QSH-1200T chamber-
type high-temperature furnace. The three groups were heated from room temperature
to 300 ◦C (Group S300), 600 ◦C (Group S600), and 900 ◦C (Group S900), respectively, and
cooled after two hours of constant temperature. The heating rate and cooling rate were
5 ◦C/min and 1 ◦C/min, respectively. The process of heat treatment is shown in Figure 1.
All specimens were tested for P-wave velocity. The specimen numbers and test results
are shown in Table 1. The wave velocity of the untreated specimens was approximately
3.51 km/s and it gradually decreased as the temperature increased. This shows that the
homogeneity of the specimens was satisfactory and the heat treatment was very effective.

After heat treatment, all the specimens were subjected to uniaxial compression mechan-
ical tests. In addition, the AE signals generated by the rock during the loading process were
collected synchronously. The press used for the test was the new SANS microcomputer-
controlled electro-hydraulic servo pressure testing machine. It can control and collect
the axial stress and strain of the specimen with high precision. The AE collector was a
24-channel Micro-II type AE monitoring host of American Physical Acoustics Corporation
and the NANO-30 AE probe. The center frequency of the probe is 150 kHz and it can
respond well to a wider frequency range. During the experiment, the probe was attached to
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the surface of the specimen and coupled with a specially formulated reagent. The threshold
value, amplification, and acquisition frequency of AE acquisition were set at 45 dB, 40 dB,
and 2 × 106/s, respectively. The loading rate of the press was set at 120 N/s.
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Figure 1. The heating process.

Table 1. Specimen number and test results.

Sample
NO.

P-Wave Velocity
(km/s) USC (MPa) E (GPa) Total AE Energy

(mV·µs)
Peak AE Energy

(mV·µs)

Value Mean Value Mean Value Mean Value Mean Value Mean

S25-1 3.52 3.51 62.58 65.74 10.65 11.52 308,982 297,311.5 30,120 31,788
S25-2 3.51 68.89 12.38 285,641 33,456

S300-1 2.84 2.82 55.83 57.4 8.9 8.52 182,911 168,878.5 25,657 26,657.5
S300-2 2.81 58.98 8.14 154,846 27,658

S600-1 2.38 2.36 46.03 43.76 7.87 7.5 79,938 87,521 13,093 12,037
S600-2 2.34 41.48 7.12 95,104 10,981

S900-1 2.03 2.01 38.07 35.32 6.97 6.04 54,006 46,231 9125 8433
S900-2 1.98 32.57 5.1 38,456 7741

3. Mechanical Properties and AE Response

Figure 2 shows the axial stress–strain curves of a group of specimens after heat
treatment at different temperatures. The final failure occurred at the peak stress point
after the specimens had undergone the stages of primary pore compacting (where the
curves have an upward concave shape), elastic deformation (where the curve is linear), and
yielding (where the curve has a downward concave shape before the peak). In Figure 3, the
uniaxial compressive strength (USC, i.e., peak stress) and elasticity modulus (E, i.e., the
slope of the curve in the elastic deformation phase) of all specimens are counted. The USC
and E of red sandstone gradually decrease with increasing temperature of heat treatment.
The UCS and E of the samples without heat treatment are approximately 65.74 MPa and
11.52 GPa, respectively. However, the USC and E of the samples treated at 900 ◦C are
approximately 35.32 MPa and 6.04 GPa, respectively. The reductions in USC and E reached
46.27% and 47.57%, respectively. All the data are shown in Table 1.
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Figure 3. Changes of UCS and E.

Energy is an important parameter of the AE signal. It refers to the area under the
envelope of the waveform signal, which generally reflects the intensity of AE. Figure 4
shows the AE energy of a set of specimens subjected to heat treatment at different tem-
peratures during the loading process. AE energy has a good response to rock fracture. It
is kept at a low value in the early stage, but increases sharply in the later stage when the
stress fluctuates (with significant fracture). When the stress is loaded to the peak value,
the main fracture of the specimen occurs and leads to complete failure. The AE energy
also reaches its peak value at this time. With an increase in heat treatment temperature,
the level of the AE energy value of the specimens in the whole loading process generally
shows a downward trend. This can be clearly seen from the curves of cumulative AE
energy. The AE energy accumulation of the untreated sample increases rapidly with an
increase in stress. After high-temperature treatment, the increase rate slows down. Figure 5
and Table 1 show the comparison between total AE energy and peak AE energy. After
high-temperature treatment at 900 ◦C, AE energy and peak AE energy decreased by 84.45%
and 73.47%, respectively, compared with the untreated samples.
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4. Waveform Characteristics at Failure
4.1. Original Waveform and FFT Analysis

The AE waveform at the failure point (peak stress) was extracted and further analyzed.
The original waveforms of a group of specimens treated at different temperatures are shown
in Figure 6. The AE waveforms all show the shape of increasing at first and then decreasing
gradually. With an increase in the treatment temperature, the maximum amplitude of the
waveform decreases significantly. In order to further analyze its frequency characteristics,
fast Fourier transform (FFT) [22] was performed on all waveforms. The obtained frequency
spectrums are shown in Figure 7. Further, the main frequency (frequency of the highest
amplitude point in the spectrum) and the amplitude of the main frequency for all specimens
in the experiment are counted and shown in Figure 8. As the temperature increases, both
the main frequency and its amplitude gradually decrease. From no treatment to the 900 ◦C
treatment, the average value of the main frequency decreases from 24.63 kHz to 18.91 kHz.
The average value of the main frequency decreases by 23.22%. Moreover, these frequencies
belong to the range of low-frequency AE signals caused by macroscopic large-scale fracture
of rock under a laboratory test [6]. The amplitude of the main frequency decreases from
0.12 mv to 0.04 mv, a decrease of 66.67%. The decrease in amplitude is more significant than
the main frequency. In addition, it is obvious from the FFT spectrum that the signal has
significant subdominant frequency characteristics between 60–70 kHz. With an increase in
the heat treatment temperature, the amplitude of the subdominant frequency also gradually
decreased.
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4.2. STFT Analysis

Compared with the FFT, the short-time Fourier transform (STFT) [24] has the resolution
on the time scale and is more advanced. By setting the window function, it can obtain
the frequency domain performance of the signal at different times. Figure 9 shows the
calculated time-frequency spectrums of a set of specimens treated at different temperatures.
Consistent with the trend of the FFT results, the highest energy (color axis in Figure 9) of
the signal gradually decreases as the temperature increases. The highest energy value of the
untreated specimen is approximately 6, while the highest energy value of the sample treated
at 900 ◦C is approximately 0.9. The frequencies at the highest energy are all below 100 Hz.
On the time scale, the signal gradually attenuates after reaching the highest energy, with its
frequency and energy range both showing a gradually decreasing trend. For example, in
Figure 9a, the signals at approximately the 600th sampling point show good performance
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in the range of 0–500 Hz. With the increase in time, at the 1500th sampling point, the signal
only performs well at 0–200 Hz. Moreover, the attenuation of signal strength is also obvious.
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4.3. Multifractal Analysis

Fractal theory is proposed by scientists to describe the existence of irregularities in
nature [25,26]. At present, multifractal theory is also used by many scholars to analyze AE
parameters in the field of rock mechanics, but it is rarely used for waveform analysis [19,22].
Multifractal analysis can deconstruct data and reflect the characteristics of an uneven distri-
bution of data. Through multifractal analysis of the waveform, new signal characteristic
parameters can be obtained, which is beneficial to the monitoring of rock failure. The larger
the width ∆α = αmax − αmin of the calculated multifractal spectrum α− f (α), the more
uneven the data [19]. In addition, ∆ f = f (αmax)− f (αmin) reflects the proportion of large
data and small data [22]. If ∆ f is small, it means that large data prevails; if ∆ f is large, it
means that small data prevails. The multifractal spectrum of waveform data is calculated
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by the box dimension method [19]. The formulas used for the calculations are listed below,
with details provided in the literature [22].

Xq(ε) ≡∑ Pi(ε)
q ∼ ετ(q) (1)

τ(q) = lim
ε→0

lnXq(ε)

lnε
(2)

α =
d(τ(q))

dq
=

d
dq

(
lim
ε→0

lnXq(ε)

lnε

)
(3)

f (α) = αq− τ(q) (4)

The data xi are divided into multiple subsets of length ε. Pi(ε) is the probability
distribution of the subset; Xq(ε) is the statistical moment; τ(q) is the quality index; α is the
singularity index, which reflects the inhomogeneity of the subset; and f (α) denotes the
frequency of the represented subset in the whole subset, i.e., the fractal dimension of the
subset.

Figure 10 shows the multifractal spectrums of a set of specimens treated at different
temperatures. They all have a right hook shape (∆ f > 0), reflecting the fact that the data are
all dominated by small values. Figure 11 tallies and shows the ∆α and ∆ f for all specimens.
As the temperature increases, the multifractal characteristics of the AE waveform weaken
and the multifractal parameters ∆α and ∆ f tend to decrease in general. The mean value of
α decreases from 2.14 to 0.73, while the mean value of f decreases from 0.45 to 0.08. This
reflects that the data distribution of the waveform is becoming increasingly less different,
with the large data becoming increasingly more dominant.

In summary, all analyses show that heat treatment causes a weakening of the AE
signal of the rock, both in terms of the temporal variation of the energy and the time-
frequency domain performance of the waveform at the time of failure. This may be due
to various reasons. Heat treatment leads to damage of sandstone and an increase in
porosity [27–29], which will aggravate attenuation of the AE signal during propagation. In
addition, the strength of sandstone after thermal damage is reduced, while the storage of
elastic properties is weakened during loading [6]. Less elastic energy is released, resulting in
weaker AE signals [13]. In addition, it is useful to analyze the waveform by multiple means,
which is beneficial to the depth inversion of rock fracture and improves the monitoring
accuracy. Moreover, the introduction of multifractal theory provides new characteristic
parameters for the analysis of AE waveforms.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 10. Multifractal spectrums. 

  

Figure 11. Changes of multifractal parameters: (a) ∆α, (b) ∆𝑓. 

In summary, all analyses show that heat treatment causes a weakening of the AE 

signal of the rock, both in terms of the temporal variation of the energy and the time-

frequency domain performance of the waveform at the time of failure. This may be due 

to various reasons. Heat treatment leads to damage of sandstone and an increase in 

porosity [27–29], which will aggravate attenuation of the AE signal during propagation. 

In addition, the strength of sandstone after thermal damage is reduced, while the storage 

of elastic properties is weakened during loading [6]. Less elastic energy is released, 

resulting in weaker AE signals [13]. In addition, it is useful to analyze the waveform by 

multiple means, which is beneficial to the depth inversion of rock fracture and improves 

the monitoring accuracy. Moreover, the introduction of multifractal theory provides new 

characteristic parameters for the analysis of AE waveforms. 

5. Conclusions 

In this paper, in order to improve the accuracy of acoustic emission monitoring of 

rock failure after thermal damage, sandstone was heated at different temperatures (25 °C, 

300 °C, 600 °C, 900 °C) and then subjected to an unconfined compression test, with the AE 

monitored. The mechanical properties and AE response of heat-damaged sandstone were 

analyzed. In particular, frequency domain analysis (including FFT and STFT) and 

multifractal analysis of the AE waveform at the time of failure were performed. The main 

conclusions are as follows: 

Figure 10. Multifractal spectrums.



Sustainability 2022, 14, 13285 10 of 12

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 10. Multifractal spectrums. 

  

Figure 11. Changes of multifractal parameters: (a) ∆α, (b) ∆𝑓. 

In summary, all analyses show that heat treatment causes a weakening of the AE 

signal of the rock, both in terms of the temporal variation of the energy and the time-

frequency domain performance of the waveform at the time of failure. This may be due 

to various reasons. Heat treatment leads to damage of sandstone and an increase in 

porosity [27–29], which will aggravate attenuation of the AE signal during propagation. 

In addition, the strength of sandstone after thermal damage is reduced, while the storage 

of elastic properties is weakened during loading [6]. Less elastic energy is released, 

resulting in weaker AE signals [13]. In addition, it is useful to analyze the waveform by 

multiple means, which is beneficial to the depth inversion of rock fracture and improves 

the monitoring accuracy. Moreover, the introduction of multifractal theory provides new 

characteristic parameters for the analysis of AE waveforms. 

5. Conclusions 

In this paper, in order to improve the accuracy of acoustic emission monitoring of 

rock failure after thermal damage, sandstone was heated at different temperatures (25 °C, 

300 °C, 600 °C, 900 °C) and then subjected to an unconfined compression test, with the AE 

monitored. The mechanical properties and AE response of heat-damaged sandstone were 

analyzed. In particular, frequency domain analysis (including FFT and STFT) and 

multifractal analysis of the AE waveform at the time of failure were performed. The main 

conclusions are as follows: 

Figure 11. Changes of multifractal parameters: (a) ∆α, (b) ∆ f .

5. Conclusions

In this paper, in order to improve the accuracy of acoustic emission monitoring of
rock failure after thermal damage, sandstone was heated at different temperatures (25 ◦C,
300 ◦C, 600 ◦C, 900 ◦C) and then subjected to an unconfined compression test, with the
AE monitored. The mechanical properties and AE response of heat-damaged sandstone
were analyzed. In particular, frequency domain analysis (including FFT and STFT) and
multifractal analysis of the AE waveform at the time of failure were performed. The main
conclusions are as follows:

(1) When the heating temperature increases from 25 ◦C to 900 ◦C, the uniaxial com-
pressive strength and elastic modulus of sandstone decrease by 46.27% and 47.57%,
respectively. Moreover, with an increase in temperature, the AE energy level in the
loading process tends to decay. Compared with the untreated samples, the total value
and peak value of AE energy of the samples after the 900 ◦C treatment decrease by
84.45% and 73.47%, respectively.

(2) The FFT analysis shows that with an increase in temperature, the dominant frequency
and amplitude of the AE waveform of sandstone failure are decreased. The dominant
frequency and amplitude of the samples treated at 900 ◦C are 23.22% and 66.67%
lower, respectively, than those of the untreated samples. The STFT analysis also has
basically consistent laws. In addition, STFT shows that the frequency range and
intensity are gradually attenuated after the waveform reaches a peak. The attenuation
of AE may be related to the decrease in elastic energy release and the increase in
porosity.

(3) Multifractal theory was introduced to analyze the waveform of failure. The multifrac-
tal characteristic (∆α and ∆ f ) of the signal gradually decreases with an increase in
temperature, and it provides new parameters for the waveform characteristic analy-
sis, which has an engineering application value and is conducive to improving the
accuracy of rock-failure monitoring.
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