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Abstract: Land is the basis of development, and the unique patterns of the spatio-temporal evolution
of land use in resource-based cities can reflect regional development, help land resources to be used
efficiently and rationally, promote scientific regulation, and achieve high-quality development. Based
on the land use data of resource-based cities in three northeastern provinces from 1980 to 2020, the
spatio-temporal evolution characteristics and driving factors of land use in the sample study area
were studied by the Markov transfer matrix and a parametric optimal geographic detector model. The
results showed that: (1) From the perspective of time, the land use changes in the sample study area
were active, mainly reflected in the continuous conversion of forest land transfer-out (11.66%) and
arable land transfer-in (11.28%), and the dynamic attitude of forest land showed a trend of decreasing,
then increasing and then decreasing, while the dynamic attitude of arable land showed a trend
of increasing, then decreasing and then increasing. (2) Spatially, the areas where land conversion
occurred were mainly concentrated in the northern part of the study area and the border area in
the east, which is also the area where forest land was converted to arable land and grassland was
converted to arable land, and the expansion of construction land was more common; (3) In terms of
influencing factors, land conversion before 2000 was mainly influenced by socio-economic factors,
and population quantity and urbanization rate had stronger explanatory power. The spatial and
temporal evolution of forest land conversion to arable land was realized by the interaction of various
factors, and the driver interactions were all non-linearly enhanced and bi-factor enhanced. (4) In
terms of influencing factors, land conversion before 2000 was mainly influenced by socio-economics,
with population quantity and urbanization rate having a stronger explanatory power; after 2000,
land conversion was mainly influenced by physical geography, with precipitation and temperature
having a stronger explanatory power. (5) The spatio-temporal evolution of forest land conversion to
cropland was realized by the interaction between various factors, and the driving factor interactions
all showed non-linear enhancement and bifactor enhancement.

Keywords: resource-based cities; land use; spatio-temporal evolution; parametric-optimal geodetector
model; Chinese three northeastern provinces

1. Introduction

Land Use and Land Cover Change (LUCC) is a hot area of academic research in
ecology [1–3], environment [4–6], geography [7,8], and so on. LUCC shows the spatio-
temporal dynamics of the surface landscape and objectively records the process and results
of human behavioral activities on the surface ecosystem [9–12]. However, land use patterns
are changing due to climate issues such as global warming, the intensification of human
behavioral activities, and the advancement of urbanization and industrialization. In this
regard, domestic and foreign scholars have undertaken much research on land use change
and its driving mechanisms [13,14]. From the scope of the study areas selected by scholars,
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the existing studies have mainly focused on a province [15–17], a city [18,19], a county [20],
a watershed [6,21] and a specific region [8,22–24]. The scope of the studies is concentrated,
and the time series is short, making it difficult based on the fact that land use changes is the
subject of long-term development and evolution. Most studies have focused on the transfer
in and out of cropland [7,8,23,25] analysis. In terms of research methods, scholars have
mainly explored the drivers of land use change by building regression models [26], and in
recent years have more often used GeoDetector Models [7,8,27]. From the research results,
precipitation, temperature, population, urbanization processes, and social development are
the main drivers of land use changes [28–31].

Resource-based cities are the cities that rely on their unique natural resources and
socio-economic characteristics [32–34]. Their leading industries have depended on local
natural resources for a long time; however, the limited natural resources limit urban
development and have led to resource-based cities becoming a relatively lagging category
of cities in China and even in the world. However, research on resource-based cities in
Northeast China has mostly focused on their economic development and the reasons for
their underdevelopment [35,36]. There are fewer analyses related to their land use change,
and the years are older [34,37]. In recent years, China has achieved remarkable results in
spatial governance, territorial spatial planning has been solidly promoted, and land use
adjustment has entered a new stage nationwide. Therefore, exploring the rational land use
and evolution of resource-based cities has gradually become the focus of scholars at home
and abroad.

Based on the above analysis, this paper uses five periods land use data of all the
three northeastern provinces’ resource-based cities in China as the basis from 1980 to 2020,
uses ArcGIS spatial analysis software and RStudio software, and integrates physical geo-
graphic factors and socio-economic factors through the Parametric-Optimal Geodetector
Model [38–40] (OPGD) to analysis the land use change characteristics of resource-based
cities in the study area over the past 40 years. It explores the driving mechanism of land
use change in different periods and the interaction of the driving factors in order to provide
support for the analysis of land use evolution laws in resource-based cities and promote
land policy innovation in resource-based cities scientifically.

2. Materials and Methods
2.1. Study Area

The three northeastern provinces (118◦53′~135◦05′ E, 38◦43′~53◦33′ N) are the col-
lective name of the Heilongjiang, Jilin, and Liaoning provinces. The region is adjacent
to Russia and North Korea, and there are 36 prefecture-level cities (Figure 1). According
to the list of resource-based cities determined by the National Plan for Sustainable De-
velopment of Resource-based Cities (2013–2020) [41], there are 21 resource-based cities
in the region (Table 1), and their area accounts for 59.94% of the total area of the three
northeastern provinces, which is the most concentrated area of resource-based cities in
China. As an important strategic resource security area, a critical commodity food base,
and a “ballast” for national food security, the analysis of the evolution of land use in the
three northeastern provinces and the investigation of the driving mechanism of land use
change are essential for optimizing the regional land resource allocation and scientific
regulation of land use and promoting the transformation and upgrading of resource-based
cities and high-quality development. It is crucial for optimizing the allocation of regional
land resources and scientific regulation of land use and promoting the transformation and
upgrading of resource-based cities and high-quality development.
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City, Mudanjiang City, Daxinganling Area  

2.2. Data Sources 

Due to the special properties of land and its conversion with a long-term cycle, this 

paper selected the data of the study area for five periods of 1980, 1990, 2000, 2010, and 

2020, respectively. Among them, the land use data were obtained from the 1 km raster 

dataset of the Resource and Environment Science Data Center of the Chinese Academy of 

Sciences (https://www.resdc.cn/, accessed by 15 April 2022); among the driver data, the 

elevation and slope data were obtained from the new global 30 m DEM (Digital Elevation 

Model) dataset released by the National Aeronautics and Space Administration (NASA), 

which has the characteristics of realism and comprehensive coverage. Precipitation and 

temperature data were obtained from the spatial interpolation dataset provided by the 

Data Center for Resource and Environmental Sciences of the Chinese Academy of Sci-

ences, based on the daily observation data from more than 2400 meteorological stations’ 

national collation, calculation, and spatial interpolation processing. Socio-economic data 

Figure 1. Location of the resource-based cities of the three northeastern provinces in China.

Table 1. The three northeastern provinces’ resource-based cities.

Province Prefectural Districts

Liaoning Province Fuxin City, Fushun City, Benxi City, Anshan City, Panjin City, Huludao City

Jilin Province Songyuan City, Jilin City, Liaoyuan City, Tonghua City, Baishan City,
Yanbian Korean Autonomous Prefecture

Heilongjiang Province Heihe City, Daqing City, Yichun City, Hegang City, Shuangyashan City, Qitaihe
City, Jixi City, Mudanjiang City, Daxinganling Area

2.2. Data Sources

Due to the special properties of land and its conversion with a long-term cycle, this
paper selected the data of the study area for five periods of 1980, 1990, 2000, 2010, and 2020,
respectively. Among them, the land use data were obtained from the 1 km raster dataset of
the Resource and Environment Science Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/, accessed by 15 April 2022); among the driver data, the elevation
and slope data were obtained from the new global 30 m DEM (Digital Elevation Model)
dataset released by the National Aeronautics and Space Administration (NASA), which has
the characteristics of realism and comprehensive coverage. Precipitation and temperature
data were obtained from the spatial interpolation dataset provided by the Data Center for
Resource and Environmental Sciences of the Chinese Academy of Sciences, based on the
daily observation data from more than 2400 meteorological stations’ national collation,

https://www.resdc.cn/
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calculation, and spatial interpolation processing. Socio-economic data were obtained from
the China City Statistical Yearbook, Liaoning Statistical Yearbook, Jilin Statistical Yearbook,
Heilongjiang Statistical Yearbook, and provinces and cities’ statistical bulletins, from 1980
to 2020 (https://www.cnki.net/, accessed by 15 April 2022).

2.3. Research Methodology
2.3.1. Land Use Dynamic Attitude

The dynamic land use attitude can genuinely reflect the degree of dynamic changes of
land use types and is divided into single land use attitude and comprehensive land use
attitude. The response to the change of a specific land use type in a particular time in a
specific region is the single land use dynamic attitude is calculated by the following formula:

K =
Ub −Ua

Ua
× 1

T
× 100% (1)

2.3.2. Markov Transfer Matrix

The Markov transfer matrix reflects the current land use status and the area size of
land types at the beginning and end of a period, as well as the mutual transfer of land use
types within that period, and is calculated as follows:

Pij =

 P11 . . . P1N
...

. . .
...

PN1 . . . PNN

 (2)

where Pij denotes the area of land use type change at the beginning and end of the period,
and N is the total number of land use types.

2.3.3. Parametric-Optimal Geodetector Model

Geodetector is a statistical method that can detect the spatial variability of geographic
elements and the magnitude of their driving forces and is widely used to study regional
spatial and temporal changes and socio-economic development [7,8,25,40]. Since the
Geodetector Model needs to discretize continuous variables, in this process problems
such as poor discretization results can arise due to subjectivity. Therefore, based on
the traditional Geodetector Model, the Parametric-Optimal Geodetector Model uses a
supervised discretization method of spatial data discretization to select the parameter
combination with the largest q-value [38–40], to exclude subjectivity and insignificant
results due to poor discretization. The process was implemented by RStudio software.
According to the actual situation of this study, two detector models, risk factor detection,
and interaction factor detection in the Parametric-Optimal Geodetector Model were used.

Risk factor detection: This was used to detect the spatial variation characteristics of
land use change in the study area and the intensity of the driver’s explanation of the spatial
variation characteristics of land use change. Its calculation formula is as follows:

q = 1−

L
∑

h=1
Nhδ2

h

Nδ2 = 1− SSW
SST

(3)

SSW =
L

∑
h=1

Nhδ2
h, SST = Nδ2 (4)

where h is the stratification of Y and X; Nh and N are the number of cells of layer h and the
number of full cells, respectively, and are the variance of the Y values of layer h and the
variance of the whole area, respectively; and SSW and SST are the variance within the layer
and the total variance of the whole area, respectively. q takes values in the range [0, 1], and

https://www.cnki.net/
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the larger its value, the more obvious the spatial heterogeneity of land use change, which
indicates that X explains q*100% of Y.

Interaction detection: This was used to detect the strength of interaction between risk
factors, in particular to detect whether there was an enhanced or weakened relationship
between the explanatory power of the drivers X1 and X2 together on land use change, or
whether each driver existed relatively independently [40].

3. Results and Analysis
3.1. Analysis of the Spatio-Temporal Evolution of Land Use
3.1.1. Temporal Evolution of Land Use Change

As can be seen from Table 2, land use change within the study area was mainly
dominated by forest land and cropland. Forest land accounted for 60.52% in 1980 and
decreased to 55.97% in 2020, and cropland accounted for 22.57% in 1980 and increased to
27.62% in 2020.

Table 2. Land use change index over the study area from 1980 to 2020 (km2).

Year
Land Use Type

CL FL GL WB BL UL

1980
Area(km2) 105,888 283,900 35,320 11,285 8317 24,429

Percentage% 22.57 60.52 7.53 2.41 1.77 5.21

2020
Area(km2) 129,588 262,579 19,840 9676 11,780 35,676

Percentage% 27.62 55.97 4.23 2.06 2.51 7.60

Single land use
dynamic attitude/% 0.56 −0.19 −1.10 −0.36 1.04 1.15

Notes: CL, FL, GL, WB, CL, and UL represent Cropland, Forest Land, Grassland, Water Bodies, Built-up Land,
and Unused land.

According to the Markov principle and through ArcGIS software, Table 3 shows that
the areas of cropland, built-up land, and unused land increased, and the areas of forest land,
grassland, and water decreased. The largest increase was cropland, with a conversion area
of 23,700 km2 from 1980; the smallest increase was unused land, with a conversion area of
11,247 km2 from 1980; the most significant decrease was forest land, with a conversion area
of 21,321 km2 from 1980, and a minor decrease was water bodies, with a conversion area of
1609 km2 from 1980.

Table 3. Transfer matrix of land use from 1980 to 2020.

Year/
Land Use Type km2

2020

CL FL GL WB BL UL Total

1980

CL 76,684 15,560 2309 1722 6504 3109 105,888
FL 26,736 229,177 10,008 1408 1742 14,829 283,900
GL 9648 12,813 5273 525 527 6534 35,320
WB 2078 1088 450 4887 291 2491 11,285
BL 4541 888 166 185 2306 231 8317
UL 9901 3053 1634 949 410 8482 24,429

Total 129,588 262,579 19,840 9676 11,780 35,676 469,139

Notes: CL, FL, GL, WB, CL, and UL represent Cropland, Forest Land, Grassland, Water Bodies, Built-up Land,
and Unused land.

Table 4 shows that the most significant degree of land use change from 1980 to 2020
was the conversion of forest land to cropland with 5.70%, the conversion of cropland to
forest land with 3.32%, the conversion of forest land to unused land with 3.16%, and the
land use changes in this period were mainly dominated by cropland transfer-in (11.28%)
and forest land transfer-out (11.66%). In terms of time, the most significant degree of
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land use change in 1980–1990 was cropland transfer-in (1.47%), mainly reflected in the
conversion of unused land, grassland, and forest land to cropland, with the percentages
of 0.50%, 0.49%, and 0.47%, respectively; the enormous rate of land use conversion was
unused land (0.74%), mainly reflected in the conversion of unused land to cropland and
grassland, with the percentages of the land use pattern in this period being relatively stable,
with relatively smooth changes. Land use changes from 1990 to 2000 were similar to the
previous period, and the most significant change was also cropland transfer-in (4.39%),
transfer from forest land, and grassland and unused land, accounting for 2.36%, 1.13%, and
0.50%, respectively. The most significant degree of land use change in this period was from
forest land and grassland, with 2.90% and 1.54%, respectively, and both mainly transferred
to cropland, with a 2.63% change from forest land and a 1.13% change from grassland.
The greatest extent of change in land use during the period 2000–2010 was the forest land
transfer-out (1.51%), mainly to cropland and grassland, accounting for 1.04% and 0.34%,
respectively; the greatest extent of change was cropland transfer-in (1.87%), mainly to
forest land and built-up land, accounting for 1.04% and 0.43%, respectively; and the land
use situation during this period was similar to the period 1980–1990, with a relatively
stable land use pattern and relatively insignificant changes in land types. In the period
2010–2020, the most significant degree of land use change was forest land transfer-out
(10.22%), mainly to cropland, unused land, and grassland, accounting for 4.63%, 3.00%,
and 1.97%, respectively, and the most significant degree of land use change was cropland
transfer-in (8.35%), mainly to forest land and unused land, accounting for 4.16% and 1.21%,
respectively.

Table 4. Typical land use changes from 1980 to 2020.

Land Use
Change Transfer-Out Change

Area/hm2 Percentage Land Use
Change Transfer-in Change

Area/hm2 Percentage

Forest land
transfer-out

CL 26,736 5.70

cropland
transfer-in

FL 27,636 5.70
GL 10,008 2.13 GL 9648 2.06
WB 1408 0.30 WB 2078 0.44
BL 1742 0.37 BL 4541 0.97
UL 14,829 3.16 UL 9901 2.11

Notes: CL, FL, GL, WB, CL, and UL represent Cropland, Forest Land, Grassland, Water Bodies, Built-up Land,
and Unused land.

In general, the typical land use changes in the study area over 40 years mainly reflected
the conversion of forest land to cropland, followed by cropland to forest land, in which
the land use dynamics of cropland showed an apparent N-shaped dynamic trend and the
land use dynamics of forest land showed a slow inverted N-shaped dynamic trend (Table 5,
Figure 2). From this, it is easy to find that the increase in cropland and the decrease in forest
land had a specific correlation.

Table 5. Land use change index in different periods.

Land Use
Type

1980–1990 1990–2000 2000–2010 2010–2020

Area
Change

/hm2

Single-
Motion

Attitude/%

Area
Change

/hm2

Single-
Motion

Attitude/%

Area
Change

/hm2

Single-
Motion

Attitude/%

Area
Change

/hm2

Single-
Motion

Attitude/%

CL 6145 0.58 1385 1.11 1586 0.13 3587 0.28
FL −1929 −0.07 −4045 −0.25 −1170 −0.04 −11,185 −0.41
GL −2606 −0.74 −4652 −1.42 1083 0.39 −9304 −3.19
WB 256 0.23 −432 −0.37 −238 −0.21 −1199 −1.10
BL 585 0.70 1337 1.50 −862 −0.84 2403 2.56
UL −2461 −1.01 −1593 −0.72 −399 −0.20 15,698 7.86

Notes: CL, FL, GL, WB, CL, and UL represent Cropland, Forest Land, Grassland, Water Bodies, Built-up Land,
and Unused land.
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Figure 2. The dynamic attitude changes trend of forest land and cropland.

3.1.2. Spatial Distribution of Land Use Change

The maps of the current land use situation in each period and the spatial distribution
of typical land use changes in the study area were obtained by ArcGIS (Figure 3). From
Figure 4, we can see the distribution of land use in the study area, and it is evident that
in the border area near Russia in the north of the study area, in 40 years, large areas of
forest land were converted to unused land and forest land converted to cropland, and the
grassland has shown signs of overall expansion to the north. In the eastern part of the
study area near the border with Korea, a large area of forest land was also converted to
cropland; in the western part of the study area, a large area of grassland was converted
to cropland; and the central part of the study area there has been an evident expansion
of built-up land. The expansion of built-up land was also evident in the northeastern
and central areas of the study area, as well as in the southern areas, all of which showed
different degrees of built-up land expansion, and the expansion was concentrated in heavy
industrial resource-based cities with abundant reserves of raw coal, crude oil and iron ore.

To further clarify the degree of dynamic attitudinal changes of land use in the study
area, the degree of land use change in the study area was divided into five levels using
the ArcGIS Natural Breaks (Jenks) method (Figure 4), with level 1 indicating the most
significant degree of changeand decreasing level by level. As can be seen from Figure 5,
the prefecture-level cities with the most significant degree of land use change in the study
area from 1980 to 2020 were Yichun City and Shuangyashan City, which are adjacent to
the Russian border, mainly embodied in the change of forest land to unused land and
cropland. The cities with the next highest degree of change were Daxinganling Area, which
is adjacent to the Russian border, Baishan City and Tonghua City, which are adjacent to the
Korean border, as well as Songyuan City and Anshan City, where the change in land use
was mainly reflected in the transfer of forest land to cropland. The cities with the degree of
change in land use dynamics of grade 3 included Mudanjiang City and Yanbian Korean
Autonomous Region, which are adjacent to the border with North Korea, and Benxi City
and Panjin City, where the change in land type was mainly reflected in the transfer of
forest land to cropland. The rest of the resource-based cities had relatively inactive land use
dynamics. Among them, Heihe City, which is adjacent to the Russian border, and Daqing
City, Qitaihe City, Jilin City, Liaoyuan City, Fuxin City, Fushun City, and Huludao City were
in level 4 of land use dynamics, mainly reflecting the transfer of forest land to cropland and
Jixi City and Hegang City had a minor level of land use dynamics, mainly reflected in the
transfer of grassland to cropland.
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It should be noted that all four resource-based cities of the national timber reserve base
had an apparent degradation of forest land, and the transfer-out was mainly to cropland
and unused land. The possible reasons for this phenomenon are: such cities mainly rely
on the development of woodcraft industry clusters, and thus consume wood much faster
than the rate of finished timber; secondly, with the development of the social economy,
land resources have become more and more scarce, and the population food problem has
come to the fore, thus reclaiming cropland in the border areas where land is vast and
people are scarce becomes the first choice; finally, due to the relatively harsh climatic and
environmental conditions in the border areas, resulting in forest land. The probability of
conversion to unused land has increased and accelerated.
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3.2. Driving Factor Analysis
3.2.1. Driving Factor Detection

The first step was to make the selection of the driving factors. According to the
results of related research and combined with the characteristics of the study area as a
resource-based city, this paper selected the driving factor indicators from two dimensions:
physical geography and socio-economics. Considering the quantifiability and accessibility
of the driving factors, the following indicators were selected: Slope (X1), Elevation (X2),
Precipitation (X3), Temperature (X4), Population (X5), Urbanization rate (X6), GDP (X7),
Gross industrial output value (X8), and Gross agricultural output value (X9).

The most important type of land use change in the study area was converting forest
land to cropland. Based on the Parametric-Optimal GeoDetector Model to detect the driving
factors of spatio-temporal evolution of forest land to cropland in the study area (Table 6),
the results were all significant. Table 6 shows that the urbanization rate and population
were the main drivers of forest land conversion to cropland in 1980–1990 and the slope and
the GDP also had strong explanatory power. From 1990–2000, the main drivers were still
urbanization rate and population size, and it can be seen that the explanatory power of
urbanization rate and population size increased significantly in this period. At the same
time, the explanatory power of elevation and precipitation also increased. The main driving
factors in 2000–2010 changed from the socio-economic factors in the first 20 years to the
natural geographic factors dominated by precipitation and temperature. The main driving
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factors in 2010–2020 changed from the gross agricultural output value and gross industrial
output value in the socio-economic factors.

Table 6. Results of the detection of driving factors in different periods.

Period Explanation
Value

Physical Geographic Drivers Socio-Economic Drivers

X1 X2 X3 X4 X5 X6 X7 X8 X9

1980–1990 q 0.146 0.408 0.337 0.188 0.437 0.521 0.357 0.288 0.270
1990–2000 q 0.366 0.333 0.354 0.173 0.821 0.882 0.177 0.316 0.132
2000–2010 q 0.523 0.464 0.675 0.849 0.126 0.279 0.190 0.247 0.379
2010–2020 q 0.460 0.406 0.218 0.334 0.393 0.281 0.130 0.418 0.569

Note: X1 is Slope; X2 Elevation; X3 is Precipitation; X4 is Temperature; X5 is Population size; X6 is Urbanization
rate; X7 is GDP; X8 is Gross industrial output value; X9 is Gross agricultural output value.

Not surprisingly, due to the intensification of the population over the past 40 years,
securing an orderly supply of food is fundamental to people’s livelihood. Due to the limited
land resources, the newly reclaimed cropland could only be achieved by cutting down
deep forests and reclaiming wasteland, resulting in the increase in cropland mainly in the
border resource-based urban areas where timber resources are mainly re-served. During the
same period, some of the resource-based cities became the first development areas by their
resource advantages, such as Anshan City, Fushun City, Benxi City, Panjin City, Jilin City,
Songyuan City, Daqing City, Hegang City, Jixi City, etc., resulting in the apparent expansion
of built-up land in these cities. In the past 20 years, the popula-tion and urbanization rate
have gradually stabilized compared with the previous 20 years, and the impact on the
land use pattern has gradually weakened. From 2000 to 2020, the population in the three
northeastern provinces has stabilized. China has introduced policies on returning cropland
to forest land and grass land to cope with the ecological environment, which has effectively
curbed the degradation of forest land and gradually stabilized the land use pattern.

3.2.2. Driving Factor Interaction Detection

Since the spatio-temporal evolution of land use is not the result of single-factor action
but by multiple factor interactions, it was necessary to obtain the factor interactions for four
periods, 1980–1990, 1990–2000, 2000–2010, and 2010–2020, by interaction detection with the
Parametric-Optimal Geodetector Model. The results showed that the interaction strength
of the nine driving factors was greater than the single interaction strength of each factor,
showing a non-linear enhancement and a bifactor enhancement effect and indicating that
the land use pattern of resource-based cities in study area over 40 years resulted from the
interaction of factors such as precipitation, temperature, population, and urbanization rate.

It can be seen from Figure 5, in the period 1980–1990, most of the interactions of
land use change from forest land to cropland showed non-linear enhancement. More-
over, the non-linear enhancement factors with strong interactions were temperature–slope,
precipitation–GDP, slope–precipitation, temperature–urbanization rate, slope–urbanization
rate, and precipitation–urbanization rate. Population size–urbanization rate, urbanization
rate–gross agricultural output value, and slope–GDP represent bifactor enhancement. It
can be seen that population size and urbanization rate enhanced the explanatory power of
each interaction in this period.

The interactions from 1990 to 2000 showed half non-linear enhancements and half
bifactor enhancements. The non-linear enhancements with more substantial explanatory
power were precipitation–gross industrial output value, precipitation–GDP, elevation–gross
agricultural output value, elevation–precipitation, slope–gross agricultural output value,
slope–gross industrial output value, etc. The bifactor enhancements with more substantial
explanatory power were precipitation–urbanization rate, temperature–urbanization rate,
urbanization rate–gross agricultural output value, urbanization rate–gross industrial output
value, elevation–urbanization rate, and urbanization rate–GDP, etc. It can be seen that
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temperature, precipitation, urbanization rate, and population size enhanced the explanatory
power of each interaction in this period.

The interaction presentation status of 2000–2010 was different from the first period,
which was mostly bifactor-enhanced and less non-linear-enhanced. The interaction factors
with reliable explanatory power were slope–precipitation, temperature–urbanization rate,
temperature–gross industrial output value, elevation–temperature, slope–temperature, and
temperature–agricultural, all of which were bifactor-enhanced. The non-linear factors with
more substantial explanatory power were elevation–GDP, elevation–gross industrial output
value, slope–urbanization rate, elevation–urbanization rate, elevation–population number,
slope–population size, etc. It can be seen that temperature, precipitation, and urbanization
rate enhanced the explanatory power of each interaction in this period.

The period 2010–2020 showed a relatively balanced state, where the non-linear en-
hancements with reliable explanatory power were elevation–urbanization rate, elevation–
gross industrial output value, population size–gross industrial output value, temperature–
gross industrial slope–temperature and elevation–precipitation. The bifactor enhancements
with reliable explanatory power were elevation–slope, temperature–gross agricultural
output value, elevation–gross agricultural output value, population size–gross agricul-
tural output value, precipitation–gross agricultural output value, and gross industrial
output value–gross agricultural output value, etc. Gross industrial and agricultural prod-
uct, precipitation, and temperature in this period enhanced the explanatory power of
each interaction.

4. Conclusions and Discussion
4.1. Conclusions

This paper integrated ArcGIS spatial analysis software and RStudio software and used
land use dynamic attitude, Markov transfer matrix, and Parametric-Optimal Geodetector
Model to explore the spatio-temporal evolution of land use and its driving mechanisms
in resource-based cities in three northeastern provinces of China for 40 years. The main
conclusions as follows:

(1) From the typical land use changes in the study area, the area of cropland increased
obviously and positively, and its land use dynamics showed a trend of first increasing and
then decreasing and then slowly increasing; the area of forest land decreased obviously
and negatively, and its land use dynamics showed a trend of first decreasing and then
increasing and then decreasing, and the two change trends were roughly axisymmetric.
It can be understood that the transfer in of cropland was positively correlated with the
transfer out of forest land to a certain extent, which was the same as the result of the study
on land use change in the northern border zone of Heilongjiang. The increase in cropland
area mainly came from forest land, grassland, and unused land, and the decrease in forest
land area was mainly transferred out to cropland. Land use change was relatively smooth
in the two periods of 1980–1990 and 2000–2010, and LUCC was in a relatively stable pattern.

(2) From the spatial distribution of typical land use changes in the study area, the most
active areas of LUCC changes in the study area over 40 years were the northern border
area and the eastern border area of China. The resource-based cities adjacent to the Russian
region mainly showed the conversion of forest land to cropland and forest land to unused
land, and the grassland in the region showed an apparent concentration of northward
movement; and the resource-based cities adjacent to the Korean region mainly showed
the conversion of forest land to cropland. All the cities in the study area showed different
degrees of built-up land expansion.

(3) The explanatory power of the drivers in each period: the main drivers in 1980–1990
and 1990–2000 were urbanization rate and population size and they both belonged to
the socio-economic factors; the strongest explanatory power drivers in 2000–2010 were
precipitation and temperature and they were physical geography factors; and in 2010–2020,
gross agricultural output value and elevation had the most muscular explanatory power.
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(4) Driver interactions in each period: the strength of driver interactions varied among
periods, and there were no independent drivers. Driver interactions from 1980 to 1990
mostly showed non-linear enhancements; in contrast, 2000–2010 driver interactions mostly
showed bifactor enhancements; 1990–2000 and 2010–2020 driver interactions showed a
relatively balanced situation of non-linear enhancements and bifactor enhancements.

4.2. Discussion
4.2.1. Compared with Other Studies in LULC

This study found that 1980–1990 and 1990–2000 both had significant increases in the
cropland area. The main driving factors of both periods were the urbanization rate and the
population. The large population was needed to provide labor resources during this period.
For this purpose, cropland was needed to meet the orderly supply of food and to provide
strong support for accelerated urbanization, indicating that food production had to meet
the immediate needs of population growth during this period. The precipitation and the
temperature increased significantly from 2000 to 2010, so the main driving forces during
this period were no longer socio-economic factors but precipitation and temperature among
natural geographic factors. During this period, the State Council proposed the policy of
returning farmland to forest land and grass land, and the country introduced the strategy
of revitalizing old industrial bases and the strategy of revitalizing northeast China, and the
three northeastern provinces responded positively to the national call, which slowed down
the increase in cropland significantly and reduced forest land and grass land slowly to
different degrees. However, due to the severe winters in the three northeastern provinces,
the rural areas need to burn coal for heating, and due to the presence of large areas of straw
burning and high-density industrial production, the accumulation of greenhouse gases in
the region has increased, thus affecting the spatio-temporal evolution of land use patterns
in the region.

This is consistent with the results of the study of LULC in the northern zone of China
by Dan Liu and Junfeng Tian et al. Meanwhile, the findings of this study confirm the
findings from the LULC perspective from those of Dan Cui and Jianying Zhao et al., that
urbanization and economic modernization in resource-based cities are the core factors
leading to the LULC transformation. The difference is that there is no new research related
to LULC about resource-based cities in whole Northeast China, and this study fills the gap
of LULC research in resource-based cities.

4.2.2. Implications, Limitations, and Future Study

The time series selected in this paper coincided with the forty years of reform and
opening up of China, and it can be seen that China’s economy has developed significantly
over the past forty years. At the beginning of reform and opening up, the three northeastern
provinces relied on their resource advantages to support their initial development stage.
With the depletion of resources and the introduction and popularization of ecological
civilization, China introduced a series of policies for the protection of resources and the
development planning of resource-based cities in northeast China, which led to a new stage
of planning and adjustment of the land structure of each city.

In response to the above analysis, differentiated land conservation strategies could be
adopted to ensure that land use is scientific and reasonable to guarantee the sustainable
development of land resources. In this regard, this paper makes up for the research on the
spatio-temporal evolution of land use in resource-based cities with a long time series and on
a large scale, but due to the difficulties in data acquisition and the limitation of article length,
the study of LULC in the whole area of three northeastern provinces could not be conducted.
A study of the spatio-temporal evolution of land use in the whole region of Northeast China
should be conducted, and the research results could be compared and analyzed with the
results of this study to further explore the characteristics, evolution patterns, influencing
factors, and coupling between resource-based cities and non-resource-based cities in the
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region of Northeast China. Finally, this research could provide strong support for the
transformation of global resource-based cities as well as high-quality development.
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