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Abstract: Mixed data is a combination of continuous and categorical variables and occurs frequently
in fields such as agriculture, remote sensing, biology, medical science, marketing, etc., but only limited
work has been done with this type of data. In this study, data on continuous and categorical characters
of 452 genotypes of cotton (Gossypium hirsutum) were obtained from an experiment conducted by
the Central Institute of Cotton Research (CICR), Sirsa, Haryana (India) during the Kharif season
of the year 2018–2019. The machine learning (ML) classifiers/models, namely k-nearest neighbor
(KNN), Classification and Regression Tree (CART), C4.5, Naïve Bayes, random forest (RF), bagging,
and boosting were considered for cotton genotypes classification. The performance of these ML
classifiers was compared to each other along with the linear discriminant analysis (LDA) and logistic
regression. The holdout method was used for cross-validation with an 80:20 ratio of training and
testing data. The results of the appraisal based on hold-out cross-validation showed that the RF
and AdaBoost performed very well, having only two misclassifications with the same accuracy of
97.26% and the error rate of 2.74%. The LDA classifier performed the worst in terms of accuracy, with
nine misclassifications. The other performance measures, namely sensitivity, specificity, precision,
F1 score, and G-mean, were all together used to find out the best ML classifier among all those
considered. Moreover, the RF and AdaBoost algorithms had the highest value of all the performance
measures, with 96.97% sensitivity and 97.50% specificity. Thus, these models were found to be the
best in classifying the low- and high-yielding cotton genotypes.

Keywords: machine learning classifiers; supervised classification; mixed data; heterogeneous data;
cotton genotypes

1. Introduction

Cotton is widely grown as a principal source of vegetable oil and staple fiber, and
Gossypium hirsutum is the most cultivated cotton species in the world [1]. It is one of the
most important fibers and cash crops of India and plays a dominant role in the industry
and the agricultural economy of the country [2]. Cotton is an important agricultural
product; however, it suffers from water deficiency, and the reliance on robust varieties
well adapted to the rigorous conditions of drought warrants a robust understanding of
gene action [3]. Cotton is considered the primary material of the textile industry, and is a
critical product in the medicine and automobile industry [4]. In response to the increasing
demand for cotton with high-quality fiber, resistance to pests and diseases, as well as
nutrient use efficiency, are highly desired and recommended, and the development of
genetic engineering has significantly contributed to the development of new and robust
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varieties of cotton [5]. Developing cotton genotypes with an excellent potential yield is a
challenging task; however, the advancement in bioinformatics science and the significant
advancement in the high throughput genotyping platforms have led to a genuine revolution
in the field of cotton breeding programs based on genotypes [6]. In a recently published
paper, Hardin et al. [7] argued that during the production of cotton, many parameters, i.e.,
fineness, strength, color, and length, play a critical role, and they are in majority governed
by the complex interaction of genetics and more precisely environmental factors. In another
study, Kothari et al. [8] reported that cotton is one of the most sensitive crops to climate
change, and many efforts should be devoted and oriented toward the development of cotton
varieties having excellent potential genotype adaptation. Furthermore, the identification
of genotypes that have a high capacity to perform a proper stress test in response to
great temperature fluctuation could increase the range of optimal temperature growth [9].
Finally, the development of cotton genotypes with high nitrogen use efficiency is also of
great importance [10].

The problem of categorizing an individual into one or two or more groups (also called
populations) arises in many domains such as psychology, medical diagnosis, biology, and
agriculture. Several procedures have been proposed and discussed for classification with
mixed variables data. Generally, the three strategies, i.e., (i) transform the variables so
that they are all the same type and then apply an appropriate rule, (ii) apply separate
allocation rules to different variable types and then combine the results for the overall
classification, and (iii) apply a classification model that can handle different variable types
that has been adopted to cope with the mixed variables in classification [11]. The first
strategy of transforming the variables entails the possible loss of information [12], the
second strategy has had limited study [13,14], and the third strategy has been used widely
for mixed variables classification. Additionally, the first approach that received much
attention in the literature in the context of mixed variables data is the general location
model [15]. The basic idea of the location model is that together, all information contained
in categorical variables is transformed into a single multinomial variable and the vector of
continuous variables is then augmented with one more column corresponding to the value
of a multinomial variable. Chang and Afifi [16] successfully extended the location model for
mixed variables classification with a single dichotomous and many continuous variables.
The location model was further extended for binary and continuous variables, and then for
categorical and continuous variables by Krzanowski [17,18]. The major drawback of the
location model is the limitation of a number of binary variables in the construction of its
predictive discriminant rule. This is due to the structure of the model itself, as its number
of cells grows exponentially with the number of binary variables. Hence, there are more
chances that those multinomial cells will be empty and that more estimated parameters
will be biased, which leads to an unreliable model [19]. The location model also fails to
perform when data have outliers, which are often present in real-world problems [20].

Furthermore, statistical classification deals with the prediction of values of a categorical
dependent variable from one or more continuous and/or categorical independent variables.
It is the process of allocating an individual to one of several predefined groups/populations.
Most of the research dealing with the classification is confined to continuous variables, but
practically the data may have a mixture of continuous and categorical variables. Researchers
dealing with categorical variables are tempted to ignore their categorical nature and pro-
ceed with the existing continuous variable techniques. Treating categorical variables as
continuous variables can result in the introduction of a certain amount of misrepresentation
and distortion in the analysis and the interpretation of the data.

Linear discriminant analysis (LDA) and the logistic regression model are the two
most widely used approaches for the classification of data, especially in social sciences
studies [21]. Discriminant analysis works well in classification with continuous variables,
but the independent variables are often a mixture of continuous and categorical variables,
so the multivariate normality assumption will not hold. In such cases, logistic regression
can be used because it does not make any assumption for the distribution of independent
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variables, which is why logistic regression is normally recommended when the indepen-
dent variables do not satisfy the multivariate normality assumption. However, there are
other classification models that can handle mixed data types and perform better than
logistic regression.

Additionally, some classification techniques, such as machine learning algorithms,
have emerged together with big data technologies and high-performance computing to
create new opportunities to unravel, quantify, and understand data-intensive processes in
agricultural environments [22]. ML techniques involve a learning process to learn from
experience that is training data to perform a task. Year by year, machine learning is applied
in more and more scientific fields including biochemistry, bioinformatics, meteorology,
medicine, economic sciences, aquaculture, and climatology. Machine learning provides
a nonparametric alternative to traditionally used methods for the classification of mixed
variable data. Machine learning approaches have the advantages that in most machine
learning algorithms, data transformation is unnecessary, missing predictor variables are
allowed, and they do not require special treatment. Further, the success of prediction is
not dependent on data meeting normality assumptions or covariance homogeneity, and
variable selection is intrinsic to the methodology, which means the algorithms automati-
cally detect the important variables. The most important advantage is that the machine
learning algorithms can handle mixed variable data and provide good accuracy over the
traditional methods. Popular machine learning algorithms that are used widely for classi-
fication include k-nearest neighbor, Naïve Bayes, decision trees, random forest, bagging,
and boosting.

Traditionally, LDA and logistic regression are applied widely, and machine learning
methods are not applied as often as LDA and logistic regression [21]. While ML tech-
niques for solving classification problems are becoming more powerful tools than applied
research, logistic regression and linear discriminant analysis are still the most commonly
used techniques in the social sciences [21]. This study aims to anticipate the applicability of
classification procedures for a mixture of continuous and categorical variables in agricul-
tural research and to compare the performance of conventional and ML approaches for the
classification of cotton genotypes.

2. Materials and Methods
2.1. Study Location and Data Information

The secondary data of 452 genotypes of cotton (Gossypium hirsutum) with categorical
and continuous characters were obtained from an experiment conducted by the Central
Institute for Cotton Research, Sirsa of Haryana State, India during the Kharif season in
2018–2019. The dataset consisted of a total of eight variables, including yield per plant
(YIELD), boll weight (BW), plant height (PH), plant width (PW), number of bolls per plant
(NOB), number of monopodia (MONO), number of sympodia (SYMP), and leaf shape
(LSHAPE). Furthermore, the YIELD, BW, PH, and PW were categorized as continuous
variables, while NOB, MONO, SYMP, LSHAPE (low, medium, broad) were branded as
discrete variables. Out of these, the yield per plant (YIELD) was the dependent (or target)
variable and the rest were the independent variables. The 452 genotypes were divided
into two groups based on yield per plant: Group 1 consisted of high-yielding genotypes
and Group 2 consisted of low-yielding genotypes. To make the groups more distinct, the
genotypes near the division boundary were removed based on the following criterion:

Group 1: Seed yield > mean + standard deviation/4
Group 2: Seed yield < mean − standard deviation/4

Using the above criterion, 151 genotypes were found to be ‘HIGH’ yielding and
214 were ‘LOW’ yielding. These 365 genotypes were considered as samples from the
low-yielding and high-yielding populations of cotton genotypes for further study. ‘HIGH’
and ‘LOW’ represent the class labels. The mean and standard deviation for the variables is
given in Table 1.



Sustainability 2022, 14, 13685 4 of 17

Table 1. Statistical properties of cotton genotypes.

Statistical Properties
Name of Variables

YIELD BW NOB SYMP PH PW MONO

Mean 58.23 2.92 21.19 9.44 104.47 52.22 2.34
Std 35.07 0.51 10.22 3.87 20.86 26.98 1.08

2.2. Methodology

This section provides a brief insight into the traditional methods used for classification
with mixed data and the machine learning methods which were used for classifying the
cotton genotypes. For classification with mixed data, the tree-based methods are valuable
alternatives to the parametric methods [23]. Machine learning is a field in data analytics
that uses statistical learning algorithms to build systems that can automatically learn and
improve from experiences without being explicitly programmed [24]. Popular machine
learning algorithms that are widely used for classification with mixed data include k-
nearest neighbor, Naïve Bayes, decision trees, random forest, bagging, and boosting. The
accuracy and error rate are the most common measures derived from the confusion matrix
for checking the performance of a classifier. However, these may not be adequate measures
of performance when the number of any of the classes has much greater observations than
the other [25]. So, the other measures were also considered for comparing the classification
models. The most popular performance measures other than accuracy and error rate are
sensitivity, specificity, precision, F1 score, and G-mean. These measures were calculated
using the confusion matrix of each ML algorithm. The holdout method was used for
cross-validation, and the total data were divided randomly into two parts: (i) the training
dataset and (ii) the test dataset. A split ratio of 80:20% was chosen to divide the data, which
gave us a training dataset of 292 observations and a test dataset of 73 observations. In this
research, the following ML models were employed to classify the cotton genotypes:

2.2.1. k-Nearest Neighbor

The k-nearest neighbor (k-NN) classification is a type of supervised machine learning
algorithm based on simple majority voting of the k-nearest neighbors and it can be used for
both classification and regression problems. However, it is mainly used for classification
or predictive problems. Cover and Hart [26] proposed a k-nearest neighbor classifier
for performing pattern classification tasks. The k-NN was developed with the need to
perform discriminant analysis when reliable parametric estimates of probability densities
are unknown or difficult to determine [27].

2.2.2. Naïve Bayes

Naive Bayes is a probabilistic machine learning algorithm based on the Bayes Theorem
given by Thomas Bayes in 1763. It is defined as a classification technique based on applying
Bayes’ theorem with a strong assumption that all the predictors are independent of each
other. The Naïve Bayes classifier is extremely admired even though it is based on the
unrealistic assumption of the independence of the predictor variables [28]. It computes the
conditional probabilities of the classes given the observations and assigns the observations
to the class having the highest posterior probability.

2.2.3. Decision Tree

A decision tree (DT) is an important classification model built by Hunt et al. [29]. It is
a supervised ML technique that looks like an inverted tree, where each node characterizes
a predictor variable (feature). The link between the nodes signifies a DT and each leaf node
represents a response variable. The goal of the DT is to create a model that predicts the
value of the target variable by learning simple decision rules inferred from the data feature.
There are various feature selection measures for nodes and depending on that there are
different algorithms for building a DT. The CART and C4.5 are two such algorithms that
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are used widely for building a decision tree. CART is a nonparametric DT algorithm that
produces either classification or regression trees, depending on whether the dependent
variable is categorical or continuous [30]. It uses the Gini impurity as a metric for splitting
the tree. The C4.5 algorithm was developed by Quinlan [31] and it is the most popular
algorithm among all the existing algorithms of DT. It is different from CART in terms
of how the features are selected for a node. It uses an information gain ratio for feature
selection while CART uses Gini impurity.

2.2.4. Ensemble Learning

Ensemble learning is a way to integrate multiple classification procedures together
and to make one ensemble classifier. Bagging or bootstrap aggregation and boosting are
two well-known methods that adjust the original training data to include variety in the
training course [32]. Bagging trains multiple classifiers on different bootstrap samples of
the original training data. For every classifier, a random sample with replacement is drawn
from the training data, comprising an identical number of observations. After training
each component classifier on a different bootstrapped sample, one of the classes can be
assigned to any observation in the testing phase. At this phase, the bagging algorithm
uses majority voting. The class that receives the maximum votes will be allocated to an
unlabeled observation as the final class. In contrast to the independent training of classifiers
with bagging, boosting aims to create an order of classifiers that rest on each other. It trains
multiple weak classifiers in sequence on different training sets. Boosting does not involve
bootstrap sampling, but each tree is fitted on an adapted version of the original dataset.
Traits that were misclassified by the previous classifier will be allotted higher weights than
correctly classified samples to force the next classifier to focus more on characters that
were misclassified.

2.2.5. Random Forest

Random forest (RF) is a type of ensemble method and has gained massive popularity
in various fields because of its good classification performance and ease of use [33]. It creates
a set of decision trees from a random sample of the training set. It repeats the process with
multiple random samples and makes a final decision based on majority voting.

2.2.6. AdaBoost

AdaBoost is an adaptive boosting technique. In the RF model, each time a DT is made,
some trees might be bigger than others but there is no predetermined maximum depth.
However, in a forest of trees made with AdaBoost [34], the trees are usually just one node
and two leaves. A tree with just one node and two leaves is called a stump [35]. So, the
AdaBoost is a forest of stumps rather than trees.

3. Results

This section provides the result achieved by applying the various classification algo-
rithms to the cotton data and the comparison between the algorithms.

3.1. k-NN Classification Algorithm

The k-NN classifier can use any distance measure, but it is computationally expensive
when complex distance functions are used because a test data point must be compared to
every training data point [36]. The Euclidean distance was used in our study as it is simple
and most intuitive and it is often used in ML models, despite having some weaknesses [37].
The most important point to consider in this algorithm is to choose the optimal value of k.
So, an investigation was done with the value of k = 1 to 30. With the k-NN algorithm, the
classification result of the test set fluctuated between approximately 72% and 86%, as can
be seen in Figure 1a. The highest value of accuracy, which was 86.67%, was obtained when
k = 10, but predictions were less stable for smaller values of k. As per the rule of thumb, the
value of k should be the square root of the number of observations, so the value of k should
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be 17 or nearest to it, since it is also an odd number; additionally, the value of k should have
the highest accuracy among its adjacent values, so we considered 17 as the final value for k.
The training accuracy of the model was checked using the training data and the validation
accuracy was checked using test data. Since test data are not used in training the model,
this gives a more accurate assessment of the model. In our study, we had two classes, and
therefore we obtained a 2 × 2 confusion matrix. For the training data, the total number of
observations was 292, out of which 46 were misclassified, with 23 observations from each
class being misclassified. For the test data validation, the total number of observations was
73, out of which 13 were misclassified. The accuracy was found to be 84.25% and 82.19%
for the training and test data, respectively. So, k-nearest neighbor classified the genotypes
with 82.19% accuracy, and this accuracy can be further improved by normalizing the data.
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Since the distance measure used in the k-NN classifier was the Euclidean distance,
which favors the variables having larger values, it could have given a biased output. So, in
the next step, the data were normalized by using the min–max normalization function. The
k-NN model was trained using this normalized training data. This new k-NN trained with
normalized data was given the name normalized k-NN. The same procedure as above was
repeated for selecting an optimum value for k, and in this case, the same value of k = 17
was also selected as the optimum (Figure 1b).

The normalized k-NN model was first provided with the training data and then the
test data. For training data, the number of correctly classified observations was 275 out
of 292 observations, which was 246 earlier without the normalization of the data. For the
class of low-yielding genotypes, there was an increase of four observations of incorrect
classifications, and hence an increase in accuracy. The accuracy for the test data was 89.04%,
so it increased by approximately 7% after the normalization of the data.

3.2. Naïve Bayes

The accuracy for the training data was 93.84%, with a total of 18 misclassifications. This
accuracy on the training data was a bit less than the k-nearest neighbor, but it performed
better on the test data. The number of misclassifications for the class of the low-yielding
genotypes was the same as k-nearest neighbor for the test data. The accuracy of the model
was 90.41% with seven misclassified observations, which is quite good, and it could have
been more if the assumption of the independence of the predictor variables had been
satisfied, which is very rare in real-life data.

3.3. CART Algorithm

Figure 2 represents the decision tree built on the training data using the CART algo-
rithm. The depth of the decision tree was four and it had nine nodes. The decision tree
starts with the number of bolls as the root node, which means this feature is the best for
splitting the two classes and has a minimum Gini index at this node. The box of the root
node represents the fact that out of 100% of the training data that are fed to this node, 60%
have a label of high-yielding genotypes, and the remaining 40% are low-yielding genotypes.
This node asks whether the genotype has many bolls greater than 19. If yes, then we
go down to the root’s left child node, which has a depth of two. A total of 68 percent
are high-yielding genotypes out of 59 percent genotypes from the previous root node. In
the second node, we ask if the boll weight is above 29 g. If yes, then the chance of the
genotype being a high-yielding genotype is 100 percent. Therefore, this node becomes a
leaf node. The right child node of the root node also becomes a leaf node with the class
‘LOW’ since 98 percent of the observations are from the class of the low-yielding genotypes.
The decision tree keeps on going like this until all the nodes it is left with are the leaf nodes.

The decision tree built using the CART algorithm is then provided with the training
data for its evaluation. Only two genotypes from the class of high-yielding genotypes
were misclassified as low-yielding genotypes, which was expected, as can be seen from
the rightmost leaf of the decision tree. The accuracy and error of the CART algorithm was
94.52% when validated with the test data.

The size of a decision tree often changes the accuracy; in general, bigger trees mean
higher accuracy. However, if the tree is too big, it may overfit the data and hence decrease
the accuracy and robustness. Overfitting means the decision tree may be good at analyzing
the training data, but it may fail to predict the test data correctly. Pruning is used to decrease
the size of the tree by removing some parts of the tree. We tried to prune the above tree
by increasing the number of observations required to perform a split to 50, that is, a split
will be performed at a node if the minimum number of observations is 50 at that node;
otherwise, the node will be declared as a leaf node. The pruned tree is represented in
Figure 3 having a depth of size two and with five nodes only.
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The pruned decision tree was tested with the same test data. It was found that pruning
reduced the accuracy to 91.78% and the total number of misclassified observations was
increased to six, which was four earlier. The sensitivity was reduced but the specificity
increased more than in the previous tree. So, we went ahead with the original decision tree
with a depth of four and with nine nodes.

3.4. C4.5 Algorithm

Figure 4 illustrates the decision tree build using the C4.5 algorithm. The decision tree
obtained was the same as that of CART, with the depth of the tree being four and the
number of nodes being nine. The rectangles at the end of the tree represent the leaf nodes,
the dark grey rectangles are for the class of low-yielding genotypes, and the light grey
rectangles are for the class of high-yielding genotypes.

The training data were then provided to the decision tree to check how it performed
with the data it was built from. The number of observations that were misclassified was
two as in the previous algorithm with an accuracy of 99.32%.

The decision tree was then evaluated using the test data for checking its performance,
and only one observation from the class of high-yielding genotypes was misclassified as
low. Additionally, the total misclassifications were also small. The confusion matrix and
accuracies for this algorithm were exactly the same as that of the previous algorithm, which
was expected because the same decision tree was built in both cases, so both algorithms
performed identically in classifying the low- and high-yielding genotypes.
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3.5. Random Forest

There are only two parameters that can be tuned, and the first one is the number
of trees chosen for the random forest. Typically, a larger number of trees gives a better
performance, which is obvious as the classification voting will be generalized from more
trees. The number of decision trees to be made for the random forest was initially taken
as 1000.
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The plot of error in Figure 5 shows that as the number of trees grows, the out-of-bag
(OOB) error gradually drops down and then became more or less constant, so the error
does not improve further after approximately 500 trees. So, 500 trees were finally selected
for building the random forest, which is also the default value for random forest [38]. The
out-of-bag estimate of the error rate was 2.4%, and using those training observations which
were left after bootstrapping the training data to build a decision tree was performed just
for validation.
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The red line in Figure 6 demonstrates the error rate when classifying the high-yielding
genotypes using the OOB sample. The black line shows the overall OOB error rate. The
green line represents the error rate when classifying the low-yielding genotypes. It is clear
from the plot that the error rate decreased when the random forest had more trees and after
a certain number of trees, it almost stabilized. The wide variety of decision trees is what
makes random forests more effective and robust than individual decision trees.

The second parameter that can be optimized in the random forest is the number of
features that are randomly chosen for each split. The general rule of thumb is to take the
value of the sample size for the number of features as the square root of the total number of
features. Tuning can be performed for the number of features (mtry) to be selected per node
for splitting. So, it was made sure that the random forest considered the optimal number
of features at each node in the tree. Figure 6 shows the variation in the error rate of the
random forest with the sample size of a number of features provided to the decision trees
per node. The error rate was initially quite high with mtry at one (4.79%), and then it came
down with a mtry value of two and finally increased with a mtry value of four (2.74%). So,
the minimum error was 2.4 % at mtry = 2; hence, the sample size used for the number of
features per node was two for building the random forest classifier for our dataset, and it
was also the default value selected by the random forest [38].
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After building the random forest with the above-optimized values on the training
data, it was tested using training and test data. The random forest perfectly classified all
the observations of the training data, so the accuracy was 100%. In the case of the test data,
one observation was misclassified from both classes. So, for the test data, which consisted
of 73 observations, there were only two observations that were misclassified. The correct
classification for class ‘HIGH’ was 32 out of 33 observations and for class ‘LOW’ the correct
classification was 39 out of a total of 40 observations. The accuracy of the random forest
was 97.26%, which was only 3% less than the training accuracy. So, the random forest did
not overfit the data, which usually happens in the case of random forest.

A random forest with mtry = p (the number of features) reduces simply to bagging.
A random forest with mtry = 7 was also built, which reduced the random forest to a basic
bagging technique. Additionally, it was found that the accuracy of the random forest was
reduced to 95.89% from 97.26%. So, adding randomness to the features reduced bias in the
random forest.

3.6. AdaBoost Boosting

After building the AdaBoost model using the training data, it was given the same
training data and test data for its evaluation. The training accuracy for the model was
99.66% with only one misclassified observation. For the AdaBoost model, the accuracy
was 94.52% when only two base classifiers were used, 95.89% with three base classifiers,
and 97.26% for four base classifiers. So, four base classifiers were considered for final
classification with AdaBoost.

3.7. Comparison and Discussion

Table 2 shows the correct and incorrect classifications of the cotton genotypes by
various algorithms along with traditional methods of linear discriminant analysis and
logistic regression. It can be seen clearly that if the models were evaluated based on
accuracy and error rates, then the random forest and the AdaBoost performed the best in
classifying the test data with an accuracy of 97.26%; that is, the error was very small, and
hence the misclassifications were as well. The next best classifiers were the two algorithms
of the decision tree, which behaved identically and had the same accuracy as expected.
Because the split criterion used in CART is the Gini impurity and C4.5 makes use of entropy
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and information gain, both of the measures usually yield similar results. In R software,
Gini is the default value where both Gini impurity and entropy are applicable, and this is
because entropy might be slower to compute as it makes use of a logarithm.

Table 2. Accuracy and error rate of various classifiers.

Classification Method TP FP FN TN Accuracy (%) Error Rate (%)

k-NN 27 2 6 38 89.04 10.96

Naïve Bayes 28 2 5 38 90.41 9.59

CART 32 3 1 37 94.52 5.48

C4.5 32 3 1 37 94.52 5.48

Random Forest 32 1 1 39 97.26 2.74

AdaBoost 32 1 1 39 97.26 2.74

Logistic Regression 26 2 7 38 87.67 12.33

LDA 24 3 9 37 83.56 12.33

TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative.

The next two best performers were the Naïve Bayes and the k-nearest neighbor with
only a 1% difference in their accuracy. The worst performer among all the eight classifiers
was the linear discriminant analysis, which was expected since it had many assumptions
that were definitely violated by the mixed data. Though the accuracy of 83.56% is not that
bad, still it is quite less compared to other classifiers, and the rest of everything depends on
the application part because some real-life problems can tolerate this much error and other
problems such as disease detection require less error in prediction.

The problem that usually occurs in classification or more particularly with machine
learning models is overfitting. Overfitting occurs when a model does not perform well
with new data. It is characterized by high accuracy for a classifier when evaluated on the
training data but low accuracy when evaluated on the test data [39]. This makes the model
useless for the purposes of future classifications. The training and test accuracy are plotted
in Figure 7 and it is clear that there is not much difference between the respective accuracies,
and it can be deduced that none of the models were overfitted.

Sensitivity, specificity, and precision for all the methods were calculated using TP,
FP, FN, and TN from their respective confusion matrices. The F1 score and G-mean were
calculated using specificity, sensitivity, and precision. Table 3 shows all the calculated
performance measures for the eight models.

The accuracy did not reveal much information about how well the classification model
actually did in predicting the positive and negative classes independently. If the priority is
the positive class and some more misclassification of the negative class can be tolerated,
then the model is required to have high sensitivity. That is, in our data, if it is desired to
correctly classify high-yielding genotypes only and the model can tolerate the low-yielding
genotypes being classified as high, then the classification model with the highest sensitivity
will be selected. It can be seen in Figure 8 that the decision trees, random forest, and
AdaBoost have the same sensitivity of 96.97%. These four algorithms were equally good in
classifying the high-yielding genotypes with the least misclassifications for class “HIGH”.
The rest of the four algorithms had the same order for sensitivity as these had for accuracy,
with LDA being the worst.
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Table 3. Comparison of various classifiers.

Classification Method Sensitivity Specificity Precision F1 Score G Mean

k-NN 81.82 95.00 93.10 87.10 88.16

Naïve Bayes 84.85 95.00 93.33 88.89 89.78

CART 96.97 92.50 91.43 94.12 94.71

C4.5 96.97 92.50 91.43 94.12 94.71

Random Forest 96.97 97.50 96.97 96.97 97.23

AdaBoost 96.97 97.50 96.97 96.97 97.23

Logistic Regression 78.79 95.00 92.86 85.25 86.52

LDA 72.73 92.50 88.89 80.00 82.02

If the priority class is the class of low-yielding genotypes, then a high value of speci-
ficity is desired, which measures how often the negative class is correctly classified. The
specificity of random forest and AdaBoost were highest among all models, indicating that
these methods were also good at classifying low-yielding genotypes being 97.50% accurate.
Both decision trees that had the highest sensitivity and good accuracy performed the worst
in classifying the low-yielding genotypes with the least specificity along with LDA. Naïve
Bayes, k-NN, and logistic regression had similar performance in terms of specificity.

The next measure was precision, which measures out of all the predicted positives,
how many observations were actually positive. It tells us how accurate the model is when it
says an observation belongs to the positive class. Figure 9 represents the recall and precision
along with the F1 score and G-mean for the eight classification models. The precision for the
models follows the same order as that of specificity; that is, random forest and AdaBoost
performed the best with 96.97% precision. Decision trees and LDA performed the worst
in terms of precision. The precision of 96.97% tells us that the model was 96.97% accurate
with its predictions.
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Sensitivity and specificity are used for evaluating the classification models when
performance for one class matters. Choosing the best model is sort of balancing between
predicting positive and negative classes accurately. So, when it is desired to have good
performance for both classes simultaneously, then the F1 score and G-mean are used as
performance measures. A good model should have high precision and recall values; the F1
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score combines both and gives the harmonic mean of precision and recall, while the G-mean
is the geometric mean of sensitivity and specificity. The F1 score and G-mean values were
approximately the same for their respective model since both are derived from the same
type of measures. The random forest and AdaBoost algorithm were again at the top of the
chart in terms of performance, with an F1 score and G-mean value of approximately 97%.
The logistic regression and linear discriminant analysis were the bottom two performers.

After checking the performance of the classification models using various performance
measures, we can assure that the random forest and AdaBoost models had the highest
value for all the performance measures and were lighted as the superior models.

4. Conclusions

Machine learning algorithms proved to be effective in solving problems of classifying
cotton genotypes with mixed variables. These algorithms provide a nonparametric alterna-
tive to traditionally used methods for the classification of mixed variable data. Machine
learning approaches have the advantages that in most machine learning algorithms, data
transformation is unnecessary, it can handle missing predictor variables, the success of
prediction is not dependent on data meeting normality conditions or covariance homo-
geneity, variable selection is intrinsic to the methodology, and it provides good accuracy
over the traditional methods. The machine learning classifiers that were considered for
this study included k-nearest neighbor (k-NN), Naïve Bayes, Classification and Regression
Tree (CART), and C4.5 algorithm of the decision tree, random forest, and AdaBoost. The
confusion matrices were obtained for all the classifiers according to the number of correct
and incorrect classifications. There was not much difference in training and test accuracies,
which implied that none of the models were overfitted. The machine learning classifiers
were compared with the linear discriminant analysis and the logistic regression, as these
two classification models are most widely used in agriculture data and hence were used as
the base for comparison.

The random forest and AdaBoost algorithm had the highest value for all the perfor-
mance measures, which means these models performed in a balanced way with the highest
overall accuracy, sensitivity, and specificity at the same time. So, these models were the
best at classifying the high- and low-yielding cotton genotypes. The decision trees were the
next best classifiers followed by the Naïve Bayes model. It can be concluded that these five
models can be used for the classification of cotton genotypes, with priority being random
forest because AdaBoost may perform the same as random forest but will take a long time
to train if the data are very large. The worst performer among all the eight classifiers was
the linear discriminant analysis, which was expected since it has many assumptions which
are definitely violated by mixed data.

For data types such as ours, which was sort of balanced and had continuous and
categorical variables, the decision tree, random forest, and boosting algorithm performed
the best, and instead of traditional methods, these can be used in the future for a similar
type of data.
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