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Abstract: The resolution of complex medical diagnoses using pattern recognition requires an artificial
neural network-based expert system to automate autoimmune disease diagnosis in blood samples.
This process is done using image-based computer-aided diagnosis (CAD) to reduce errors in the
diagnosis process. This paper describes a Multistage Classification Scheme (MSCS), which uses
antinuclear antibody (ANA) tests to identify and classify the existence of autoantibodies in the blood
serum that bind to antigens found in the nuclei of mammalian cells. The MSCS classified HEp-2 cells
into three stages by using Binary Tree (BT), Artificial Neural Network (ANN), and Support Vector
Machine (SVM) as basic blocks. The Indirect Immunofluorescence (IIF) technique is used in the
ANA test with Human Epithelial type-2 (HEp-2) cells as substrates. The efficiency of the proposed
methodology is assessed using the dataset of ICPR 2016. The intermediate cells (IMC) and positive
cells (PC) were separated in Stage 1 prior to preprocessing based on their total strength, and special
preprocessing is applied to intermediate cells for improved output, and positive cells are subjected
to mild preprocessing. The mean class accuracy (MCA) was 84.9% for intermediate cells and 95.8%
for positive cells, although the carefully picked 24 features and SVM classifier were applied. ANN
showed better performance by adjusting the weights using the SCGBP algorithm. So, the MCA
is 88.4% and 97.1% for intermediate and positive cells, respectively. BT had an MCA of 95.3% for
intermediate and 98.6% for positive. In Stage 2, the meta learners BT2, ANN2, and SVM2 were trained
for an augmented feature set (24 + 3 results from base learners). Therefore, the performance of BT2,
ANN2, and SV M2 was increased by 1.8%, 4.5%, and 4.1% as compared to Stage 1. In Stage 3, the final
prediction was performed by majority voting among the results of the three meta learners to achieve
99.1% MCA. The proposed algorithm can be embedded into a CAD framework built for the ANA
examination. The proposed model will improve operational efficiency, decrease medical expenses,
expand accessibility to healthcare, and improve patient safety in the sector, enabling enterprises to
lower unplanned downtime, develop new products or services, increase operational effectiveness,
and enhance risk management.

Keywords: multistage classifier; binary tree; artificial neural network; support vector machine;
classification; HEp-2; IoMT

1. Introduction

Sustainable smart cities [1] incorporate a range of innovations for automation, data
sharing, and distribution that transform the environment of how we produce goods. In
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terms of how goods are made, the world is in the middle of a massive transition. This
transformation is so convincing that the fourth revolution has taken place in numerous
technological applications, such as the medical sector [2]. The IoT integrates embedded
hardware, applications, sensors, and network communication with physical objects, which
ensures they can capture and share data. This is the Industrial IoT (IIoT) [3] with added ma-
chine learning, machine-to-machine connectivity, and incorporation of current automated
systems. To make the right manufacturing decisions, smart computers can reliably collect
real-world data and interact with one another and the goods or resources they are handling.
In terms of delivering reliable diagnostic instruments, medical device manufacturers are
facing growing difficulties. The area of automated diagnostics and artificial intelligence
in medical diagnosis has made significant strides in recent years. One of the experiments
demonstrated the use of feature selection and parameter optimization in Artificial Neu-
ral Networks (ANN) to automate breast cancer diagnosis [4]. The resolution of complex
medical diagnoses using pattern recognition requires an artificial neural network-based
expert system for the automation of autoimmune disease diagnoses in the blood samples.
Antinuclear antibody (ANA) tests identify and classify the existence of auto-antibodies in
the blood serum that bind to antigens found in the nuclei of mammalian cells. The Indirect
Immunofluorescence (IIF) technique is used in the ANA test with HEp-2 cells as substrates.
Pathologists [5] observe this IIF slides to build their study. As the home-based chronic
disease monitoring is gaining popularity these days, the automation of autoimmune disease
diagnosis through the antinuclear antibody (ANA) technique is proposed in this work,
for which a Multistage Classification Scheme (MSCS) is developed using image-based
Computer-Aided Diagnosis (CAD), for improving the process standard. Most of the work
in the literature has used deep learning techniques, whose accuracy relies on the huge
size of the dataset and the need to optimize too many parameters, which require high-end
machines for training. This study classifies HEp-2 cells in three stages by using Binary Tree
(BT), ANN, and Support Vector Machine (SVM) as basic blocks. The first stage predictions,
along with the most suitable spectral, statistical, and spectral descriptors, are used as novel
feature set for HEp-2 cell classification. In the proposed approach, initially the intermediate
and positive cells are segregated followed by which preprocessing is performed for dark
and low contrast intermediate cells and the positive cells. In the first stage of classification,
the base learners BT1, ANN1, and SVM1 are trained individually with only spectral, statis-
tical, and textural descriptors (24 features). The selected 24 features are: standard deviation
of the cell image; area of the cell in the binary image; ratio of standard deviation to area; the
number of objects in the cell using eight adjacency connectivity; contrast of co-occurrence
matrix; correlation of co-occurrence matrix; energy of co-occurrence matrix; homogeneity
of co-occurrence matrix; the first six eigenvalues of principal component analysis for the
Fast Fourier Transform of an eight-window Local Binary Pattern histogram; average power
spectral density of the LL subband; LH subband; HL subband; HH subband; and the first
six eigenvalues of principal component analysis for the cell image. In the second stage,
the meta learners BT2, ANN2, and SVM2 are again trained for the augmented feature set
obtained by combining the first stage prediction results along with the 24-element feature
set. The positive and intermediate cells are combined in the second stage. In the third
stage, the results of the BT2 ANN2 and SVM2 are ensembled using majority voter logic.
The efficiency of the proposed methodology is assessed using the dataset of ICPR 2016 [6].
The results concluded that the MSCS method achieved the mean class accuracy of “99.1%”
efficiency. However, the effectiveness of the proposed approach is further improved with
the advent of Internet of Medical Things (IoMT) based digital pathology [7]. This technique
provides remote health monitoring, with the help of clinical gadgets linked to cloud and
wireless network resources, and offers efficient solutions to patients to monitor and assess
their health conditions and provide feedback from distant facilities in critical pandemic
conditions like COVID-19. Healthcare informatics require computational intelligence [8]
and visualization for scientific research. Tozzoli et al. [9] reviewed the most important
changes that have occurred in autoimmune diagnostics. Many diseases require disruptive
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technologies [10] to perform analysis and scientific research. Healthcare professionals have
various challenges while treating patients during a pandemic. The patient’s health is moni-
tored through IoMT technology. Depending on the results, unique safety measures might
be put into place. It is crucial to the healthcare industry’s efforts to improve the accuracy,
reliability, and efficiency of electronic devices. IoMT can connect genuine, physical items
in the real world for information sharing and communication. Additionally, it ensures
the caliber of the service. Simple communication protocols are used to follow biological
signals for diagnosis. IoMT-based digital pathology focuses on data management based
on information generated from digitized specimen slides using virtual microscopy. It uses
an image-based environment that enables the acquisition, management and interpretation
of pathology information generated from a digitized glass slide. This requires a unit to be
deployed in remote clinics where field workers would prepare blood samples for inspection.
With the aid of an IoT-enabled microscope, the blood smear images are uploaded to the
cloud network for diagnosis. To automate the diagnosis, the proposed MSCS identifies the
microscopic images, where regions-of-interest (ROI) are identified for high-resolution tissue
scans and diagnose the results of the autoimmune disorder. In this work, the IoMT allows
for effective scheduling of limited resources for the automated diagnosis of autoimmune
diseases by ensuring the best use of resources while serving the maximum number of
patients. The clinical team may make judgments that decrease medical mistakes using
this wide range of accurate wellness data. Active aging, population monitoring, healthy
lifestyles, care service organization, and emergency response were considered to be the
applications most suitable for implementation. This data may be used to decrease the
response time for illness detection and patient comfort by quickly providing crucial in-
formation. IoMT’s most significant contributions to the pandemic response come from
effective data management, first-rate treatment, and improved diagnostics. We delineate
our experiments in the following sections. The results of the research work are mentioned
in Section 2. Related work is presented in Section 3. Section 4 discusses the methods
and materials required for IoMT-based automation of autoimmune diagnosis using MSCS,
with appropriate results discussed in Section 5. Section 6 shows the comparison of the
proposed approach with the state-of-the-art methods. Section 7 draws the final conclusions
for future work.

2. Contributions

The contributions of the proposed work are listed below:

• The proposed feature set was based on the first stage classification results, which
showed less within-class variance and more between-class variance as compared
to well-known spectral, statistical, and textural features, which made them the best
predictors for classification problems.

• The images in the dataset were separated into low-information and medium-information
images based on the average intensity and contrast, and special preprocessing was
applied for low-information images, which will eventually increase the performance
of the classification task.

• Unlike CNN, the data augmentation and optimization of many parameters were not
required.

• The architecture can be applied to complicated texture-based multiclass classification
problems.

3. Related Works

This section addresses the research and different approaches used in the field of HEp-2
cell classification along with the accuracy results achieved.

Khan et al. [11] defined the essential features involved in the prediction of heart disease.
In this work, IoMT architecture for diagnosing heart disease with updated salp swarm
optimization (MSSO) and an adaptive neuro-fuzzy inference method (ANFIS) is proposed by
the authors to improve prediction accuracy. Work by Basatneh et al. [12] studied the possible
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issues involved in the application of IoMT for DFU management. A mobile cloud-based
IoMT scheme was deployed by Nguyen et al. [13] to track the progression of a neurolog-
ical condition using a muscle control test. The cloud server’s computational and storage
capacities are used to promote the calculation of the severity levels provided by a defined
quantitative evaluation. For data collection and collaboration with the cloud, an Android
framework is used. In a blockchain network, the authors have combined the proposed
system into a data-sharing platform as a revolutionary approach that enables healthcare
consumers to share data reliably. In a wide variety of healthcare applications, an illustration
of IoMT application for orthopaedic treatment is discussed by Singh et al. [14], where the
possibility of confronting the autoimmune diseases is also discussed. Numerous cloud and
network-based facilities of IoMT are data sharing, report reporting, patient tracking, knowl-
edge processing and analysis, hygiene medical treatment, etc. When treating orthopedic
patients with a higher quality of treatment and more satisfaction, it can comprehensively
change healthcare facilities’ functional layout. With the proposed IoMT method, remote-
location healthcare is possible. IoT coordination protocols for their use in IoMT are classified
by Koutras et al. [15]. In this work, the authors define the key features of IoT communica-
tion protocols used in medical device vision, network, and application layer. Further, the
intrinsic security properties of IoMT-specific communication protocols and their drawbacks
are also discussed. Additionally, the authors define available mitigation controls that can be
added to secure IoMT communications and current analysis and deployment gaps, based on
practical threats. Knowledge, versatility, and interoperability will be greatly improved by
incorporating IoT solutions into healthcare systems. A comprehensive survey on evolving
IoT connectivity norms and innovations relevant for smart healthcare applications was given
by Gardasevic et al. Low-power wireless technology as a vital enabler for energy-efficient
IoT-based healthcare systems that have been given particular importance. Major privacy
and protection issues are also addressed. Finally, the complexities of open science and future
IoMT insights are discussed. Foggia P. et al. [16] examined the approaches published at the
2012 International Conference on Pattern Recognition, the HEp-2 Cells Classification contest.
Similarly, a system for HEp-2 cell classification was recommended by William et al. [17] using
a dual-region codebook-based descriptor along with the Closest Convex Hull Classifier. An
overall classification accuracy of 95.5 ± 2.2% was obtained by the HEp-2 cell classification
using a dual-region codebook-based descriptor and NCH.

The work by Pasquale Foggia et al. [18] compared the experimental outcomes, and
identified the advantages and drawbacks of each strategy. They noticed that characteristics
dependent on texture were promising.

Through conducting studies on many most used function sets, V.Snell et al. [19]
spotlight the shortcomings of existing methods for HEp-2 cell classifications. Just 52.3% of
DCT-based descriptors, 56.5% of pixel variations alone, 52.2% of morphology features, and
35.3% of MCA were acquired through co-occurrence features.

Work by Ilias et al. [20] that combined two descriptors into a space of dissimilarity,
which produced classification results of 75.1% and 85.7% at the cell and image levels.

X. Qi et al. [21] proposed a new Gaussian Scale Space (GSS) preprocessing method for
the role of HEp-2 cell classification and achieved 82.03% efficiency.

A two-level pyramid technique was proposed by Donato Cascioa et al. [22] to retain
certain spatial details. A broad feature of 216 was extracted using several class-process
method forms. Centered on the one-against-one system, an ensemble of 15 SVM was
used. On a blind Hep-2 cell dataset executing MCA equivalent to 80.12&, the classification
scheme was tested. The use of IoMT in healthcare has exploded around the world, but it
still faces many technological and design challenges. Turjman et al. [23] represented those
problems and demonstrated a generic IoMT architecture to address them, which consists
of three key components: data collection, connectivity gateways, and servers/cloud. A
Deep Learning Model Inception V3 and Xception architectures were used for classification
of Hep-2 cells and obtained an accuracy of 95.07% [24]. Linear discriminant analysis was
used for feature extraction and kernel support vector machines as well as fuzzy C-means
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were employed for fast classification of specimens and achieved mean class rates (MCAs)
of 86.02% and 89.14%, respectively [25].

Compared with the discussed studies, the proposed MSCS based architecture is
different from those discussed in this section in the following ways:

• First stage classification uses BT1, ANN1, and SVM1, which are also proved as suitable
features for the second stage performance results.

• Considering the performance, three-stage classification architecture was implemented,
which does not require data augmentation and many parameter optimizations.

• Special preprocessing was applied for dark and low contrast intermediate cells to
enhance the image information after segregating from positive cells based on average
intensity instead of common preprocessing for intermediate and positive cells.

4. IoMT-Based Automation of Autoimmune Diagnostics using MSCS:
Methods and Materials

This section presents an IoMT-based system for automating the detection of autoim-
mune diseases through the antinuclear antibody (ANA) test in this paper. The proposed
IoMT framework is shown in Figure 1.

Figure 1. IoMT-based framework for the automation of autoimmune disease diagnosis.

The Indirect Immunofluorescence (IIF) technique used for the reading and interpreta-
tion of antinuclear antibody test with HEp-2 cells as substrates, is developed and tested
on the dataset [6] using IFF as the reference method for ANA. Pathologists observe this
IIF slides to build their study. As the home-based chronic disease monitoring is gaining
popularity these days, the automation of autoimmune disease diagnosis [26] through the
antinuclear antibody (ANA) technique is proposed in this work, for which a Multistage
Classification Scheme (MSCS) is developed using image-based Computer-Aided Diagno-
sis (CAD), for improving the process standard. This study classifies HEp-2 cells using
13,596 cell images.

Initially, these images are manually segmented and categorized by experts. Six staining
patterns are seen in the images as shown in Figure 2 as well as Figure 3. The summary of
the HEp-2 ICPR 2016 dataset is shown in Table 1.
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Table 1. Summary of HEp-2 ICPR 2016 dataset.

Pattern # of Intermediate Cells # of Positive Cells # of Cells

Homogeneous 1407 1087 2494

Speckled 1374 1457 2831

Nucleolar 1664 934 2598

Centromere 1363 1378 2741

Nuclear membrane 1265 943 2208

Golgi 375 349 724

Total 7448 6148 13596

Figure 2. Sample cells from intermediate dataset [27]: (a) homogeneous, (b) speckled, (c) nucleolar,
(d) centromere, (e) nuclear membrane, and (f) Golgi.

Figure 3. Sample cells from positive dataset [27]: (a) homogeneous, (b) speckled, (c) nucleolar,
(d) centromere, (e) nuclear membrane, and (f) Golgi.

4.1. Multistage Classifier Scheme for HEp-2 Cell Classification

The overview of the proposed architecture for the HEp-2 cell pattern classification was
shown in Figure 4. Firstly, the proposed technique splits the positive cells and intermediate
cells based on the image’s overall average intensity before preprocessing. This results
in darker and low contrast intermediate cell images with less spatial information when
compared to positive cells. Following this, separate preprocessing is done for intermediate
and positive cells for better accuracy. The hybrid feature set (24 elements) of textural
(4 + 6), statistical (4 + 6), and spectral features (4) were extracted. As HEp-2 cell images had
microtextures, texture descriptors were well-suited. The proved textural descriptors such as
Gray level co-occurrence matrix (GLCM) and Local Binary Pattern (LBP) were used. Four
statistical properties of GLCM were extracted, as these had good discriminating properties
for HEp-2 cells. LBP was rotation variant, Fast Fourier Transform (FFT) was applied on LBP
to make it almost rotation invariant. Dimensionality reduction using Principal Component
Analysis (PCA) had a great advantage, as the FFT of LBP was 256 values. The number of
training cell images of Golgi’s pattern was only 375 for intermediate and 349 for positive.
Here, dimensionality reduction would avoid overfitting errors. So, PCA was applied to
the FFT values of LBP to obtain the first six eigenvalues. In total, ten textural descriptors
were considered for the present classification problem. The grayscale image of cells was
transformed into a binary image. The statistical properties of the cell area and the number
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of objects were calculated on the binary image. The standard deviation of the grayscale cell
image and standard deviation by area were also estimated for the cell image. The area of
the cell varies significantly among the patterns. The homogenous, nuclear membrane, and
speckled had more area than centromere, Golgi, and nucleolar. The standard deviation of
the cell image varied a lot among the patterns, as standard deviation measures the degree of
nonuniformity of the pixel values concerning the space in the image. The number of objects
in the image was a very simple but effective discriminator. As homogenous patterns, the
nuclear membrane had few objects, and centromere, speckled, and Golgi had more objects
than the nucleolar pattern. PCA of the cell image was a statistical property that represents
the whole image pixels in the form of an uncorrelated orthogonal basis set. PCA was a
suitable feature for HEp-2 cells as the cell image patterns had variations in the pixel value
distribution. The first six eigenvalues of the PCA were significant. Totally ten statistics
features were considered for the classification problem in hand. Spectral features of the HEp-
2 cell showed a significant difference among the patterns, as pixel values of the patterns
were randomly distributed with significant variations. High frequencies represented the
abrupt intensity changes like edges of the object, and low frequency represented the slow
variations in the intensity. Low Low (LL), High Low (HL), Low High (LH), and High High
(HH) features were extracted using Discrete Wavelet Transform had good discriminating
characteristics. Only four spectral features were taken for the classification task.

Figure 4. An overview of the Multistage Classifier Scheme for classification of HEp-2 cells.

The BT was a suitable classifier for the HEp-2 cell segregation problem as the team
of cell patterns share the common values in the view of certain features. For instance,
homogenous, nuclear membrane, and speckled had more area than centromere, Golgi, and
nucleolar, so six patterns could be grouped into two based on the cells’ area. Similarly,
suitable features were identified, and HEp-2 cells were segregated. More details were
discussed in section C.

ANN was also an appropriate classifier for the HEp-2 cell categorization problem. The
HEp-2 cell classification problem is considered a complex classification problem because
the intraclass variations are more. ANN can handle such issues by adjusting the weights
by the more sophisticated algorithms like scaled conjugate gradient back propagation
(SCGBP) during the training process. SVM was considered as a suitable classifier [28].
The BT, ANN, and SVM were base classifiers. In the proposed Multistage Classification
Scheme (MSCS), BT1, ANN1, and SVM1 were trained individually with only 24 On the
image training datasets in the first stage as base learners. In the second stage, the feature
set was augmented to 27 elements with the first stage prediction results again meta learners
BT2, ANN2, and SVM2 were trained for this augmented feature set to achieve better
accuracy. Both intermediate as well as positive cells feature set are combined to produce a
prediction class. The first stage prediction results had significantly less intraclass variance
and good inter-class variance. Thus, the performance of classification increases in the
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second stage of the classification. In the third stage, the results of the BT2, ANN2, and
SVM2 were combined using majority voter logic to produce a predicted class. The majority
voter logic was appropriate, as the instances with different prediction results from the
three classifiers were lower. To validate the efficiency of the proposed architecture, the
leave-one-specimen-out validation scheme has been modified.

4.1.1. Preprocessing

Contrast stretching is used in this stage because of the low contrast in intermediate
cell images. This is achieved by preserving the lowest possible value of the image intensity,
while the highest possible value is set to the maximal possible value of the intensity. Using
morphological structuring feature, the context is removed to highlight the cell structure in
the picture and the image size is converted into a resolution of 64 × 64. This resolution is
translated to 64 × 64 for positive cells and the backdrop is deleted.

4.1.2. Feature Extraction

Extraction of features codes broad image data into a condensed form. Inter-class varia-
tion features like spectral, statistical and textural are considered for the cell classification.
Among these, textural descriptors have important segregation features [16,18]. Mathemat-
ical, textural, and spectral as well as first stage predictions used for the classification of
HEp-2 cell images include:

• Statistical features (Stat): A valuable representation of data for study can also be
conveniently derived from the statistical functionality. The number of “one” pixels
in the binary picture is the area of the cell. Any information about the dispersion
of the intensity in the cell is given by the standard deviation of the picture. For
the HEp-2 cell classification, the number of items in the cells was also an excellent
discriminating feature.

• Principal component Analysis (PCA): Is a statistical approach that utilizes orthogonal
transformation to convert results. For Cell Image, the PCA was applied. For the
Feature Set, the first six eigenvalues are taken.

• Textural features (text): The texture is described in the neighborhood by the spatial
distribution of gray levels [29]. The literature review noted that for the classification
task, textural descriptors were more useful.

• Statistics of co-occurrence matrix (SCM): Microtextures are seen in HEp-2 cell images.
As a micro-texture descriptor [29], a gray-level co-occurrence matrix was well matched.
The distribution of co-occurring values over an image at a given offset was calculated
by the co-occurrence matrix (CM). The statistical properties were measured over the
CM, such as homogeneity, comparison, correlation, and energy. Consequently, for
one-pixel distance CM, the feature set had four components.

• Principal Component Analysis of Local Binary Pattern histogram frequency re-
sponse (PCALBP) [27]: One of the important ways to explain texture is the Local
Binary Pattern (LBP). The neighborhood is thresholded relative to the center pixel
value. The function set has six parts.

• Power Spectral Components(PSC) [27]: Using the wavelet function’s decomposi-
tion property, the classification accuracy can be improved. For the dataset [27], the
interaction between the features of sub-bands was technically tested and simulated.

4.2. Classifiers

• Binary tree (BT): The conditional decision tree has “true” or “false” formal outputs.
In the HEp-2 cell pattern recognition problem [30], BT is used as a classifier. BT was a
supervised algorithm for learning. In which, the predictors of the training images were
analyzed using the Classification and Regression Trees (CART) algorithm to perform
a binary split on any predictor variable. The split criterion gain was determined
according to the CART algorithm by the ratio of the parent to child node Gini diversity
index [30]. The minimum leaf size at which the tree’s output was optimum is the
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minimum observations on the leaf node. In this experiment, the minimum leaf node
size set was 50. Tree splitting ends until the minimum leaf size is met by the number
of observations on a leaf.

• Artificial Neural Network (ANN): ANN [31] is comparatively one of the better
choices for complex classification of HEp-2 cell patterns. With ten layers, the ANN
design adopted the feed-forward strategy. During the preparation of the ANN, scaled
conjugate gradient backpropagation [32] was used to change the weights. Hyperbolic
tangent sigmoid, hyperbolic log sigmoid, and softmax were alternatively implemented
in the transition function.

• Support Vector Machine (SVM): SVM adopted the guided learning methodology.
SVM was a binary classifier, essentially. The binary SVM was modeled to classify
six groups using the Error-Correcting Output Code. Therefore, K(K−1)

2 was used, i.e.,
fifteen SVMs, where K is the number of groups. A Gaussian kernel one-versus-all
coding scheme was used.

• Multistage Classification Scheme (MSCS): The Multistage Classification Scheme is
proposed by keeping performance improvement as an ultimate goal. The proposed
MSCS retrains the base classifiers to improve the predictive accuracy in computer
vision problems. The MSCS algorithm is shown in Algorithm 1.

Algorithm 1: MSCS Algorithm
Input: The dataset S = {Ln, Fn}, n = 1. . . N, where Ln is the class label, Fn represent

the feature set for the cell n and N=13596
Output: Predicted class
Step 1: Segregate the intermediate Si and positive Sp HEp-2 cells based on the average

intensity.
Step 2: Special preprocessing for intermediate cells Si and mild preprocessing for positive

cells Sp.
Step 3: Extract spectral, statistical and textural features (24 features) for both Si and Sp.

Si = {Lni , Fni}, ni = 1...Ni, where, Lni was the class label, Fni represent the feature

set for the intermediate cell ni and Ni = 7448. Sp =
{

Lnp , Fnp

}
, np = 1...Np, where

Lnp is the class label, Fni represent the feature set for the positive cell np and
Np = 6148.

Step 4: MSCS-Stage-1 Base learner BT1, ANN1, and SVM1 were trained with 24 features
separately for Si and Sp. For instance xi cell in Si, Pfi1

, Pfi2
, and Pfi3

denote the
prediction of the base classifier BT1, ANN1, and SVM1, respectively.

Step 5: MSCS-Stage-2 Meta learners BT2, ANN2, and SVM2 were trained with
augmented feature set Z (27 features = 24 features + 3 outputs of base classifiers).
Intermediate and positive cells were combined Let Zx =

{
Pf1 , Pf2 , Pf3 , Fx

}
, x ∈ S,

Where Pf1 , Pf2 , and Pf3 denote the prediction of the base classifier BT2, ANN2, and
SVM2, respectively, for the cell x. Now, dataset SZ = {Xn, Zn}, n = 1. . . N where
Zn is the class label and Xn is the augmented feature set for the cell n and
N = 13596.

Step 6: MSCS-Stage-3 The output of meta learners Ps1 , Ps2 , and Ps3 were an ensemble
using the majority voting technique as shown in Equation (1).

Maj{Ps1 , Ps2 , Ps3} = P (1)

where P is the final predicted class.
if PS1 6= PS2 6= PS3 , then PS1 = P as BT2 has more performance than other
classifiers. This increases the performance of the classification system.
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5. Results and Discussion

The proposed architecture for HEp-2 cell classification using mathematical, textural,
and spectral characteristics using MSCS is evaluated in this section on the dataset [27]. The
MCA was defined as shown in Equation (2).

MCA =
1
k

k

∑
i=1

CAi (2)

where CAi is the classification precision of class i, and k is the number of groups of cells.
ACA is the correct average classified cells in the dataset for the complete cells. Out of
13,596 cells in the full dataset, the intermediate cells (IMC) were 7448 (54.8%), as it was
the plurality of size, special consideration yields greater precision of classification. 6148
(45.2%), which were of medium knowledge, were the positive cells (PC). To produce the
uncertainty matrix, a leave-one-specimen-out validation protocol was used.

5.1. Stage 1 Results

The IMC and PC were separated in Stage 1 prior to preprocessing on the basis of
their total strength, and special preprocessing is applied to intermediate cells for improved
output, and positive cells are subjected to mild preprocessing. The statistical, textural, and
spectral features were extracted to form a feature set with 24 elements. The intermediate
cells were darker and had low contrast. Even after special preprocessing, the intermediate
cells had less spatial information. The MCA is 84.9% for intermediate cells, although the
carefully picked 24 features and SVM classifier were applied. The MCA is 95.8% for positive
cells for the same feature set and SVM classifier, as positive cells had comparatively good
spatial information. ANN is better for intraclass varying HEp-2 cell pattern classification as
it can handle the intraclass variations by adjusting the weights using the SCGBP algorithm.
So, the MCA is 88.4% and 97.1% for intermediate and positive cells, respectively. BT is more
suitable for this kind of segregation problem, as the few cell patterns share the common
values in the view of certain features; this allows us to group the patterns based on such
features. So, the MCA is 95.3% for intermediate and 98.6% for positive. The base learners
were trained for these 24 elements, and leave-one-specimen-out validated to obtain the
MCA, as shown in Table 2 and Figure 5.

Table 2. Results of Stage 1.

Classifier BT ANN SVM

Dataset IMC PC Combined IMC PC Combined IMC PC Combined

MCA 95.30% 98.60% 96.80% 88.40% 97.10% 92.40% 84.90% 95.80% 89.80%

For further understanding, the majority voting algorithm was implemented after
Stage 1 to ensemble the classifiers’ output. The majority voting technique was chosen as
an ensemble method because 99.08% of the instances were voted by at least two of the
classifiers, and it is simple to implement. Table 3 summaries the input and output of the
voting algorithm at Stage 1. For 115 cases, the prediction results of BT, ANN, and SVM
were different.
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Figure 5. Confusion matrix results of Stage 1: (a) Intermediate BT1, (b) positive BT1, (c) intermediate
and positive combined BT1, (d) intermediate ANN1, (e) positive ANN1, (f) intermediate and positive
combined ANN1, (g) intermediate SVM1, (h) positive SVM1, and (i) intermediate and positive
combined SVM1.

Table 3. Input and output of the voting algorithm at Stage 1.

Voter at Stage 1 BT, ANN, SVM
Vote Same Class

ANN, SVM
Vote Same Class

BT, ANN
Vote Same Class

BT, SVM
Vote Same Class

Correct
prediction 11709 451 616 313

Wrong
prediction 107 199 27 59

Total 11816 650 643 372

5.2. Stage 2 Results

In Stage 2, the Meta learners BT2, ANN2, and SVM2 were trained for an augmented
feature set (24 + 3 results from base learners). The base learners’ predicted results had
significantly less intraclass variance and more inter-class variance, making a good feature
for the classification. Therefore, the performance of BT2, ANN2, and SVM2 was increased
by 1.8%, 4.5%, and 4.1% as compared to Stage 1, as shown in Figure 6.
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Figure 6. Confusion matrix results of Stage 2: (a) BT2 result, (b) ANN2 result, and (c) SVM2 result.

5.3. Stage 3 Processing and Results

In Stage 3, the final prediction was performed by majority voting among the results of
the three meta learners to achieve 99.1% MCA, as shown in Figure 7. Majority voting was a
suitable method for ensembling the results, as there were very few instances with different
results for all three classifiers. Homogenous (Class-1) had the highest performance, with
99.6% (2484), and Golgi (Class-6) had a lower performance of 98.2% (711). The results of
the proposed MSCS are summarized in Table 4.

Figure 7. Confusion matrix results of Stage 3.

Table 4. Results of Stage 2 and Stage 3.

Stage 2 Stage 3

Classifier BT ANN SVM Voter

MCA 98.60% 96.90% 96.50% 99.10%

6. Comparison with State of Art Methods

The technique used by Manivannam et al. [33] for HEp-2 Cell recognition with an
MCA of 87.9% on the dataset uses spatial relationship-based linear coding and two-level
cell pyramids to encode different characteristics to reflect the spatial details of the cells. The
MCA of 93.7% was obtained by Sadaf et al. [34] for the ICPR 2014 dataset [27] using the
leave-one-specimen-out validation protocol. Deep Convolution Neural Networks were
proposed by ZGao [35] (d-CNN) for HEp-2 cell classification. The architecture of the d-
CNN consisted of eight layers; the first six layers were every other convolution and pooling
layers. The rest of the two layers were fully connected layers designed for classification.
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The first layer of the classification takes the sixth layer output feature map as input. The
last layer gives the output probabilities using the softmax regression model by optimizing
weights and biases.

The d-CNN cost function was nonconvex, so it requires setting many training parame-
ters approximately 50,000 for the fast network converge and good performance. As more
parameters need to be optimized for d-CNN during training, more training images were
a must. So, cell image rotation based data augmentation technique is one way to achieve
more images from the dataset. This makes d-CNN more computationally complicated [36],
have more running time, and consume more memory. The proposed multi-stage classifiers
do not require data augmentation, so they consume less memory and are computationally
less complicated, as fewer parameters need to be optimized. A 22 layered CNN with four
pooling layers and three classification layers was used by Xi Jia et al. [12]. This produced
MCA 85.1% on the dataset [27].

On the image training dataset [27], the proposed architecture achieved an MCA of
99.1%. The training data collections [27] are the same as seen in Table 1. The state of the
art processes are shown in [27]. The proposed MSCS technique has outperformed the
ensemble of convolutional neural networks [24], which gave an accuracy of 95.07%, and a
linear discriminant analysis technique [25], which gave an accuracy of 89.14%.

7. Conclusions and Future Work

By facilitating access to healthcare for citizens’ well being, a sustainable smart city can
better guarantee health care. This work focused on the automation of autoimmune disease
diagnosis through the antinuclear antibody (ANA) technique using the MSCS approach.
Pattern recognition architecture for complex HEp-2 cell classification is developed and
tested on the dataset [27]. One of the most effective classification systems has been found
to be the MSCS for classification. In this research work, a pattern recognition architecture
for a complicated classification task was designed and tested on the ICPR 2016 HEp-2
dataset. The MSCS for classification proved to be one of the most efficient schemes. In the
output stage, the output of all three meta-learners was combined by the majority voting
technique to give an accuracy of 99.1%. The ANA test with the IIF method is the gold
standard for diagnosing auto-antibodies in the blood serum. ANA testing is subjective with
more inter-laboratory variations due to the lack of specialized personnel. The proposed
algorithm can be embedded in a CAD system designed for texture-based computer vision
pattern recognition problems. To improve the effectiveness of the proposed approach an
Internet of Medical Things (IoMT) based digital pathology approach is introduced in this
work to monitor and assess the patients’ health conditions in critical pandemic conditions
like COVID-19.
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