
Citation: Liang, J.; Bai, Y.; Gao, Z.;

Yang, X.; Li, L.; Zhang, C.; Qiao, F. A

Study on the Dynamic Relationship

between Landscape Information and

Heat Island Intensity of Urban

Growth Patterns—A Case of Five

Cities in the Beijing–Tianjin–Hebei

City Cluster. Sustainability 2022, 14,

14099. https://doi.org/10.3390/

su142114099

Academic Editors: Fernando Nardi

and Laura Cavalli

Received: 14 September 2022

Accepted: 24 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Study on the Dynamic Relationship between Landscape
Information and Heat Island Intensity of Urban Growth
Patterns—A Case of Five Cities in the Beijing–Tianjin–Hebei
City Cluster
Jianshe Liang 1, Yongping Bai 1,*, Zuqiao Gao 2, Xuedi Yang 2, Lingwei Li 1, Chunyue Zhang 1 and Fuwei Qiao 3

1 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
2 College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China
3 College of Economics, Northwest Normal University, Lanzhou 730070, China
* Correspondence: baiyp@nwnu.edu.cn

Abstract: Urban heat islands (UHIs) endanger the health of urban residents. Different urban growth
patterns (UGPs) have different effects on heat islands. However, the dynamic relationship between
UGP landscape information and urban surface heat island intensity (SUHII) remains unclear. This
study explored the dynamic relationship between SUHII and UGP landscape information through
spatial regression and landscape pattern analysis using Landsat imagery and urban construction
land data from five cities in the Beijing–Tianjin–Hebei urban agglomeration from 2010 to 2018. The
results show that SUHII increase areas overlap with expansion patches, and the edge expansion
and outlying areas show a warming effect. The influence of the edge expansion landscape area and
pattern on SUHII changes is greater than the other two growth patterns. The relationship between
UGPs’ landscape information and SUHII changes varies among cities. The larger the city size, the
stronger the influence of landscape information. Among the landscape patterns, the influence of the
landscape area and pattern on SUHII change is large and the influence of landscape fragmentation
is smaller. Exploring the dynamic relationship between UGP landscape information and SUHII is
conducive to optimizing the spatial layout and pattern selection of urban development and providing
a scientific reference for sustainable and livable urban development planning.

Keywords: urban growth patterns; landscape pattern indexes; surface urban heat island intensity;
urban scale

1. Introduction

Since the reform and opening up, China’s urbanization process has accelerated.
From 1992 to 2015, China’s urban land area increased rapidly from 1.22 × 104 km2 to
7.29 × 104 km2, with a nearly five-fold increase in size and an average annual growth rate
of 8.10%, which is 2.5 times the global average [1]. However, the contradiction between
economic development and the ecological environment has intensified during rapid ur-
banization, resulting in a series of negative impacts while promoting the development of
the urban economy, infrastructure, and other functions [2]. The urban heat island effect is
one of the more important negative impacts [3]. The risk of high temperatures due to the
urban heat island effect predisposes urban residents to an increased incidence of respiratory,
cardiovascular, and emotional–psychological diseases [4–6], and the hazards of the urban
heat island effect are amplified in some areas along with the local background climate [7].
Therefore, the mitigation of the urban heat island effect through reasonable urban planning
is an important task in building a livable city.

The measurement data of urban heat islands are divided into two categories: Air
temperature data and satellite remote sensing thermal infrared band data, among which
the satellite remote sensing thermal infrared band is gradually becoming an important
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measurement method for urban heat islands due to its advantages of high accuracy, time
continuity, and easy access to data [8,9]. The urban heat island obtained by satellite remote
sensing data is called the surface urban heat island. The main influencing factor of the
surface urban heat island (SUHI) effect is surface change [10], while urban growth is the
main cause of surface change [11,12]. Urban growth gradually changes the surface from
natural to impermeable [13,14], which converts the solar energy irradiating the surface
from latent to sensible heat fluxes, making the urban surface temperature higher than that
of the suburbs and generating a surface urban heat island effect [15–18]. UGPs are one
of the important aspects of urban growth measurement [19,20]. It refers to the different
types of growth that emerge from the differences in the location and spatial relationships
of newly expanded patches based on built-up land, mainly including edge expansion,
infilling, and outlying [21]. Among them, edge expansion is distributed around the original
built-up area, which is bordered by the existing built-up land in the city on one side and
the non-built-up land on the other side. It mainly relies on occupying the agricultural
land around the city, which leads to changes in the proportion of impervious surface and
vegetation cover, while more functional areas and populations are laid out within the
edge type [22], which increases the anthropogenic heat emission, thus enhancing the heat
island effect. Infilling is the main type of intra-urban growth, with most of its boundaries
bordering already built-up urban land; it mainly occupies what were originally urban
green spaces or urban restricted development areas, which can lead to a high density of
population and buildings and a reduction in green space, increasing the temperature [23].
Outlying occurs at the periphery of the city and is not spatially in contact with the city’s
built-up land; it significantly enhances urban commuting energy consumption [24], while
outlying is mostly dominated by industrial parks with a concentration of manufacturing
industries, leading to an increase in surface temperature. In addition, there are differences
in the warming effects of the three growth patterns due to the cold and heat island spillover
effects and the different locations of the growth patches relative to the built-up urban areas,
which also lead to the differences in SUHII changes they can cause. However, existing
studies have mostly explored the relationship between UGPs and land surface temperature
(LST) [25], and less research has been conducted on the relationship between UGPs and
SUHII changes. The correlation between UGPs and SUHII is important in gaining insight
into the effects of urban expansion on SUHI changes.

In addition, landscape information is usually an important influence on the formation
of SUHI [26]. A large number of studies have explored the relationship between landscape
configuration and SUHII by calculating the landscape pattern index [27–29]. The com-
position and configuration of the landscape, such as fragmentation and shape, strongly
influence the formation of the SUHI [30–32]. However, few existing studies have explored
the relationship with SUHII changes at the level of UGP landscape information, and the
influence of UGPs as a different urban growth landscape category on SUHII is worth
exploring. In addition, urban growth is more pronounced at long intervals, and SUHII
changes significantly, thus making the study of SUHII dynamics even more valuable. Some
scholars have explored the factors influencing SUHI dynamics [33–35], and some studies
have started to simulate the future SUHI distribution [36–38]. This all proves the value
of studies on SUHII dynamics, but the existing studies on UGP and SUHII are relatively
inadequate in characterizing SUHII dynamics and are mostly based on static time node
studies [39].

In summary, although some studies on the relationship between urban growth and
SUHII dynamics have been conducted, fewer studies have explored this relationship from
the perspective of UGP landscape information, and there is a lack of knowledge on how to
change and plan for UGP landscape information and thus mitigate SUHII enhancement.
Thus, this study investigates the dynamic relationship between UGP landscape information
and SUHII changes in five cities of different scales in the Beijing–Tianjin–Hebei urban
agglomeration to provide an innovative and comprehensive understanding of the dynamic
relationship between UGPs and SUHII changes from the perspective of landscape informa-
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tion and a scientific basis for urban planning managers in countries and regions undergoing
rapid urbanization to reasonably optimize the urban layout and improve sustainable urban
development. The paper is structured as follows: Section 2 gives the study area and data
sources and describes the research methodology. Section 3 states the results. Section 4 gives
the main conclusions and limitations.

2. Data Sources and Methods
2.1. Study Area

In this study, we selected the central urban areas of five cities in the Beijing–Tianjin–
Hebei city group, namely, Beijing, Shijiazhuang, Baoding, Zhuozhou, and Gaobeidian
(Figure 1). They represent different urban scales, landscape characteristics, and urbanization
intensity. The urban population was calculated using the 2018 study area boundary data
and Landscan population density data, and the five cities were classified into four city
size classes according to the Chinese city size classification standard [40]. Beijing (with
a population of 11,159,900) is a megacity, Shijiazhuang (with a population of 2,936,900)
is a Type II large-sized city, Baoding (with a population of 91.63) is a medium-sized city,
and Zhuozhou and Gaobeidian (with a total population of 484,600 in both cities) are Type
I small cities. The study area is 7299.40 km2, 1190.53 km2, 916.29 km2, and 378.91 km2

(Zhuozhou and Gaobeidian combined), respectively. In this study, mega, large, medium,
and small cities within the Beijing–Tianjin–Hebei urban agglomeration were selected for
comparison based on the following considerations.
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Figure 1. Study area: (a) China; (b) Beijing–Tianjin–Hebei city cluster (part of the region); (c) Baoding;
(d) Shijiazhuang; (e) Beijing; (f) Zhuozhou; (g) Gaobeidian.

First, due to the differences in urban scale definition and urbanization level among
different countries, to ensure that this study has reference significance for other developing
countries’ rapidly urbanizing regions, a comparative study of different urban scales is
needed to give differentiated policies, so as many samples as possible are selected. The east-
ern foothills of the Taihang Mountains were chosen for the sample, where the differences in
urban scale are large, instead of the coastal areas of the Beijing–Tianjin–Hebei urban agglom-
eration. Second, there is a typical urban class division within the Beijing–Tianjin–Hebei
urban agglomeration, with a clear classification system of cities at all levels consisting of
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Beijing, a megacity, as the first echelon, and Shijiazhuang and Tianjin as the second echelon.
The development of the urban agglomeration has not yet reached a large contiguous belt
such as that of the Yangtze River Delta, Guangdong, Hong Kong, and Macao, and the SUHI
is still in faceted separation mode [41], which facilitates the study of SUHII differences
among different city sizes. Third, the factors that influence urban heat islands such as
climate, topography, and overall urban morphology were controlled [42–44], as the major
cities within the Beijing–Tianjin–Hebei urban agglomeration selected in this study have
relatively similar geomorphological conditions in terms of the difference between the high-
est elevation and the lowest elevation. The difference in latitude is 2◦24′, the difference in
distance from the ocean is 156.90 km, and the climatic zones all have a temperate monsoon
climate The development patterns of the main urban areas of each city are consistent, which
is convenient for comparative studies. Finally, the cities selected in this study all exhibit
significant heat island effects during rapid urbanization, with urban heat islands expanding
rapidly outward and gradually increasing [45,46].

2.2. Data Sources and Pre-Processing

Landsat satellite images for 2010 and 2018 were downloaded from the USGS web-
site [47] with less than 10% cloud cover. On the website of the National Meteorological
Observatory of China, the start of summer in the study area is around May 21 and the start
of autumn is around August 10, so this period was defined as summer in the study area.
In addition, considering the low temporal resolution of the Landsat satellite in acquiring
two periods of LST data, the images of the same season in adjacent years were taken as
the maximum and average values in this study to eliminate the effects of extreme weather
(Table 1) [48]. Radiation calibration and atmospheric correction were performed using
ENVI 5.3 software during pre-processing, and the surface temperature was calculated
afterwards.

Table 1. Remote sensing image data collection date.

City Study Years Remote Sensing Image Time

Beijing 2010 17 May 2009; 2 June 2009; 20 July 2009; 20 May 2010; 8 August 2010; 8 June 2011; 26 July 2011
2018 23 May 2017; 10 July 2017; 13 May 2019; 29 May 2019; 14 June 2019

Shijiazhuang 2010 9 June 2009; 25 July 2009; 12 August 2009; 28 June 2010; 15 August 2010
2018 1 July 2017; 20 July 2018; 20 May 2019

Baoding 2010 17 May 2009; 2 June 2009; 20 May 2010; 23 May 2011; 8 June 2011; 26 July 2011

2018 23 May 2017; 8 June 2017; 10 July 2017; 20 May 2019; 29 May 2019; 14 June 2019; 30 June
2019; 23 July 2019

Zhuozhou 2010 17 May 2009; 2 June 2009; 20 May 2010; 23 May 2011; 8 June 2011; 26 July 2011
2018 23 May 2017; 10 July 2017; 29 May 2019; 14 June 2019; 30 June 2019

Gaobeidian 2010 17 May 2009; 2 June 2009; 20 May 2010; 23 May 2011; 8 June 2011; 26 July 2011
2018 23 May 2017; 10 July 2017; 20 May 2019; 29 May 2019; 14 June 2019; 30 June 2019;

City and built-up area boundary data were downloaded from the website [49]. ArcGIS
(Version 10.5 ESRI Redlands USA) was used to extract the extent of built-up areas within
the city boundaries, and then the rural settlement sites were eliminated from some of the
data by comparing them with Google Earth high-resolution images so that the results were
more scientific. Fragstats (Version 4.2.1 USDA USA) was used to obtain the landscape
pattern index. Elements such as the landscape pattern index and SUHII difference in each
study unit were calculated using ArcGIS 10.5 software for the subsequent spatial regression
analysis. The specific analysis framework is shown in Figure 2
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Figure 2. Analysis framework.

2.3. Methods
2.3.1. Urban Growth Index Calculation

The landscape expansion index (LEI) [50] was selected to identify the UGP:

LEI =
Lcom

Pnew
(1)

where LEI is the landscape expansion index, Lcom is the length of the common boundary
between the new urban land and the existing urban land, and Pnew is the perimeter of the
new urban land: LEI = 0 for enclave type, 0 < LEI ≤ 0.5 for edge type, and 0.5 < LEI ≤ 1 for
infill type.

2.3.2. LST Inversion

The transmittance and atmospheric upper radiance were obtained from the NASA
website [51], and then LST inversion was performed using the radiative transfer equation
method [52]. The surface-specific radiance was calculated using the hybrid image element
decomposition method to classify remote sensing images into three types: Water bodies,
towns, and natural surfaces.

εsurface = 0.9625− 0.0614FV − 0.0461FV
2 (2)

εbuilding = 0.9589− 0.086FV − 0.0671FV
2 (3)

where ε surface and ε building are the specific emissivities of natural surfaces and towns;
Fv is the vegetation cover, determined based on the normalized difference vegetation index
(NDVI).

FV = (
NDVI−NDVIV

NDVIV + NDVIS
)

2
(4)

NDVI =
NIR− Red
NIR + Red

(5)

where NDVIv = 0.70 and NDVIs = 0. When the NDVI of an image element is >0.70, Fv
takes the value of 1. When NDVI < 0, Fv takes the value of 0.

The equation for the brightness value of thermal infrared radiation is as follows:

Lλ = [ε× B(Ts) + (1− ε)× L ↓]× τ + L ↑ (6)

B(TS) = [Lλ − L ↑ −τ(1− ε)L ↓]/τ × ε (7)

where Lλ is the surface radiance; TS is the real surface temperature in ◦F; B(TS) is the
blackbody thermal radiation brightness introduced through Planck’s law in W/(sr*m2); τ
is the atmospheric transmittance in the thermal infrared band; L↑ is the upper atmospheric
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radiation brightness in W/(sr*m2); L↓ is the ground real radiation brightness passing
through the atmosphere and reaching the satellite sensor energy; and the unit is W/(sr*m2).
Referring to the inverse function of Planck’s formula, the true surface temperature TS in ◦C
is derived.

TS = K2/ ln[K1/B(TS) + 1] (8)

where K1 and K2 are 666.09 W (m2-sr-µm)−1 and 1282.7 K for Landsat5 TM parameters and
774.8853 W (m2-sr-µm)−1 and K2 = 1321.0789 K for Landsat8 OLI parameters, respectively.

In existing studies, SUHII is calculated using urban LST minus rural average LST [53].
According to a previous study [54], a 3 km buffer zone was established outside the urban
boundary, the influence of mountains was removed, the zoning statistics tool of ArcGIS
was used to calculate the average LST of rural areas, and then the SUHII was calculated.

SUHII = Curban −
n

∑
i=1

Crural (9)

where SUHII urban surface heat island effect intensity; Curban is the temperature value
of each image element in the urban area in ◦C; i is the image element in the rural area in
the buffer zone; n is the number of image elements in the buffer zone; and Crural is the
average surface temperature value in the rural area in ◦C.

2.3.3. Landscape Pattern Index Selection

In order to determine the relationship between the SUHII difference and landscape
composition and configuration, the average SUHII difference and landscape pattern index
of different UGP patches were calculated separately and spatial regression analysis was
performed using the Geoda (version 1.20) software. According to previous studies, the
landscape pattern affecting SUHII variation is mainly landscape separation and landscape
shape [55], so in this study, ENN and PROX represent the landscape separation, and FRAC
and SHAPE represent the landscape shape.

2.3.4. Spatial Regression Analysis

In this study, the Moran I index was used to test whether the explanatory variables
(i.e., SUHII differences) were spatially autocorrelated in the overall study area, considering
that LSTs between adjacent regions may interact with each other. The results showed that
the Moran I indices of the SUHII differences were all significant at the 1% level (Table 2),
indicating the existence of spatial autocorrelation in the SUHII difference data and the need
to introduce spatial lagged error terms or spatial lagged dependent variables in the general
econometric model through the spatial weight matrix W to form a spatial econometric
model. Spatial econometric models can be further classified into spatial lag models (SLMs)
and spatial error models (SEMs) according to the way they deal with spatial correlation. The
former assumes that spatial correlation is a consequence of the dependent variable, while
the latter assumes that spatial correlation exists due to a random error term. According
to the judgment criteria proposed by Anselin et al. [56] in 1996, the LMlag and LMerr
were compared, and if the LMlag statistic was greater than the LMerr statistic, it indicated
that the spatial correlation of the spatially lagged dependent variable dominated and SLM
should be selected; otherwise, SEM should be selected.

Table 2. Moran index table of SUHII difference between expansion modes of various scales.

Scale Division Edge Expansion Infilling Outlying

300 m × 300 m 0.578 *** 0.606 *** 0.581 ***
900 m × 900 m 0.433 *** 0.423 *** 0.447 ***

1500 m × 1500 m 0.338 *** 0.358 *** 0.0393 ***
Note: *** p < 0.01.
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3. Results
3.1. Spatial and Temporal Distribution of UGPs Plaques and SUHII

From 2010 to 2018, the total urban construction land area in the study area increased
by 648.14 km2, which is 15.49% of the total urban area in 2010, with an overall expansion
intensity of 0.0194. Along with the gradual reduction in urban size, the urban expansion
area also gradually decreased. The cities (Beijing, Shijiazhuang, Baoding, Zhuozhou, and
Gaobeidian) are 384.11 km2, 136.09 km2, 79.60 km2, 27.39 km2, and 20.95 km2 in size,
respectively. According to the results of the study, in terms of urban expansion intensity,
the larger the size of the city, the lower its intensity. The expansion area of each city in
2010–2020 compared to the 2010 urban built-up area ratio was in the order of 12.02%,
26.36%, 22.35%, 36.09%, and 53.06%. The intensity of urban expansion was 0.0150, 0.0330,
0.0279, 0.0451, and 0.0663, respectively. It is worth noting that Shijiazhuang, as a large
city, has a higher intensity of urban expansion compared to medium-sized cities such as
Baoding. This indicates that the urban development within the Beijing–Tianjin–Hebei
urban agglomeration varies greatly, and large cities such as Shijiazhuang are in a period of
rapid urban development and therefore maintain a high intensity of urban expansion.

In terms of spatial distribution of expansion patches, the overall spatial distribution
patterns of the three urban expansion patterns are infill, edge, and outlying from the urban
center to the periphery, as shown in Figure 3. The Beijing edge type shows a significantly
higher expansion in the north–south direction than in the east–west direction; the outlying
type is mainly distributed in the southeast and northeast. Shijiazhuang growth patches are
evenly distributed around the built-up areas, where the outlying type is more specialized,
mostly in the southern area, mainly for urban infrastructure. There are more scattered
blocks in Baoding city, and all of them have expanded, and the trend of expansion to the
north is more obvious, mainly because the industrial land is concentrated in the north of
the city. Zhuozhou and Gaobeidian have a concentrated distribution of growth patches,
and most of the growth patches in the two cities are concentrated in the eastern area, as
this is the distribution area of high-speed railroad stations in the two cities. The high-speed
railroad stations have a significant pulling effect on the economy, so the urban expansion
areas are concentrated in the eastern part.

After calculation, the surface temperature values of five cities were obtained. A
comparison of the obtained surface temperature values with MODIS surface temperature
products shows that the differences between them are small, and the differences in surface
temperatures in the five cities are less than 2 ◦C. The temperature differences in the two
small cities of Gaobeidian and Zhuozhou are less than 0.1 ◦C, indicating that the inversion
accuracy is suitable for SUHI-related studies. As shown by the spatial distribution of SUHII
in 2018 (Figure 4), there is a gradual decrease from the urban center to the periphery. Beijing
and Shijiazhuang are all covered by heat islands, but the highest SUHII of the two cities is
smaller compared to Baoding. Zhuozhou and Gaobeidian also have obvious heat island
effects, but the heat island intensity is smaller compared to the larger cities. Overall, SUHII
is mainly distributed in the urban built-up areas, and rivers, green areas, and some arable
land obviously show the cold island phenomenon, which tentatively indicates the spatial
correlation between urban built-up areas and SUHII.
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To facilitate the dynamic study, the SUHII in 2018 was subtracted from that in 2010 to
obtain the difference in SUHII over the time period under study, and the results are shown
in Figure 5. Each SUHII growth area is more similar to the spatial distribution of urban
growth patches. The increase in SUHII in Beijing is mainly concentrated in the north and
south sides of the city, and the main increase in SUHII in Shijiazhuang is located in the east
and south sides of the city. The increase in SUHII in Baoding shows a circular distribution,
with an obvious increase in the enclave-type expansion of the urban area in the north of
the city. The increase in SUHII in Zhuozhou and Gaobeidian on the east side is obvious.
Combined with the distribution of urban growth patches in the above findings, it is shown
that there is a spatial correlation between urban growth patches and SUHII growth areas.
In addition, the increase in SUHII becomes larger with a larger urban scale, indicating that
urban scale has a greater influence on SUHII growth. Overall, the SUHII increase area and
the urban expansion area highly coincide, indicating that there is a large spatial correlation
between them.
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3.2. Growth Model and SUHII Correlation

Before analyzing the relationship between UGP landscape information and SUHII,
it is necessary to conduct a preliminary investigation of the relationship between UGPs
and SUHII in quantitative and spatial terms. As shown in Figure 6 and Table 3, Beijing,
Shijiazhuang, Baoding, and Gaobeidian have the highest SUHII changes in outlying growth
patches, while the edge and infill growth patches have their own high and low SUHII
changes, with the average SUHII changes being 0.534, 1.153, 0.360, and 1.861 higher than
the UGPs with the smallest SUHII changes in each city, respectively. Zhuozhou has a
unique change, with the largest change in SUHII in the edge expansion patches and the
smallest change in the enclave, mainly due to the land use change in the outlying growth
patches, which mostly consists of bare land and rural settlement land with a more obvious
heat island, so the growth is slower.



Sustainability 2022, 14, 14099 10 of 20Sustainability 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 
Figure 6. SUHII difference violin plot of urban expansion model (2010–2018): (a) Beijing; (b) Shijia-
zhuang; (c) Baoding; (d) Zhuozhou; (e) Gaobeidian. 

Table 3. SUHII difference statistics of urban expansion model. 

City 
Edge Expansion Infilling Outlying 

Median AVG SD Median AVG SD Median AVG SD 
Beijing 0.355 0.261 1.821 0.293 0.263 1.821 0.568 0.795 2.047 

Shijiazhuang −0.285 −0.337 1.899 −0.331 −0.360 1.888 0.618 0.793 2.325 
Baoding 0.775 0.864 2.196 0.784 0.887 2.115 0.891 1.232 1.806 

Zhuozhou −0.456 −0.219 2.069 −0.501 −0.209 2.133 −0.552 −0.289 2.704 
Gaobeidian −1.076 −1.082 1.633 −1.079 −1.079 1.598 0.850 0.782 1.689 

To represent the spatial relationship between UGPs and SUHII more intuitively, re-
gions with SUHII differences greater than zero were extracted and graded in terms of 
standard deviation [57]. Since there are differences in the size classes of each city, each city 
was graded separately to make the grading results more reasonable (Table 4). Then, the 
results of kernel density analysis of point of interest (POI) data and the results of the mass 
center analysis of built-up areas in 2010 were used to determine the city center points. Due 
to the different scales of cities, to ensure that the number of buffer zones is moderate for 
each city scale, this study established buffer zone sub-bands with a radius of 1 km and 
determined the area of three UGPs and SUHII sub-bands in each city within the buffer 
zone. 

Table 4. SUHII difference standard deviation level. 

Graded Strength Very Slow Warm-
ing Zone 

Slow Warming 
Zone 

Normal Warming 
Zone 

Rapid Warming 
Zone 

Very Rapid Warm-
ing Zone 

Heat island inten-
sity range 

SUHII < u − 1.5 std u − 1.5 std ≤ SUHII 
< u − 0.5 std 

u − 0.5 std ≤ SUHII 
< u + 0.5 std 

u + 0.5 std ≤ SUHII 
< u + 1.5 std 

SUHII ≥ u + 1.5 std 

Figure 7 shows the statistical results of the buffer area analysis between different 
UGPs and SUHII. Overall, there is synchronization between SUHII changes and urban 
growth, and the area of the SUHII differential grading area becomes larger as the area of 

Figure 6. SUHII difference violin plot of urban expansion model (2010–2018): (a) Beijing; (b) Shiji-
azhuang; (c) Baoding; (d) Zhuozhou; (e) Gaobeidian.

Table 3. SUHII difference statistics of urban expansion model.

City
Edge Expansion Infilling Outlying

Median AVG SD Median AVG SD Median AVG SD

Beijing 0.355 0.261 1.821 0.293 0.263 1.821 0.568 0.795 2.047
Shijiazhuang −0.285 −0.337 1.899 −0.331 −0.360 1.888 0.618 0.793 2.325

Baoding 0.775 0.864 2.196 0.784 0.887 2.115 0.891 1.232 1.806
Zhuozhou −0.456 −0.219 2.069 −0.501 −0.209 2.133 −0.552 −0.289 2.704
Gaobeidian −1.076 −1.082 1.633 −1.079 −1.079 1.598 0.850 0.782 1.689

In terms of the magnitude of change, the results of the standard deviation calculations
show that all cities have the largest outlying change and the smallest infilling change.

To represent the spatial relationship between UGPs and SUHII more intuitively, regions
with SUHII differences greater than zero were extracted and graded in terms of standard
deviation [57]. Since there are differences in the size classes of each city, each city was
graded separately to make the grading results more reasonable (Table 4). Then, the results
of kernel density analysis of point of interest (POI) data and the results of the mass center
analysis of built-up areas in 2010 were used to determine the city center points. Due to the
different scales of cities, to ensure that the number of buffer zones is moderate for each city
scale, this study established buffer zone sub-bands with a radius of 1 km and determined
the area of three UGPs and SUHII sub-bands in each city within the buffer zone.

Figure 7 shows the statistical results of the buffer area analysis between different UGPs
and SUHII. Overall, there is synchronization between SUHII changes and urban growth,
and the area of the SUHII differential grading area becomes larger as the area of urban
growth increases. In addition, there is an obvious circle structure in the urban growth
pattern, and the edge shows strong synchronization with each partition of SUHII at each
city scale and is more stable. With the gradual change in the urban growth pattern from
the center to the periphery, the area of the SUHII differential classification also shows a
large difference. Beijing’s SHUII differential grading curve shows the first extreme point
around the 52nd band, and this buffer zone has the largest infill area. With the gradual
increase in the edge area, the area of each SHUII partition rises rapidly and finally reaches
the highest point around the 45th band, where the edge area is the most, but there are also
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some infill patches. After that, the edge and infill areas show a fluctuating decreasing trend
along with the area of each SHUII partition. There is another small peak in the area curve
of each SHUII partition between the 24th and 28th bands, where the influence of edge and
infill disappears, and outlying becomes the main influence mode. Shijiazhuang also shows
the same situation as Beijing, where the infill area reaches its highest value in band 35 and
there is a small peak in the area of each SHUII partition. The edge area reaches its highest
value in band 32 and the area of each SHUII partition in this buffer zone reaches its highest
value except for the rapid warming zone and the very rapid warming zone. while near
band 28, the rapid warming zone and the very rapid warming zone reach their highest
values. The outlying area in this buffer zone reaches its maximum value and the edge area
remains high. Near band 22, the edge area reaches its second peak, and there is also a
peak period in the area of each SHUII partition. The peak area of both infill and edge in
Baoding is distributed near band 26, and the area of each SHUII subzone also reaches the
highest value, then the expansion area decreases, and the area of the SHUII subzone then
decreases rapidly. The area of outlying reaches the highest value near band 14, and the
area of each SHUII subzone also has a second peak, but the peak is smaller than the first
peak at this time. Zhuozhou and Gaobeidian have less infill and outlying area due to their
smaller urban size, and the edge type becomes the main influence mode for the growth of
or reduction in area in each SHUII zoning district.
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Table 4. SUHII difference standard deviation level.

Graded
Strength

Very Slow
Warming Zone

Slow Warming
Zone

Normal Warming
Zone

Rapid Warming
Zone

Very Rapid
Warming Zone

Heat island
intensity range

SUHII < u −
1.5 std

u − 1.5 std ≤ SUHII
< u − 0.5 std

u − 0.5 std ≤
SUHII < u + 0.5 std

u + 0.5 std ≤
SUHII < u + 1.5 std

SUHII ≥ u +
1.5 std

3.3. Growth Model Landscape Information and SUHII Relationships

There are large differences in the effects of different UGP landscape areas on the
changes in SUHII (Table 5). With the gradual reduction in city size, the significance
gradually decreases, and Zhuozhou and Gaobeidian show an insignificant performance for
all three UGP landscape areas. Each UGP landscape area shows a positive effect on SUHII.
The effect of edge expansion landscape area on SUHII changes decreases with the increase
in city size except for small cities, with 0.364, 0.648, and 1.698 for Beijing, Shijiazhuang, and
Baoding, respectively. The infilling and outlying performed less stably, and the Beijing and
Baoding outlying had the most significant effect on SUHII enhancement with correlation
coefficients of 1.537 and 3.679, respectively; the Shijiazhuang edge expansion had the
greatest effect on SUHII change with a correlation coefficient of 1.109.

Table 5. Regression analysis of landscape density and SUHII differences between urban expansion
models.

City Edge Expansion (R2) Infilling (R2) Outlying (R2)

Beijing 0.364 (0.230) *** 0.527 (0.200) *** 1.537 (0.191) ***
Shijiazhuang 0.648 (0.234) *** 1.109 (0.220) *** 0.347 (0.308) ***

Baoding 1.698 (0.162) *** 0.279 (0.106) * 3.679 (0.336) ***
Zhuozhou 0.492 (0.266) −2.680 (0.177) 2.927 (0.107)
Gaobeidian 0.056 (0.075) −3.783 (0.041) 3.936 (0.171)

Note: *** p < 0.01; * p < 0.1.

In terms of landscape pattern, the significance and correlation coefficients of the effect
of each UGP landscape separation on SUHII changes were small relative to the landscape
shape. In terms of the landscape pattern, the significance and correlation coefficients of
the effect of each UGP landscape separation on SUHII changes were small relative to the
landscape shape. The effect of landscape separation on SUHII was mostly negative, while
the landscape shape was mostly positive. The specific regression results are shown in
Table 6.

The effect of landscape separation on SUHII changes was not significant for any of the
urban-scale UGPs, mainly due to the large distances between sprawling patches, which
was corroborated by the spatial distribution of urban growth patches in this study. The
sprawling patches have less influence on each other, resulting in a larger influence of single
sprawling patches compared to multiple sprawling patches. In terms of landscape shape,
all exhibit a significant positive correlation except for small cities, which also indicates that
the UGP single-patch influence is stronger compared to the joint effect between patches.
The degree of influence of edge expansion and infilling landscape shapes on SUHII changes
becomes smaller with the gradual increase in urban scale, with correlation coefficients
of 4.832, 7.352, and 9.877 for Beijing, Shijiazhuang, and Baoding edge expansion and
3.891, 4.499, and 6.074 for infilling, respectively. The influence of the outlying growth
pattern landscape shape index on the change of SUHII is more unstable in each city; the
strongest in Baoding is 9.877 and the smallest in Shijiazhuang is 0.484, mainly because the
enclave growth patches in Baoding are more concentrated and larger in area, and their
shape index is also larger, which leads to more obvious warming and a greater increase in
SUHII. The edge expansion has a greater impact on the landscape shape than the other two
UGPs at each urban scale, which, in connection with the landscape area in the previous
section, suggests that the edge type remains the UGP with the greatest impact on SUHII
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changes. Both Zhuozhou and Gaobeidian have less significant landscape pattern effects.
Both Zhuozhou and Gaobeidian landscape patterns have less significant effects on SUHII,
due to the small size of the two cities and the fact that SUHII changes are more influenced
by the local background climate, leading to this phenomenon. Another reason is that
the small cities themselves have a smaller number of growth patches; the number of
urban growth patches in Zhuozhou and Gaobeidian is 238 and 118, respectively, while the
number of urban growth patches in Beijing, Shijiazhuang, and Baoding is 3950, 979, and
504, respectively, leading to a smaller overall sample size in the regression, and thus, the
smaller cities are less significant.

Table 6. Landscape patterns and SUHII regression analysis of urban expansion models at the patch
scale.

City UGP
Landscape Separation Landscape Shape

ENN (R2) PORX (R2) FRAC (R2) SHAPE (R2)

Beijing
Edga expansion −0.001 (0.222) 0.001 (0.224) *** 4.551 (0.252) *** 0.281 (0.249) ***

Infilling 0.001 (0.184) −0.001 (0.184) 3.632 (0.196) *** 0.259 (0.194) ***
Outlying −0.001 (0.171) * 0.002 (0.170) 3.949 (0.182) *** 0.341 (0.184) ***

Shijiazhuang
Edga expansion 0.001 (0.111) −0.001 (0.121) ** 6.955 (0.186) *** 0.397 (0.187) ***

Infilling −0.001 (0.172) −0.004 (0.181) ** 4.103 (0.189) *** 0.396 (0.193) ***
Outlying −0.001 (0.239) −0.002 (0.242) 0.418 (0.237) 0.066 (0.238)

Baoding
Edga expansion 0.001 (0.066) −0.001 (0.070) 9.353 (0.171) *** 0.524 (0.156) ***

Infilling 0.001 (0.287) 0.007 (0.305) ** 5.368 (0.305) ** 0.706 (0.327) ***
Outlying 0.001 (0.066) −0.002 (0.069) 9.353 (0.171) *** 0.524 (0.156) ***

Zhuozhou
Edga expansion −0.001 (0.240) −0.001 (0.226) 5.756 (0.258) ** 0.394 (0.260) **

Infilling 0.001 (0.163) *** −0.013 (0.069) −0.119 (0.066) 0.090 (0.066)
Outlying 0.001 (0.119) 0.017 (0.134) 2.695 (0.118) −0.363 (0.127)

Gaobeidian
Edga expansion −0.002 (0.110) 0.001 (0.108) 1.858 (0.114) 0.219 (0.128)

Infilling −0.001 (0.083) −0.015 (0.079) −1.256 (0.073) −0.316 (0.078)
Outlying −0.001 (0.133) −0.001 (0.021) 6.687 (0.112) 0.204 (0.109)

Note: *** p < 0.01; ** p < 0.05; * p < 0.1.

3.4. Scale Effect

Scale effects may influence the relationship between factors and SUHII changes [58–60]. In
this study, to investigate the relationship between UGP landscape information and SUHII
changes at different scales, the study units were set to 300 m × 300 m (10 × 10 pixels),
900 m × 900 m (30 × 30 pixels), and 1500 m × 1500 m (50 × 50 pixels) scales.

The landscape density (the result of dividing the total area of a single UGP patch in
the grid by the total area of the grid) was chosen to replace the landscape area indicator to
facilitate the exploration of the relationship between the change in landscape area and the
difference in SUHII for the three expansion patterns at different grid scales. The regression
results of both are shown in Table 7.

Overall, it is shown that the regression R2 and correlation coefficient of each UGP
landscape density and SUHII difference gradually become smaller as the scale increases,
which indicates that the explanatory power and the degree of influence become smaller.
This indicates that, despite the different city scales, the UGP has a stronger effect on SUHII
changes at the 300 m scale in general. Beijing’s outlying landscape density has the largest
coefficient of correlation with SUHII difference, with coefficients of 17.33, 11.58, and 8.50 at
each scale (300 m, 900 m, and 1500 m), followed by edge expansion, with the smallest effect
of infilling and low significance at the 900 m and 1500 m scales. Shijiazhuang and Baoding
edge expansion have the largest effect on the SUHII difference at all scales; Shijiazhuang
has the second largest effect on outlying in general, but infilling has a larger effect than
outlying at the 300 m scale, while Baoding has the second largest effect on infilling, and
outlying is less significant at all scales. Zhuozhou and Gaobeidian were less significant
overall, with only the edge expansion performing more significantly at all scales and the
infilling and outlying not significant at all scales. In terms of urban expansion patterns, in
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general, except for small cities, the edge expansion is more significant than other UGPs
at all scales, and the influence of the edge expansion diminishes as the city expands. In
contrast, small cities are only significant at the 300 m scale, indicating that the edge growth
of small cities is generally smaller, leading to its smaller impact on SUHII at large scales. In
addition, the significance of outlying and infilling is greater at the 300 m scale compared to
900 m and 1500 m for all scales except small cities, indicating that outlying and infilling
have a greater impact on small scales; for the trend of change, infilling shows an unstable
change with increases in the city scale, while the impact of outlying gradually increases.

Table 7. Urban landscape density and SUHII regression analysis of different scales.

City Scale Expansion
Mode Coefficient (R2) p-Value

Beijing 300 Edge expansion 11.85 (0.5316) 0.000 ***
Infilling 9.243 (0.5002) 0.000 ***
Outlying 17.33 (0.4857) 0.000 ***

900 Edge expansion 3.92 (0.1868) 0.000 ***
Infilling 1.26 (0.2931) 0.069 *
Outlying 11.58 (0.2292) 0.000 ***

1500 Edge expansion 2.69 (0.1652) 0.000 ***
Infilling 0.63 (0.1483) 0.371
Outlying 8.50 (0.2200) 0.000 ***

Shijiazhuang 300 Edge expansion 17.16 (0.5309) 0.000 ***
Infilling 12.33 (0.4418) 0.000 ***
Outlying 8.54 (0.5086) 0.019 **

900 Edge expansion 4.92 (0.2122) 0.000 ***
Infilling −1.12 (0.2292) 0.584
Outlying 4.23 (0.2994) 0.041 **

1500 Edge expansion 2.75 (0.2568) 0.000 ***
Infilling −6.74 (0.1430) 0.001 ***
Outlying 5.05 (0.2479) 0.006 ***

Baoding 300 Edge expansion 23.33 (0.4609) 0.000 ***
Infilling 13.73 (0.4946) 0.003 ***
Outlying 0.96 (0.0731) 0.847

900 Edge expansion 6.72 (0.2626) 0.000 ***
Infilling 6.00 (0.2787) 0.028 **
Outlying 1.29 (0.1583) 0.156

1500 Edge expansion 4.54 (0.2073) 0.001 ***
Infilling 3.67 (0.2730) 0.111
Outlying 2.10 (0.0751) 0.020 **

Zhuozhou 300 Edge expansion 17.73 (0.2328) 0.000 ***
Infilling 5.62 (0.2701) 0.550
Outlying −6.42 (0.5464) 0.523

900 Edge expansion −0.07 (0.3680) 0.969
Infilling −15.69 (0.0888) 0.070 *
Outlying −7.99 (0.5944) 0.133

1500 Edge expansion 1.21 (0.2195) 0.320
Infilling −27.79 (0.3086) 0.000 ***
Outlying −6.21 (0.1203) 0.270

Gaobeidian 300 Edge expansion 17.34 (0.5095) 0.000 ***
Infilling −14.54 (0.4441) 0.066 *
Outlying 12.55 (0.4409) 0.252

900 Edge expansion 1.78 (0.1471) 0.431
Infilling −21.47 (0.1996) 0.004 ***
Outlying 1.75 (0.0533) 0.852

1500 Edge expansion 0.81 (0.0240) 0.604
Infilling −22.17 (0.4376) 0.000 ***
Outlying 3.59 (0.1544) 0.436

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.



Sustainability 2022, 14, 14099 15 of 20

The landscape pattern indices at the grid scale were selected against the patch-scale
landscape pattern indicators in the previous paper, representing the landscape area ratio
(LPI), landscape fragmentation (PD, DIVISION, AI), and landscape shape (FRAC_MN,
SHAPE_MN) of UGP patches.

The regression results of the difference between each UGP landscape pattern and
SUHII are shown in Figure 8. In general, the significance and R2 values show the same
trend as the landscape density and become progressively lower with increases in city size,
indicating that SUHII in megacities is more strongly influenced by the landscape pattern
compared to smaller cities. Except for small cities, the significance of the three UGPs on
the 300 m scale is significantly stronger than the 900 m and 1500 m scale in other scale
cities, the landscape separation increases in significance compared to the patch scale, and
the landscape shape becomes a negative influence. The effects of all three UGP landscape
patterns on SUHII changes in small cities were not significant, indicating that changes in
landscape patterns of growth patches during urban growth have little effect on SUHII.
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The edge expansion landscape pattern decreases in significance and R2 values as
the city size and scale increase, and the landscape area ratio is most significant at the
300 m scale, so it becomes more important to explore the differences between city scales
discussed at the 300 m scale. The edge expansion landscape area ratio had the strongest
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effect on SUHII changes in Beijing and the weakest effect in Shijiazhuang, with correlation
coefficients of 0.010, 0.014, and 0.018 for Beijing, Shijiazhuang, and Baoding, respectively.
The effect of landscape fragmentation on the change of SUHII diminishes as the city size
becomes larger. Beijing’s edge-like landscape separation has the least impact compared to
other cities; it has a correlation coefficient of −0.886; Baoding has the most impact with a
correlation coefficient of −1.913. The effect of the edge growth landscape shape on SUHII
is only significant in Beijing and Shijiazhuang, which are larger cities, but not in the rest of
the cities, and the effect is smaller in Beijing compared to Shijiazhuang, with correlation
coefficients of−9.706 and−12.518, respectively. The effect of the infilling landscape pattern
on SUHII change was significant only for megacities and large cities, with low regularity
of explanatory power differences. The correlation coefficients of the landscape area ratio
in Beijing, Shijiazhuang, and Baoding at the 300 m scale were 0.008, 0.013, and 0.011,
respectively. The effect of landscape separation on SUHII changes was more significant in
Beijing, with a negative correlation and a correlation coefficient of −0.684. The influence of
landscape shape on SUHII changes was less significant in all city sizes and scales. The effect
of the outlying landscape pattern on SUHII change only showed partial index significance
in Beijing and low significance in the rest of the cities. The effect of Beijing’s outlying
landscape area ratio on SUHII decreases in explanatory power as the scale becomes larger,
with a correlation coefficient of 0.012 at the 300 m scale. Landscape separation is more
significant at the 300 m scale than at other scales, with a correlation coefficient of −1.589.
The effect of landscape shape on SUHII changes is not significant at all scales.

Overall, the explanatory power of each landscape pattern of the three UGPs in Beijing
is greater than that of the other cities at the 300 m scale, while at the 900 m and 1500 m
scales, it is Baoding and Shijiazhuang that have greater explanatory power, indicating that
there is a significant scale effect on the influence of the three UGP landscape patterns on
SUHII changes in different cities. The edge expansion landscape pattern has a significantly
stronger effect on SUHII changes than the other two UGPs, while the landscape area ratio
and landscape fragmentation at the grid scale have stronger effects compared to landscape
shape.

At multiple scales, edge landscape information is the most influential on SUHII
changes. The larger the grid scale edge landscape information scale, the smaller the R2 and
correlation coefficient, which indicates that 300 m scale edge landscape information has the
strongest influence on SUHII changes. The infill landscape area varies greatly among cities
at the patch scale, but its landscape pattern gradually becomes less influential with the
expansion of the city scale; at the grid scale, the influence of landscape density gradually
decreases with the expansion of the city scale, and the landscape pattern becomes stronger
in significance, with the greatest influence at the 300 m scale on the scale difference. The
influence of outlying landscape information on SUHII changes at the patch scale is not
obvious among cities; however, the influence of landscape density on SUHII changes at
the grid scale gradually increases with the expansion of the city scale, and the landscape
pattern is strong at the 300 m scale in megacities and low in other cities, indicating that
the influence of outlying landscape pattern on SUHII changes in megacities is stronger.
The influence of landscape area is stronger at all scales, indicating the need to control
the single patch area at both patch and grid scales. Landscape fragmentation is stronger
at the grid scale than at the patch scale, suggesting that the joint effect between patches
should be emphasized at the grid scale. The influence of landscape shape is stronger at the
patch scale compared to the grid scale, and the correlation is the opposite, with a positive
influence at the patch scale and a negative influence at the grid scale. The main reason for
this phenomenon is because, under the patch scale, the roads are mostly built out first when
the functional areas are laid out, and then the functional areas are laid out, which leads
to a complex shape index, and the roads warm more obviously (Hendel et al., 2018) [61],
presenting a positive correlation. With the small-scale grid, because it is cut by the grid, the
more complex the landscape shape is, the less its SUHII increases, so it presents a negative
correlation.



Sustainability 2022, 14, 14099 17 of 20

In summary, the process of urban growth at all scales can mitigate the enhanced
urban heat island effect by controlling the landscape fragmentation between urban growth
patches at the 300 m scale. At the patch scale, we should try to ensure the simultaneous
construction of urban roads and urban functional areas to reduce the complexity of the
patch shape. In the UGP selection, megacities should mainly use the urban stock of land
for intensive development for infilling expansion. Large and medium-sized cities should
gradually reduce the proportion of edge expansion, increase the proportion of infilling
expansion, and pay attention to the influence of landscape patterns in the growth process.
As for small cities, since they are in the early stage of urban development, edge expansion
should be the main growth type in the future, but the growth process should limit the area
of a single patch and gradually address the influence of landscape patterns.

4. Discussion and Conclusions

In this study, the relationship between UGP landscape information and SUHII changes
in cities of different scales in the Beijing–Tianjin–Hebei urban agglomeration was inves-
tigated by controlling for other factors such as climate and topography. It was found
that the relationship between different UGP landscape information and SUHII changes
differed significantly among cities of various sizes. The areas of increased SUHII showed a
high spatial coincidence with urban growth patches. The edge and outlying exhibited a
stronger warming effect. In the landscape information correlation analysis, it was found
that the patch-scale edge type was the main UGP for the increase in SUHII, and its positive
effects on landscape density and landscape pattern on SUHII were larger relative to the
other two UGPs in cities of all scales. At the grid scale, the 300 m scale UGP landscape
information was found to have a stronger effect on SUHII changes, and the significance
became stronger as the city scale increased. In addition, the landscape shape correlation
is opposite to the patch scale, and the landscape area ratio at the grid scale has a positive
effect on SUHII, while the landscape separation and shape index has a negative effect,
indicating the existence of scale effects. The research perspective and analytical framework
proposed in this study may provide new ideas for future studies related to urban growth
and the thermal environment and contribute to the understanding of the complexity of
urban climate.

This study also has the following limitations that could be addressed in future studies.
(1) Due to the limitation of image data resolution and processing accuracy, this study

did not exclude a very small number of urban villages within the city, which affects
urban renewal and partial infill plaque identification. Subsequent research can use higher-
resolution remote sensing images and more accurate identification methods to refine the
classification of the urban surface to improve UGP identification.

(2) City size has a large impact on the SUHI and involves many factors. In this study,
due to the limitations of empirical research and the need to control for climate, topography,
and overall urban morphology, the sample selection for city size was small. In future
studies, high-precision algorithms can be used to simulate different city sizes under the
same natural conditions and overall urban morphology in order to provide a more in-depth
understanding of the relationship between the three UGPs and SUHII changes for different
city sizes while controlling for other factors.
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