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Abstract: Several authors have demonstrated improvements in the mechanical performance of
asphalt mixes by including the use of fibers. However, it has also been reported that environmental
assessments must address fiber use in asphalt mixes from the point of view of sustainability. In
this study, a life cycle assessment is used to compare the use of four different fibers (fiberglass,
polyester fiber, aramid fiber, and cellulose fiber) commonly used in hot mix asphalt (HMA) and stone
mastic asphalt (SMA) mixes. Additionally, the use of textile fibers from end-of-life tires (FiTyre) is
included in the comparison. The results show that in the five selected impact categories (climate
change, terrestrial acidification, human toxicity, particulate matter emissions, and the exhaustion of
nonrenewable fossil fuels), the use of FiTyre and cellulose fibers is more advantageous than existing
traditional fibers (fiberglass, polyester fiber, and aramid fiber).

Keywords: life cycle assessment; asphalt mixes; textile fibers from end-of-life tires (ELTs);
fiber-reinforced asphalt; environmental impacts; sustainability impact categories

1. Introduction

Five aspects are considered fundamental for the development of sustainable asphalt
mixes: (i) increased durability, (ii) increased moisture damage resistance, (iii) increased
cracking resistance at low temperatures, (iv) reduction in the use of asphalt binders and vir-
gin materials, and (v) reduced energy demand and greenhouse gas (GHG) emissions [1–4].
Techniques that have been developed have focused on: (i) reducing the mix temperature
and (ii) accentuating the asphalt’s binder foaming process to improve the aggregate coating
using additives. To reduce the use of virgin materials, the use of recycled asphalt pavement
(RAP) is the main suggestion. On the other hand, to improve the mechanical resistance
of hot asphalt mixes (HMAs) and extend their durability, the addition of various types of
fibers (e.g., polyester, aramid) [5,6] or the use of stone mastic asphalt (SMA) mixes that
have special characteristics in their mineral structure (where additives are added to allow
them to retain the asphalt binder in their interior) have been tested.

In their quantification of environmental loads of hot mix asphalts (HMAs), Mazumder
et al. (2016) demonstrated that the manufacturing stage of the mix is what is mainly
responsible for human toxicity (97% in water and 72% in air), exceeding the other stages
(extraction of raw materials, transport, and use) by more than threefold [7]. This indicates
that in terms of reducing environmental loads that affect human toxicity, it is essential to
reduce the impacts in the manufacturing stage of asphalt mixes.
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With respect to the manufacturing stage of asphalt mixes, Saedi and Seref (2020)
determined that the addition of fiber-reinforced polymer (FRP) or Viatop Premium in
SMA mixes reduces sensitivity to high temperatures and the tendency to crack while also
increasing the load distribution capacity and fatigue life [8]. Similar results have been
reported in the work by Eskandarsefat et al. (2019), who added rubber with asphalt cements
modified with polymers or modified composite fibers to SMA mixes (with and without
RAP) [9]. However, an improvement in the mechanical behavior of asphalt mixes does
not result in reduced environmental loads. Wang et al. (2018) added polymers to asphalt
mixes and reported that they improved the mechanical performance of the pavements at
high temperatures but that they were also associated with high energy consumption and
GHG emissions [10]. From this, it is concluded that in addition to the usual mechanical
performance assessments, it is necessary to quantify the environmental loads when adding
fibers to the asphalt mixes. This is especially relevant if the mix production is being
addressed from the sustainability perspective.

Xin et al. (2019), using a bending test at low temperatures and an analysis of the strain
energy density due to bending, demonstrated that the use of a modifier of shredded rubber
and polymer fibers improves cracking resistance (2018) [11]. Sofi (2018) has shown that the
use of shredded rubber, extracted from scrap tires, improves flexural strength in other types
of mixes for infrastructure and also contributes to solving the global ecological problem of
how to eliminate end-of-life tires (ELTs) [12].

Tires are composed of rubber, metallic fibers, and textile fibers. In most studies
in which scrap tires are reused, the reuse is reported to be mainly of the rubber and
metallic fibers. Reuse of the textile fibers has scarcely been reported. Additionally, most
of the studies in which fibers or rubber are used are mainly focused on the mechanical
improvements offered by the use of fibers in asphalt mixtures [13–15]. However, it is
necessary to determine if the advantages in terms of mechanical resistance outweigh the
disadvantages in environmental terms of having to produce a new additive [16]. In this
sense, this study proposes to approach this niche, not covered to date, by comparing the
environmental loads that derive from the use of different types of fibers in asphalt mixtures.
Additionally, the environmental loads of the use of textile fibers of ELT are proposed and
reported since this sub-residue has not been tested until now.

The environmental loads generated due to the incorporation of textile fibers from
ELT (FiTyre) in HMA and SMA mixes are quantified using a life cycle assessment (LCA).
Additionally, the results of the environmental loads obtained for the FiTyre are reported and
compared with the use of other commercial fibers already reported in other studies. In the
case of conventional HMA mixes, their comparison is made with fiberglass, polyester fiber,
and aramid fiber. For SMA, the comparison is made with pelletized cellulose fiber premixed
with asphalt. The results are compared using various environmental indicators (e.g., climate
change, use of nonrenewable resources, water consumption, terrestrial acidification) for
an objective comparison of the environmental loads of the different fibers. The LCA was
done using Simapro software as it has a database in which the environmental loads of most
fibers are reported for comparison; it can also model new processes/products, such as the
use of FiTyre.

2. Materials and Methods

Using the LCA, it is possible to analyze and compare different environmental impacts
during the life cycle of the products or services that are being compared and analyzed.
The methodology used in this study to quantify the effects of the use of different fibers
in asphalt mixes on the environment is based on an LCA established in ISO 14040-14044.
According to ISO 14040-14044, an LCA must contain four main stages, which appear next
and are described in detail in the following sub-sections.

Stage 1: Definition of scope and objective: In this stage, the limits of the system to be
analyzed are identified, and the objective of the analysis is made clear. In this stage, the
functional unit to be used is also determined.
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Stage 2: Inventory analysis: Here, the processes and unit resources involved in the
development of a product or service are identified. Then, incoming and outgoing flows are
constructed for each process identified.

Stage 3: Impact assessment of the life cycle: In this stage, an assessment methodol-
ogy is selected (e.g., Impact 2002+, EF Method, ReCiPe, or Eco Indicator), which enables
the conversion of the incoming–outgoing flows of each process in environmental impact
categories (e.g., climate change, terrestrial acidification, human toxicity, or exhaustion
of nonrenewable resources). According to the methodology used, these categories can
also be grouped into several characterization and weight factors (human health, renew-
able resources, and natural surroundings) that provide a more global understanding
of the impacts.

Stage 4: Interpretation of results: This last stage is proposed in ISO 14043 for the
review, analysis, and interpretation of the results obtained in Stage 3. Here, it is expected
that improvement strategies will be developed for the product or service.

2.1. Definition of Scope and Objective

The objective of this study focuses on the calculation of the environmental impacts
resulting from the use of fibers in hot mix asphalt (HMA) and stone mastic asphalt
(SMA) mixes.

For HMA, a comparison is made between the use of FiTyre fibers (HMA 1), fiberglass
(HMA 2), polyester fibers (HMA 3), and aramid fibers (HMA 4). For SMA, a comparison is
made between the use of pelletized cellulose fiber premixed with asphalt (PCF) and FiTyre
in four different proportions (SMA 1 to SMA 4). In the comparison of the fibers used in the
HMA mixture, all the fibers evaluated in the study improved the asphalt mix performance
properties [17–20]. In the comparison between the fibers used in the SMA mixture, the
focus was to replace the commercial cellulose pellet PCF with the FiTyre additive, the
function of which is to retain the binder in the mix matrix without affecting the mechanical
properties of the mixes [21].

As a functional unit for the comparison of impacts, the amount of fibers (measured in
mass) needed to produce 1 ton of asphalt mix is considered. The optimal amount of each
fiber type needed is detailed in the following sub-chapter.

In this study, it is established that the limits of the system in the incoming–outgoing
flows of each process will be delimited from the extraction of raw materials for fiber
production up to their use in the asphalt mixes. In this sense, the environmental impacts
will be quantified from the reception of the raw materials up to the production of fibers
suitable for the preparation of the asphalt mixes, including the transportation-related
environmental impacts.

2.2. Inventory Analysis

Both the incoming flows in the processes and the unit resources that are the outgoing
flows involved in the development of fiberglass, polyester fiber, and aramid fiber are
already identified in the SimaPro database [22]. Therefore, for this study, the inventory
analysis in the SimpPro database for fiberglass (Figure 1), polyester fiber, and aramid fiber
was used. The manufacture of cellulose-based pellets (PCFs) is also available in the SimaPro
database. However, it is not equivalent to the pellets used in the asphalt mixes. Therefore,
to emulate the manufacture of a unit of PCF mass, 66% cellulose fiber (extracted from pines)
and 34% bitumen were used as input raw materials, together with the existing process for
pellet manufacture [23].
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begins with the mixing of disaggregated textile fibers from ELT with the diluted asphalt 
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mix are dried to eliminate the water to be pelletized. Finally, the pellets are mixed with 
rubber powder at a weight ratio of 20:1. The final weight composition of the FiTyre addi-
tive is textile fibers composed of ELT 58%, asphalt binder 37%, and rubber powder 5% 
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The inputs and outputs were entered in SimaPro to quantify the environmental loads 
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The environmental loads of each fiber were quantified from the functional unit, i.e., 
from the number of fibers in weight needed to manufacture 1 ton of mix. Different 
amounts of fibers were used according to the type of mix (Table 1). For example, in HMA 
1, 1007 g of FiTyre was used for every ton of asphalt mix, whereas for HMA, 553 g of 
aramid fiber was used per ton of mix. The amount of fibers to add to each type of mix 

Figure 1. Diagram of processes and raw materials involved in the manufacture of fiberglass. Extracted
from SimaPro.

On the other hand, as there is no inventory analysis for FiTyre, a flow chart was
developed, where all the raw materials and processes involved in the preparation of FiTyre
for use in asphalt mixes are identified (Figure 2). The manufacturing process of FiTyre
begins with the mixing of disaggregated textile fibers from ELT with the diluted asphalt
emulsion at a weight ratio of 1:2. Then, the textile fibers from the ELT–asphalt emulsion
mix are dried to eliminate the water to be pelletized. Finally, the pellets are mixed with
rubber powder at a weight ratio of 20:1. The final weight composition of the FiTyre additive
is textile fibers composed of ELT 58%, asphalt binder 37%, and rubber powder 5% [20].
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Figure 2. Process of manufacture of the fiber pellet from end-of-life tires (FiTyre) to be added to the
asphalt mixes. Based on [21].

The inputs and outputs were entered in SimaPro to quantify the environmental loads
associated with a unit of mass (1000 g).

The environmental loads of each fiber were quantified from the functional unit, i.e.,
from the number of fibers in weight needed to manufacture 1 ton of mix. Different amounts
of fibers were used according to the type of mix (Table 1). For example, in HMA 1, 1007 g
of FiTyre was used for every ton of asphalt mix, whereas for HMA, 553 g of aramid fiber
was used per ton of mix. The amount of fibers to add to each type of mix comes from
previous studies, where it has been demonstrated that adding these amounts provides the
best mechanical performance in the mixes.
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Table 1. Amount of optimal fiber to add to HMA and SMA asphalt mixes.

Type of Mix FiTyre
(g/ton)

Fiberglass
(g/ton)

Polyester
Fiber (g/ton)

Aramid
Fiber (g/ton)

PCF
(g/ton)

HMA 1 1007 0 0 0 0
HMA 2 0 1007 0 0 0
HMA 3 0 0 2014 0
HMA 4 0 0 0 553 0
SMA 1 5000 0 0 0 0
SMA 2 3750 0 0 0 1250
SMA 3 2500 0 0 0 2500
SMA 4 0 0 0 0 5000

In a study to determine cracking resistance in HMA containing fiberglass, Ziari et al.
(2020) demonstrated that by adding fiberglass at 2.3% above the binder weight (equiva-
lent to 0.12% above the mix weight), significant improvements in cracking resistance are
obtained [17]. On the other hand, Mohammed et al. (2020) showed that adding up to 2%
more fiberglass achieved the maximum increase in stiffness of the asphalt mixes [5]. For
this reason, in this study, the addition of 2% more fiberglass in relation to the binder weight
was considered to have a similar performance to the other fibers.

With respect to polyester fibers, Hong et al. (2020) demonstrated that adding 1% of
polyester fibers (measured in relation to the binder weight) makes it possible to improve
cracking resistance at low temperatures of the asphalt mix (measured from 0 to −20 ◦C) [18].
By contrast, Wu et al. (2008) reported that adding 6% (in relation to the binder weight)
substantially improves the fatigue strength compared to a control asphalt mixture [24].
Quian et al. (2014) tested a greater range of polyester fiber addition in asphalt mixes
(between 0% and 8.3% fiber) and determined that by adding 4% of polyester fiber, it is
possible to obtain an increase of up to 6% in resistance to tensile stress failure and around
+3 MPa in tensile strength [25]. Due to the greater scope of measurements and also the
intermediate value reported in the study by Quian et al., a 4% addition of polyester fiber is
considered optimal.

The use of aramid to improve mainly cracking resistance and abrasion has also been
reported in previous studies. For example, Gupta et al. (2021) demonstrated that the
addition of 1.1% aramid fiber with polyurethane coating in a length of 12 mm improves
the performance of pavements in terms of fracture energy [19]. Klinsky et al. (2018), on
the other hand, determined that the tensile strength values were approximately 20% more
when fibers were added to HMA at a rate of 0.5 kg per ton of mix (equivalent to 1.06% in
relation to the mass of the binder) [26]. Gupta et al. (2021) demonstrated that by adding
1.1% aramid fibers (measured in relation to the weight of the binder), it is possible to
obtain improvements in the abrasion resistance of asphalt mixes [27]. From these studies,
it is therefore shown that by adding 1.1% aramid fibers to the asphalt mixes, the benefits
of mechanical resistance are achieved in asphalt mixtures. Therefore, in this study, we
consider the same percentage of fiber (1.1% measured in relation to the mass of the binder).

Finally, in the case of pelletized cellulose fibers premixed with asphalt (PCF), the
dosage recommended in an SMA design developed by a partner company of the Fondef
project was used as a reference; it fulfills the established Chilean specifications in the
Highways Manual. In other words, 0.5% PCF was considered in relation to the weight of
the aggregate.

2.3. Stage 3, Impact Assessment of the Life Cycle

To evaluate the environmental impacts in SimaPro, the EcoInvent v3 database was
used exclusively for materials, transportation, and processes since the database contains all
the fibers compared in this study. Additionally, using the same database, it was possible
to model the PCF and FiTyre in SimaPro (Figure 3). It is also possible in SimaPro to select
an assessment methodology (e.g., Impact 2002+, EF Method, ReCiPe, or Eco Indicator),
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which translates the incoming–outgoing flows of each process into environmental impact
categories (e.g., climate change, terrestrial acidification, human toxicity, or exhaustion of
nonrenewable resources).
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In this study, the ReCiPe impact assessment method was used because it has a greater
number of midpoint categories, and these can be grouped into three endpoint categories:
damage to human health, damage to ecosystem diversity, and damage to resource avail-
ability, thus obtaining a more global assessment of the environmental impacts.

3. Results

The ReCiPe methodology also enables assessments considering up to 18 midpoint
impact categories. The results obtained show that there are impact categories where greater
environmental impacts are not recorded among the different fiber types. Therefore, only
the results of the impact categories that have significant environmental impacts (climate
change and terrestrial acidification) and that affect human health (human toxicity and par-
ticulate matter emissions) and the exhaustion of nonrenewable fossil resources are shown
and analyzed.

3.1. Results for the Use of Fibers in Hot Mix Asphalts (HMAs)

In the climate change category (also known as global warming), the impact of anthro-
pogenic emissions that exacerbate the greenhouse effect is quantified, i.e., the increase in
the capture and retention of thermal radiation by the atmosphere, which causes an increase
in the average temperature of the Earth. The main gases in the atmosphere associated with
this phenomenon are carbon dioxide (CO2), methane, water vapor, nitrous oxide (N2O),
and chlorofluorocarbons (CFCs). The emission of these gases is principally due to the
combustion of fossil fuels, and it is quantified in relation to carbon dioxide using the unit
CO2-eq. In this impact category, the use of aramid and polyester fibers is associated with
the highest CO2-eq emission (Figure 4). This is due to the fact that the production of both
fibers requires elaborate energy-consuming processes and raw material from petroleum.
For FiTyre, the lowest CO2-eq emissions were identified (1.61 kg), which are associated
mainly with the use of bitumen for the manufacture of the emulsion with which the ELT
fibers are pelletized.
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The terrestrial acidification category is associated with soil acidity due to the depo-
sition of sulfates, nitrates, or phosphates. The high acidification in soils prevents plant
growth, harming agriculture and food production. In Figure 5, it is noted that the small-
est environmental load is generated by FiTyre, which is up to 3.4 times smaller than the
terrestrial acidification caused by polyester use.
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In human ecotoxicity, the concentrations of substances that can have deleterious effects
on human beings are measured. Human ecotoxicity is measured in 1,4 dichlorobenzene
(DB). Exposure to 1,4 dichlorobenzene generates slight discomfort, such as a burning
sensation in the eyes or an itchy nose. However, prolonged exposure to this pollutant
can cause severe damage to the nervous system (weakness, tremors, and numbness of the
extremities). In this category, major emissions of 1,4 dichlorobenzene are due to the use
of fiberglass and aramid fibers (Figure 6). The use of these fibers generates, on average,
4.8 times more 1,4 DB eq than the use of FiTyre.

Fine particulate matter <10 (PM10), due to its small size (10 µm), easily enters the
respiratory system, causing cardiorespiratory diseases, and prolonged exposure can cause
cancer. This category is measured in Kg of PM10 per equivalent unit. The results shown
in Figure 7 indicate that the greatest PM10 emissions derive from the use of polyester
fibers and fiberglass. It is worth noting in this case that the PM10 emissions for FiTyre are
2.5 times less than that due to polyester use and 1.5 times less than aramid fiber.
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The exhaustion of fossil resources category is especially relevant since nonrenewable
finite resources are also being exhausted, causing supply difficulties and environmental
pollution. In this category, the greatest impact comes from aramid fiber use, followed by
polyester and fiberglass. Compared to the use of FiTyre, these fibers have environmental
loads in this category of more than tenfold (Figure 8).
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3.2. Results for the Use of Fibers in Stone Mastic Asphalts (SMAs)

In the climate change and terrestrial acidification categories (Figure 9), the same
pattern is noted: the greater the use of FiTyre, the lower the pollutants emissions. For
example, in the climate change category, when only FiTyre (SMA 1) is used, there is 4.5 kg
CO2-eq less than the variant in which only PCF is used (SMA 4). In the case of terrestrial
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acidification (Figure 10), the use of FiTyre reduces SO2 emissions into the atmosphere by
35% compared to PCF use. The greatest environmental load contribution in both PCF
and Fityre is due to the use of bitumen for its production. Based on the Simapro network
diagram, 65% of the soil-acidifying components come from the use of bitumen for PCF,
with 73% for FiTyre. The remaining environmental loads, in a smaller proportion, are due
to the use of cellulose fibers for the PCF and the process involved in producing the pellets
for FiTyre.
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In the human toxicity category, it is observed that using FiTyre can reduce 1,4DB-eq
emissions by up to threefold compared to the exclusive use of PCF (Figure 11). The same
pattern is seen in the PM10 emissions, where it is recorded that the emissions due to PCF
use are 31% greater than the use of FiTyre (Figure 12). As in the previous comparison, it is
deduced from the Simapro network diagram that the greatest impact in the human toxicity
category for both fibers is due mainly to the use of bitumen for pelletizing.
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In Figure 13, as in the previous figures of this sub-chapter, a slight linear difference is
noted between the use of FiTyre and PCF. This is due, in principle, to the linear dosages
used for SMA 1 to SMA 4 (Table 1). In the particular case of the impacts recorded in the
exhaustion of fossil resources category, the difference between the use of PCF and FiTyre
(26%) is due to the manufacturing process for the pellets and the raw material for the
fibers (cellulose fibers and tire fibers). In the case of PCF, bitumen provides 85% of the
environmental loads in this category.

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 14 
 

5.00 kg FiTyre 
0.00 kg FCP

3.75 kg FiTyre 
2.50 kg FCP

2.50 kg FiTyre 
2.50 kg FCP

0.00 kg FiTyre 
5.00 kg FCP

D
B 

eq
  (

kg
/u

eq
)

0.0007

0.0014

0.0017

0.0027

SMA1 SMA 2 SMA 3 SMA 4
0.0005

0.0000

0.0010

0.0015

0.0020

0.0025

0.0030

 
Figure 11. Human toxicity impact category for SMA using the ReCiPe midpoint (H) method 
(V1.11/Europe ReCiPe H). 

5.00 kg FiTyre 
0.00 kg FCP

3.75 kg FiTyre 
2.50 kg FCP

2.50 kg FiTyre 
2.50 kg FCP

0.00 kg FiTyre 
5.00 kg FCP

M
P

10
 (k

g/
ue

q)

0.017

0.022
0.025

0.031

SMA1 SMA 2 SMA 3 SMA 4

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

 
Figure 12. Particulate matter emissions impact category for SMA using the ReCiPe midpoint (H) 
method (V1.11/Europe ReCiPe H). 

In Figure 13, as in the previous figures of this sub-chapter, a slight linear difference 
is noted between the use of FiTyre and PCF. This is due, in principle, to the linear dosages 
used for SMA 1 to SMA 4 (Table 1). In the particular case of the impacts recorded in the 
exhaustion of fossil resources category, the difference between the use of PCF and FiTyre 
(26%) is due to the manufacturing process for the pellets and the raw material for the 
fibers (cellulose fibers and tire fibers). In the case of PCF, bitumen provides 85% of the 
environmental loads in this category. 

5.00 kg FiTyre 
0.00 kg FCP

3.75 kg FiTyre 
2.50 kg FCP

2.50 kg FiTyre 
2.50 kg FCP

0.00 kg FiTyre 
5.00 kg FCP

Fo
ss

il 
de

pl
et

io
n 

(k
g/

ue
q)

0.10
0.11

0.12

0.14

SMA1 SMA 2 SMA 3 SMA 4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
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4. Discussion

Generally, the results show that in all the categories considered for the comparison,
the environmental loads are much smaller when FiTyre is used. This is especially evident in
SMA mixes, where there is a linear difference in direct proportion to the use of PCF and/or
FiTyre. These results were foreseeable mainly because, in all the fibers (except FiTyre),
virgin raw materials are used, and these are associated with manufacturing processes in
which there are emissions of pollutants into the environment. By contrast, in FiTyre, an
unused waste material is now being reused. In the modeling of FiTyre in Simapro, there
are greater environmental loads from bitumen use to produce the pellet where the fiber is
integrated to improve the distribution of fibers in the asphalt mix.

To date, there have been no comparative studies of the environmental loads of a group
of possible fibers that can be added to asphalt mixtures, as has been shown in this work.

Other studies have reported primarily environmental burdens related to global warm-
ing. For example, Joshi et al. (2004) showed that for the manufacture of 1 kg of polyester
fibers, 2.04 kg of carbon dioxide is emitted [28]. Kalliala and Nousiainen (1999) calculated
that for the production of 1 kg of polyester, 2.31 kg of carbon dioxide is emitted [29]. This
differs by 5% and 16%, respectively, from what is reported in this study, which gives
indications of certainty in the results shown.

An important aspect to consider in the purchase of the different fibers for use in asphalt
mixtures is economics. In this study, information has been collected on the price of a unit of
mass (1 kg) of the fibers on the Chilean market in 2021 (Figure 14). Here, a high similarity
is observed for the prices of fiberglass (9 USD), polyester, and PCF (USD 8). The highest
price per unit mass is aramid fiber (USD 12), and the lowest amount of fiber is for FiTyre
(USD 5). However, when the optimal weight of the fiber to be added to asphalt mixtures is
considered (Table 1), it is found that polyester fibers have the highest cost. In that same
sense, the cost of aramid fibers is reduced by half because the most optimal thing is to
use 0.55 kg.
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In the LCA, it is suggested to consider the period of useful life [30–32]. This is done
to standardize the performance of the products based on their useful life. A product
that performs well in the production stage does not mean that it will do so throughout
its life cycle, with its environmental load varying if its possibility of use varies over an
extensive period of time [33]. In this study, the focus on the period of useful life of the
fibers in the mixes is not addressed. This is because it is not feasible to perform a serious
theoretical durability analysis of the pavements due to the large number of factors that
intervene in their durability (traffic, climate, loads). However, the laboratory performance
tests show that for the use of FiTyre, better or equivalent mechanical performances are
obtained in comparison with other additives [20]. This presumes that, in terms of useful
life, similar or longer periods are obtained, which would even lead to an improvement
in its environmental performance if the entire life cycle is considered. This is especially
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relevant for the HMA, where better mechanical performances were always observed in the
mixes where FiTyre was used.

5. Conclusions

In this study, the environmental loads resulting from the use of fibers for the manu-
facture of HMA and SMA mixes are compared and analyzed. They included fiberglass,
polyester fiber, and aramid fiber for the HMA and pelletized cellulose fiber for the SMA.
In each of these types of mixes (HMA and SMA), the environmental performance of an
additive produced from ELT textile fiber (FiTyre) was also tested. The comparisons were
made using five impact categories (climate change, terrestrial acidification, human toxicity,
particulate matter emissions, and the exhaustion of nonrenewable fossil resources).

In all the impact categories, lower environmental loads were observed in the use of
FiTyre than with the other fibers. The comparisons of HMA mixes in the climate change
category show that with the use of FiTyre 3, there are up to 3.8 times less CO2-eq emissions
(1.6 kg) than with aramid fiber (6.1 kg CO2-eq), which is the fiber with the highest emissions
per equivalent unit. The same difference is noted in the terrestrial acidification category:
if FiTyre is used (0.010 kg SO2-eq), the impact is reduced 3.4 times compared to polyester
fiber use (0.034 kg SO2-eq). Generally, in each of the categories where the fibers have been
compared, the lowest environmental impacts result from the use of FiTyre.

When different SMA mixes are compared with their various proportions, either of
FiTyre or pelletized cellulose fiber premixed with asphalt (PCF), it is observed linearly that
the lightest environmental loads are obtained using the greatest proportion of FiTyre. For
example, in the exhaustion of fossil resources category, the sole use of FiTyre generates
40 g less of oil-eq than the variant in which only PCF is used. On the other hand, in
the human toxicity category, it is observed that the sole use of FiTyre generates 1.8 times
less 1,4DB-eq (1,9) emissions than the exclusive use of PCF (1,4DB-eq 3,4). From this,
it is concluded that from the point of view of environmental sustainability, the use of
FiTyre is more advantageous than existing traditional fibers (fiberglass, polyester fiber, and
aramid fiber).
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