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Abstract: The impact of COVID-19 on traffic volume makes it essential to study the spatial hetero-
geneity and impact mechanisms of the recovery of road traffic volume to promote the sustainability
of related industries. As the research method, this study used a principal component analysis to eval-
uate the recovery of road traffic volume in China quantitatively, and further conducted an empirical
study using a spatial autocorrelation index and a dynamic spatial panel model. The results show
that income has a negative impact on the recovery of road traffic volume, while climate suitability
has a positive impact. Economic development and COVID-19 can play moderating and mediating
effects, respectively. From the aspect of spatial heterogeneity, the recovery of road traffic volume has
a positive spatial spillover effect on the surrounding provinces, while the spread of COVID-19 has a
negative short-term indirect spatial spillover effect. Corresponding practical insights are provided
for the stakeholders based on the above findings. The results of this study will contribute to the
development of effective policies to facilitate the recovery of road traffic volume from the impact of
COVID-19 and the revitalization of the transportation industry.

Keywords: spatial heterogeneity; COVID-19; road traffic volume; dynamic spatial panel model;
principal component analysis; moderating effect

1. Introduction

In early 2020, the COVID-19 pandemic spread rapidly, causing a widespread public
health crisis [1]. Major countries and regions worldwide adopted non-pharmaceutical
interventions as one of the main strategies to contain the pandemic [2]. These measures
negatively affected the transport sector, with traffic in the United Kingdom down by over
60% and traffic in Europe falling by 70% [3]. The combined output of the passenger traffic
sector in China dropped by 11.44% [4], while intercity traffic fell by 51.35% [5].

Several studies have reported a causal relationship between the lockdown measures im-
posed against COVID-19 and the decline in road traffic volume [6]. For example, Aloi et al.
confirmed the negative impact of lockdown and quarantine measures on road traffic vol-
ume based on recorded data from traffic control cameras and environmental sensors [7]. A
similar finding was verified in a series of empirical studies in regions such as China [8],
Portugal [9], and Canada [10]. From another perspective, the impact of lockdown measures
can also be found in the air [11] and railway [12] traffic volume and has negatively affected
the revitalization of the transportation industry.

In addition to the lockdown measures, the negative impact of pandemics on traffic
volume can be found in terms of tourist psychology [13] and the quality of road service [14].
Specifically, the perceived threat of COVID-19 can reduce people’s subjective willingness to
travel across regions [15]. The impact of this mechanism may be influenced by individual
attitudes toward the pandemic and previous experience with infection [16]. Furthermore,
according to Luan et al., the COVID-19 pandemic could not only change people’s travel
patterns, but also significantly affect their willingness to purchase traffic tools and may
lead to a decrease in traffic volume [17].
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Because of the strong relationship between traffic volume and economic develop-
ment [18], the recovery of traffic volume from the impact of COVID-19 has an essential role
in promoting economic recovery [19]. Therefore, a feasible way to recover traffic volume has
been the focus of recent academic discussions. Several empirical studies have shed some
light on the effects of COVID-19 on air [20] and urban public [21] transport volume and
have further discussed practical measures to promote recovery. A basic consensus among
the studies is that there is a significant change in traffic behavior, which can be manifested
as decision preferences [22] or traffic modes [23], potentially leading to a decrease in the
efficiency of traditional traffic management methods [24]. For example, Cruz et al. suggest
that traffic companies should adjust their operational strategies promptly to cope with the
negative impact of COVID-19 [25]. Similar findings have been identified in France [26] and
Greece [27].

The above studies reflect the broad concern of scholars regarding the pandemic crisis.
However, few studies have taken quantitative approaches to the spatial heterogeneity of
the recovery of road traffic volume, which is of essential academic and practical significance
in promoting the sustainability of related industries. Specifically, the research question
in this paper is whether there are factors that can influence the recovery of road traffic
volume from the impact of COVID-19. Further, if there are factors that can have an impact,
whether this impact is influenced by mediating or moderating effects of other factors or
whether it is spatially heterogeneous. To investigate these questions, based on provincial
spatial panel data in mainland China, we test the spatial spillover effect of the recovery of
road traffic volume from the impact of COVID-19 using a dynamic spatial panel model.
Furthermore, we investigate the mechanisms and the robustness of the findings under
different spatial weight matrices. Compared with existing studies, the contributions of this
paper are as follows:

(1) A quantitative evaluation method of the recovery of road traffic volume based on a
principal component analysis is proposed.

(2) The above quantitative evaluation methods and dynamic spatial panel models are
applied to test the spatial heterogeneity of the recovery of road traffic volume in China.

(3) The mechanism of the above spatial heterogeneity is discovered through the mediating
effect test and the decomposition of the spatial–temporal effect.

The remaining sections of this paper are organized as follows. Section 2 reviews the
relevant literature and presents the research hypotheses. Section 3 reports the methodology
used for the study and the construction of variables. Section 4 reports the process and
results of the empirical study. Section 5 discusses the findings of the empirical study,
makes policy recommendations, and compares the results with existing studies. Section 6
summarizes the conclusions of this paper and presents further research perspectives.

2. Literature Review and Hypotheses
2.1. Income and Economic Development

As an essential part of the transport industry, road traffic has long been one of the
major modes of transport [28]. It has better destination accessibility than other modes of
transport, such as rail or air [29]. Since the 1980s, the analysis of factors influencing road
traffic volume has gradually attracted more and more attention. For example, Gu et al. used
the Bayesian combination model [30], the neural network model [31], and other algorithms
to test the possible effect of factors such as economic development on road traffic volume.
In general, areas with higher income and economic development have higher road traffic
volume, a phenomenon supported by studies from the United States [32] and Greece [33].

The above studies illustrate the impact of income and economic development on road
traffic volume. However, two issues remain for further empirical study. First, according to
Valdes et al., the share of non-essential traffic demand, such as tourism, in overall traffic
demand is higher in areas with higher income [34]. This non-essential traffic demand is
more negatively affected by COVID-19 than the essential traffic demand, such as seasonal
population movement, making it more difficult to recover to the same level as the pre-
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pandemic level [35]. Therefore, the recovery of road traffic volume in areas with higher
income may be relatively low. Meanwhile, economic development can generally lead to
a rise in income [36], potentially having a moderating effect in the latter’s mechanism on
road traffic volume. Based on this, the following hypotheses are proposed:

Hypothesis 1a (H1a). Income has a negative effect on the recovery of road traffic volume.

Hypothesis 1b (H1b). Economic development has a moderating effect in the mechanism of income
on the recovery of road traffic volume.

2.2. COVID-19 and Climate Suitability

Since the rapid spread of COVID-19, many scholars have studied the adverse impact
of the pandemic on road traffic volume. According to a study by Macioszek et al. based
on remote sensing video, the pandemic had a widespread negative impact on traffic
volume and led to changes in the characteristics of the temporal distribution of road traffic
volume [37]. Many studies point to the lockdown measures [11] and changes in tourist
psychology [38] as the main reasons for the negative impact of the pandemic on traffic
volume. Specifically, due to the concern of potential travelers about the infection, road
traffic volume tended to decrease with the increase of confirmed COVID-19 cases [19].
Several studies have confirmed the existence of this adverse effect in regions such as
China [8], the United States [39], and Korea [40].

Furthermore, climate suitability has also been widely considered to affect road traffic
volume. Excessively cold weather can lead to a decrease in the travel intentions of potential
travelers and, in turn, have a negative impact on road traffic volume, a phenomenon that
has been observed in the United States [41] and Canada [42]. In addition to temperature,
several studies have pointed out that rainfall [43], floods [44], and other weather events [45]
may also have a significant impact on road traffic volume. In particular, according to
Bi et al., the effect of climate suitability on road traffic volume varies with urban spatial
layout and geographical conditions [46], which suggests the importance of further research
using spatial panel models.

From another point of view, there is a strong link between climatic suitability and
COVID-19, whereby climatic factors can determine the transmission characteristics of the
pandemic. Several empirical studies based in Australia [47], the United States [48], and
other regions have demonstrated the impact of climatic factors in the epidemiological
process of COVID-19 and confirmed that COVID-19 is more transmissible in areas at higher
latitudes with lower temperatures [49]. Climatic suitability can have both a direct effect
on road traffic volume and an indirect influence on the ability of COVID-19 to spread.
Therefore, COVID-19 may be an essential part of the mechanism of climate suitability
on road traffic volume and may play a mediating effect. Based on this, the following
hypotheses are proposed:

Hypothesis 2a (H2a). Climate suitability has a positive effect on the recovery of road traffic volume.

Hypothesis 2b (H2b). COVID-19 has a mediating effect in the mechanism of climate suitability
on the recovery of road traffic volume.

2.3. Spatial Spillover Effect

According to Tobler’s first law of geography, there is a specific spatial correlation
between any two subjects, and this correlation always strengthens as the distance between
the subjects decreases [50]. Therefore, when considering econometric models, ignoring
the spatial factor will lead to biased estimation results, a phenomenon known as the
spatial effect [51]. Since the 1990s, the spatial effect has been increasingly used in traffic
research. Many scholars support the existence of spatial effects when considering the
factors influencing road traffic volume [52]. Specifically, this can be reflected in the spatial
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correlation of road traffic volume within cities [53] and the spatial spillover effect across
cities and provinces [54]. The spatial effect may also be present in the processes of the
recovery of road traffic volume from the impact of COVID-19.

In addition to the direct spatial spillover effect generated by road traffic volume,
other factors may also spatially affect road traffic volume in the surrounding area. This
mechanism is known as the indirect spatial spillover effect [55]. Zhang et al. showed
that COVID-19 could significantly affect the economic development of the surrounding
area through the indirect spatial spillover effect [56]. From the perspective of travelers’
psychology, when the spread of COVID-19 occurs in the surrounding area, potential
travelers may cancel their travel plans to avoid the risk of contracting the disease [57].
Therefore, the indirect spatial spillover effect of COVID-19 may affect the recovery of
road traffic volume in the surrounding province. Based on this, the following hypotheses
are proposed:

Hypothesis 3a (H3a). The recovery of road traffic volume has a positive direct spatial spillover
effect on the surrounding province.

Hypothesis 3b (H3b). COVID-19 has a negative indirect spatial spillover effect on the recovery
of road traffic volume in the surrounding province.

Figure 1 shows the research hypotheses and model framework of this study. Among
them, H1a represents the effect of income on the recovery of road traffic volume, and
H1b represents the moderating effect of economic development on this mechanism, which
together constitute the first part of the hypotheses of this study. Similarly, H2a represents the
effect of climate suitability on the recovery of road traffic volume, and H2b represents the
mediating effect of COVID-19, which together constitute the second part of the hypotheses.
In the third part of the hypotheses, H3a represents the direct spatial spillover effect of local
traffic volume on the surrounding region, and H3b represents the indirect spatial spillover
effect of COVID-19. The hypotheses of each part are distinguished using dashed lines.
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3. Methods and Data

The Data Flow Chart for this study is shown in Figure 2, where we describe all the
methodological steps. In the remainder of this section, we detail each method’s specifics
and the data’s processing.
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Figure 2. Data Flow Chart.

3.1. Principal Component Analysis

Representative indicators such as road passenger turnover and transportation volume
can be used to evaluate road traffic volume [58]. In line with Yang et al., to comprehen-
sively reflect the actual situation of each relevant indicator, this paper adopts a principal
component analysis (PCA) to reduce the dimensionality of the above indicators [59]. PCA
aims to reflect the typical characteristics of the data with as little information as possible. It
has the advantages of high information retention and can effectively avoid the problem of
multicollinearity [60]. Suppose there are R samples and B indicators, represented by vectors
as P = (P1, P2, . . . , PB), where PB = (p1b, p2b, . . . , pRB)

T, prb represents the observation of
the rth sample (r = 1, 2, . . . , R) on the bth (b = 1, 2, . . . , B) index. At this point, the cth
principal component can be expressed as follows:

Zc =
B

∑
b=1

abcXb (1)

In Equation (1), Zc is the value of the cth principal component and abc is the loading of
the bth index in the cth principal component.

3.2. Spatial Autocorrelation

To study the spatial heterogeneity of road traffic volume, we should first test whether
there is significant spatial autocorrelation. In this paper, we adopt Moran’s I to evaluate the
spatial autocorrelation [61], which can be expressed as follows:

It =
N
S0
×

∑N
i=1 ∑N

j=1 Wij
(

Mit − Mt
)(

Mjt − Mt
)

∑N
i=1
(

Mit − Mt
)2 (2)

In Equation (2), It is Moran’s I in period t; N is the number of study areas. Mit and
Mjt are the study data of areas i and j in period t. Mt is the mean of the study data in
period t. S0 is the sum of all elements in the spatial weight matrix. Wij is the spatial weight
matrix. The range of Moran’s I is [−1, 1]. When Moran’s I is significantly not equal to 0, it
can be considered that there is spatial autocorrelation; when it is greater than 0, there is
positive spatial autocorrelation, and when the opposite is the case, there is negative spatial
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autocorrelation. We mainly consider the distance weight matrix WD
ij [62] and the economic

distance weight matrix WE
ij [63], which are calculated as follows.

WD
ij =

{ 1
D2

ij
, when i 6= j

0, when i = j
(3)

WE
ij =

{
1

|GDPi − GDPj|×Dij
, when i 6= j

0, when i = j
(4)

In Equations (3) and (4), Dij is the Euclidean distance between area i and area j. GDPi
and GDPj are the regional GDP per capita in area i and area j.

3.3. Spatial Panel Model

The spatial panel model can be used to identify and deal with the interaction effect
between spatial data. The main principle is to incorporate the spatial distribution character-
istics of the panel data into the econometric model and to achieve an unbiased estimation
of the spatial heterogeneity of the data and its influencing factors [64]. The general nested
spatial model can be represented as follows.{

Yt = ρWYt + βXt + θWXt + µ+ ut
ut = λWut + εt

(5)

In Equation (5), Yt is a vector of the explained variable of order N × 1 in period t
(t = 1, 2, 3, . . . , T), where N is the number of spatial areas in the sample; W is a spatial
weight matrix; ρ and θ are spatial autoregressive coefficients of explained variable and
explanatory variables; WYt is the direct spatial spillover effect of the explained variables;
Xt is the explanatory variables matrix of order N × K, where K is the number of explanatory
variables; β is a vector of the coefficient to be estimated of order K × 1, indicating the
degree of impact of the explanatory variables on the explained variable; WXt is the indirect
spatial spillover effect of the explanatory variables; µ is the fixed effect; ut is a vector of
interference of order N × 1; λ is the autoregressive coefficient of the spatial error; Wut is
the spatial spillover effect of the interference; and εt is the regression error.

When θ = 0 and λ = 0, the model is called the spatial lag model (SLM); when θ = 0
and ρ = 0, the model is called the spatial error model (SEM); and when λ = 0, the model
is called the spatial Durbin model (SDM). Each of the above models is based on different
assumptions and has a different scope of application and study significance [65]. Therefore,
the models will be further tested and selected according to the data characteristics. Based
on the above GNS model and referring to the studies of Akter et al. in the field of road
traffic volume using spatial panel models [45], the econometric model constructed in this
study is shown as follows:

Yit = ρ
N

∑
j=1

WijYjt + βXit + θ
N

∑
j=1

WijXjt + µit + εit (6)

Yit = ρ
N

∑
j=1

WijYjt + γ
N

∑
j=1

WijYjt−1 + βXit + θ
N

∑
j=1

WijXjt + µit + εit (7)

In Equation (6), i and j are different areas; t is different times; W is the spatial weight
matrix; Y is the explained variable; X is the explanatory and control variables; ρ and θ are
the spatial autoregressive coefficients; µ is the fixed effect; and ε is the regression error.
In line with the study of Yang et al. [66], the dynamic spatial panel model is shown in
Equation (7) by adding the time lag term.
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3.4. Variables and Data Source
3.4.1. Explained Variable

The process of constructing the explained variable in this study is as follows:

PRRit =
PNit
PPit

(8)

TRRit =
TNit
TPit

(9)

In Equations (8) and (9), PNit and TNit are road passenger transportation volume and
road passenger turnover volume in month t of the year 2021 in province i, respectively; PPit
and TPit are average values of road passenger transportation volume and road passenger
turnover volume in month t of the five years before the COVID-19 outbreak (2015 to
2019) in province i, respectively; PRRit and TRRit are the recovery rate of road passenger
transportation volume and road passenger turnover volume in month t of 2021 in province
i, respectively. To avoid the influence of multicollinearity, PCA is applied to PRRit and
TRRit dimensionality reduction by province [67].

According to Alemzero et al., Bartlett’s test can be used to test the correlation between
variables and to determine whether the variables are independent of each other. Bartlett’s
test should be performed first before performing PCA. If the results reject the null hypothe-
sis significantly, then the results of PCA are acceptable [68]. The critical values of Bartlett’s
test are given by χ2 distribution approximation. Therefore, we performed Bartlett’s test
and PCA using Stata 17, and the results are shown in Table 1.

Table 1. Results of Bartlett’s test and PCA.

Serial Number Province Bartlett’s Test Variance Proportion Loading 1 (a1i) Loading 2 (a2i)

1 Beijing 22.091 *** 0.976 0.639 0.769
2 Tianjin 26.698 *** 0.985 0.642 0.766
3 Hebei 16.029 *** 0.971 0.413 0.911
4 Shanxi (1) 21.867 *** 0.981 0.481 0.877
5 Neimenggu 23.930 *** 0.981 0.607 0.794
6 Liaoning 16.339 *** 0.954 0.648 0.761
7 Jilin 30.306 *** 0.992 0.504 0.864
8 Heilongjiang 10.447 *** 0.910 0.646 0.764
9 Shanghai 0.231 *** 0.992 0.678 0.735

10 Jiangsu 20.740 *** 0.976 0.533 0.846
11 Zhejiang 5.421 ** 0.844 0.560 0.829
12 Anhui 12.547 *** 0.928 0.690 0.724
13 Fujian 20.639 *** 0.981 0.450 0.893
14 Jiangxi 4.483 ** 0.828 0.525 0.851
15 Shandong 18.344 *** 0.965 0.600 0.800
16 Henan 19.752 *** 0.968 0.693 0.720
17 Hubei 14.287 *** 0.956 0.477 0.879
18 Hunan 22.824 *** 0.977 0.657 0.754
19 Guangdong 17.447 *** 0.959 0.663 0.748
20 Guangxi 7.612 *** 0.902 0.460 0.888
21 Hainan 28.674 *** 0.991 0.468 0.884
22 Chongqing 10.260 *** 0.908 0.653 0.757
23 Sichuan 24.980 *** 0.988 0.452 0.892
24 Guizhou 18.830 *** 0.979 0.405 0.914
25 Yunnan 17.805 *** 0.976 0.419 0.908
26 Xizang 12.497 *** 0.971 0.311 0.950
27 Shanxi (2) 17.249 *** 0.986 0.292 0.956
28 Gansu 22.188 *** 0.976 0.662 0.750
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Table 1. Cont.

Serial Number Province Bartlett’s Test Variance Proportion Loading 1 (a1i) Loading 2 (a2i)

29 Qinghai 10.139 *** 0.971 0.256 0.967
30 Ningxia 10.833 *** 0.924 0.546 0.838
31 Xinjiang 17.166 *** 0.959 0.637 0.771

** and *** denote significance at the 5%, and 1% levels.

As the Bartlett test results have strong significance and the variance proportion is
higher than 85% in most provinces, the PCA results have solid statistical significance and
empirical value. As a result, we can obtain the recovery index Recoveryit of road traffic
volume in period t and province i as follows:

Recoveryit = PRRit × a1i + TRRit × a2i (10)

In Equation (10), a1i and a2i are the PCA loadings of PRRit and TRRit in the ith
province. Recoveryit is the explained variable in the spatial panel model. Figure 3 shows
the recovery index of road traffic volume for March, June, September, and December of
2021 to demonstrate the four quarters. Among them, we label the province serial numbers
consistent with Table 1. It can be visualized that the provinces with higher recovery
indices and those with lower indices tend to be adjacent, so we perform further analysis to
investigate its spatial heterogeneity.
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Figure 3. Recovery index of road traffic volume in 31 provinces of mainland China.

3.4.2. Explanatory and Control Variables

We take the per capita disposable income, per capita gross domestic product, tem-
perature and humidity index (THI), and the number of confirmed COVID-19 cases as the
explanatory variables. All of the above variables are widely considered suitable explanatory
variables for studying income and economic development [69], climate suitability [70], and
the spread of COVID-19 [71]. The Chow-Lin frequency transformation method is applied
to convert some quarterly data into monthly data. This method has a good conversion
effect and is widely used in social science research [72].
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Some studies have also pointed out that air quality [73] and season [74] may impact
road traffic volume. Therefore, these two factors are added to the model as control variables
to avoid endogeneity problems caused by omitted variables. The air quality indicator is
the air quality index (AQI). According to the existing air pollution classification standards
in China, the monthly average value of AQI in most provinces falls in the same interval,
which cannot reflect the control effect. Therefore, Jenks natural breaks is adopted to
categorize AQI [75]. As a result, AQI = 1 represents the best air quality, and AQI = 5
represents the worst. For the seasonal index, in line with Liu et al., the season is assigned
a value of 1 for the period from June to August and 0 for the rest of the year [76]. The
above variables constitute the balanced panel data used for the empirical study. The time
series length is 12, representing January to December of 2021, and the cross-section is
31, representing all 31 provinces in mainland China. Table 2 shows the description and
statistics of the variables.

Table 2. Description and statistics of variables.

Category Variable Description Source Expected
Effect Mean Median Min Max SD

Explained
Variable Recovery

Recovery index
of road traffic

volume

Ministry of Transport of
the People’s Republic of China

and authors computation
/ 54.031 50.392 15.288 129.056 19.277

Explanatory
Variables

THI THI index
National Meteorological

Administration of the People’s
Republic of China

+ 57.946 59.220 11.363 81.532 15.362

Income Disposable
income per capita

National Bureau of Statistics of
the People’s Republic of China − 2914.489 2557.016 1447.334 7182.954 1175.549

Economic GDP per capita National Bureau of Statistics of
the People’s Republic of China − 6636.535 5666.043 2830.190 16,542.862 2956.007

COVID-19
Cases

Number of
confirmed cases

of COVID-19

National Health Commission of
the People’s Republic of China − 40.987 6 0 1514 121.636

Control
Variables

AQI Level of air
pollution

National Meteorological
Administration of

the People’s Republic of China
and authors computation

/ 2.543 2 1 5 1.104

Season Seasonal index Authors computation / 0.250 0 0 1 0.434

4. Results
4.1. Spatial Autocorrelation Index

Table 3 shows the results of Moran’s I and the corresponding two-tailed test for
recovery from January to December 2021. On the whole, Moran’s I has values in the
range of −0.112 to 0.544 and is significant at the 1% confidence level in most periods. It is
positive except for January, indicating that the recovery of road traffic volume in mainland
China shows a significant positive spatial autocorrelation. Provinces with better and worse
recovery tend to be spatially adjacent.

Table 3. Spatial autocorrelation index.

Month Moran’s I Z-Value p-Value Spatial Pattern

January −0.112 −0.580 0.562 Random
February 0.326 2.678 0.007 Positive

March 0.126 1.216 0.224 Random
April 0.225 1.992 0.046 Positive
May 0.119 1.129 0.259 Random
June 0.270 2.241 0.025 Positive
July 0.300 1.511 0.012 Positive

August 0.544 4.622 0.000 Positive
September 0.443 3.740 0.000 Positive

October 0.333 2.724 0.006 Positive
November 0.406 3.333 0.001 Positive
December 0.331 2.752 0.006 Positive
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The results of Moran’s I suggest a spatial autocorrelation in the recovery of road traffic
volume during the pandemic, indicating that it is scientific and necessary to consider the
spatial effect in further empirical studies.

4.2. Tests of Spatial Panel Models

To further test the spatial heterogeneity of the recovery of road traffic volume and its
mechanism, we use spatial panel models for the empirical analysis. Each continuous-type
variable is log-transformed to clarify the economic significance of the results. Furthermore,
based on the distance weight matrix and economic distance weight matrix, the Lagrange
multiplier (LM) test, Wald test, likelihood ratio (LR) test, and Hausman test are adopted to
screen the spatial panel model [77]. Table 4 shows the results.

Table 4. Tests of spatial panel models.

Tests Distance Weight Matrix Economic-Distance Weight Matrix

LM spatial lag 49.752 *** 18.782 ***
Robust LM spatial lag 36.218 *** 44.302 ***

LM spatial error 28.911 *** 8.136 ***
Robust LM spatial error 15.377 *** 33.656 ***

Wald spatial lag 11.837 15.448
Wald spatial error 17.145 * 18.487 **

LR spatial lag 11.731 15.198
LR spatial error 17.327 * 18.096 *

Hausman for SLM 151.71 *** 46.95 ***
Hausman for SDM 76.53 *** 108.49 ***

*, **, and *** denote significance at the 10%, 5%, and 1% levels.

As Table 4 shows, the study data passed the LM test and robust LM test with high
significance, indicating that the ordinary least squares estimate for the study data is biased
and that the spatial lag effect and spatial error effect exist simultaneously [78]. The results of
the Wald test and LR test are generally consistent, both of which can significantly reject the
possibility of degenerating SDM into SEM but cannot reject the possibility of degenerating
SDM into SLM. Therefore, we combine the log-likelihood, the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) to make a comprehensive judgment
on the validity of SLM and SDM [79]. Meanwhile, the Hausman test for both SLM and
SDM can reject the null hypothesis at the 1% significance level. Therefore, the fixed-effect
model is chosen for further research [80]. The results tested based on the economic-distance
weight matrix are generally consistent with the distance weight matrix, thereby verifying
the robustness of the above results.

4.3. Dynamic Spatial Panel Model

Table 5 shows the results of the empirical analysis of static and dynamic spatial panel
models based on the distance weight matrix. Among them, Model 1 to Model 4 use the
static models set in Equation (6); Model 5 to Model 8 use the dynamic models set in
Equation (7). Specifically, Model 1 and Model 2 use the static SLM, Model 3 and Model 4
use the static SDM, Model 5 and Model 6 use the dynamic SLM, and Model 7 and Model 8
use the dynamic SDM.

The explained variable in each model is the recovery index of road traffic volume,
while the explanatory variables are not exactly the same. To test the moderating ef-
fect, the variable Economic representing economic development and the interaction term
Income × Economic are added to Model 2, Model 4, Model 6, and Model 8, and the other
models represent the results without considering the moderating effect. In addition, AQI
has five categorical intervals, so we represent it with four dummy variables to avoid multi-
collinearity. We add AQI = 2, AQI = 3, AQI = 4, AQI = 5, and Season as control variables to
the model to control the effects of air quality and season on road traffic volume. We report
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the interaction terms of the spatial weight matrix and the explanatory variables, which can
respond to the spatial spillover effects of the explanatory variables.

Table 5. Empirical results of spatial panel models.

Variables
SLM SDM Dynamic SLM Dynamic SDM

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

COVID-19 Cases −0.018 **
(−2.289)

−0.016 **
(−2.010)

−0.018 **
(−2.207)

−0.015 *
(−1.867)

−0.019 **
(−2.383)

−0.018 **
(−2.144)

−0.018 **
(−2.222)

−0.016 *
(−1.941)

THI 0.128 **
(2.561)

0.119 **
(2.322)

0.179 **
(2.564)

0.159 **
(2.255)

0.138 ***
(2.722)

0.127 **
(2.455)

0.185 ***
(2.647)

0.162 **
(2.303)

Income −0.396 ***
(−4.955)

−5.000 **
(−2.375)

−0.322 ***
(−3.621)

−5.110 **
(−2.373)

−0.377 ***
(−4.659)

−4.970 **
(−2.361)

−0.314 ***
(−3.522)

−5.076 **
(−2.357)

Economic n.a. −4.170 **
(−2.181) n.a. −4.285 **

(−2.203) n.a. −4.145 **
(−2.168) n.a. −4.248 **

(−2.183)

Income × Economic n.a. 0.536 **
(2.188) n.a. 0.561 **

(2.244) n.a. 0.535 **
(2.183) n.a. 0.557 **

(2.227)

AQI = 2 0.072 **
(2.145)

0.070 **
(2.082)

0.087 **
(2.470)

0.088 **
(2.514)

0.072 **
(2.137)

0.070 **
(2.091)

0.089 **
(2.511)

0.090 **
(2.550)

AQI = 3 0.132 ***
(3.043)

0.130 ***
(2.964)

0.141 ***
(2.878)

0.140 ***
(2.839)

0.126 ***
(2.887)

0.125 ***
(2.841)

0.140 ***
(2.874)

0.141 ***
(2.865)

AQI = 4 0.168 ***
(3.115)

0.166 ***
(3.045)

0.163 ***
(2.623)

0.159 **
(2.557)

0.152 ***
(2.781)

0.151 ***
(2.747)

0.160 ***
(2.581)

0.159 **
(2.560)

AQI = 5 0.249 ***
(3.667)

0.241 ***
(3.516)

0.244 ***
(3.043)

0.231 ***
(2.878)

0.221 ***
(3.148)

0.215 ***
(3.044)

0.239 ***
(2.987)

0.231 ***
(2.875)

Season −0.039
(−1.459)

−0.036
(−1.358)

−0.073
(−1.507)

−0.071
(−1.469)

−0.056 *
(−1.920)

−0.053 *
(−1.824)

−0.077
(−1.593)

−0.073
(−1.507)

W × COVID-19 cases n.a. n.a. −0.029
(−1.118)

−0.018
(−0.584) n.a. n.a. −0.037

(−1.366)
−0.027

(−0.835)

W × THI n.a. n.a. −0.276
(−1.639)

−0.299 *
(−1.715) n.a. n.a. −0.287 *

(−1.704)
−0.307 *
(−1.759)

W × Income n.a. n.a. −0.548*
(−1.946)

−11.215
(−1.476) n.a. n.a. −0.495 *

(−1.746)
−9.604

(−1.224)

W × Economic n.a. n.a. n.a. −9.701
(−1.430) n.a. n.a. n.a. −8.255

(−1.178)

W × Income × Economic n.a. n.a. n.a. 1.192
(1.396) n.a. n.a. n.a. 1.017

(1.156)

W × AQI2 n.a. n.a. −0.377 *
(−1.661)

−0.460 **
(−2.029) n.a. n.a. −0.369

(−1.627)
−0.447 **
(−1.968)

W × AQI3 n.a. n.a. −0.324
(−1.282)

−0.454 *
(−1.776) n.a. n.a. −0.354

(−1.396)
−0.459 *
(−1.799)

W×AQI4 n.a. n.a. −0.338
(−1.312)

−0.459 *
(−1.768) n.a. n.a. −0.388

(−1.491)
−0.478 *
(−1.834)

W × AQI5 n.a. n.a. −0.366
(−1.332)

−0.499 *
(−1.793) n.a. n.a. −0.441

(−1.576)
−0.531 *
(−1.890)

W × Season n.a. n.a. 0.082
(0.831)

0.071
(0.726) n.a. n.a. 0.062

(0.625)
0.060

(0.608)

W × Recoveryit
0.771 ***
(11.027)

0.777 ***
(11.256)

0.749 ***
(9.563)

0.751 ***
(9.620)

0.765 ***
(10.711)

0.771 ***
(10.913)

0.753 ***
(9.579)

0.752 ***
(9.604)

W × Recovery it–1 n.a. n.a. n.a. n.a. 0.148
(1.468)

0.149
(1.484)

0.149
(1.310)

0.099
(0.814)

R2 0.240 0.245 0.249 0.270 0.235 0.239 0.249 0.268
Log-likelihood 114.086 116.465 118.267 122.330 114.590 116.973 118.604 122.397

AIC −208.171 −208.929 −200.533 −200.660 −207.179 −207.946 −199.207 −198.794
BIC −168.982 −161.903 −129.993 −114.444 −164.072 −157.001 −124.748 −108.660

*, **, and *** denote significance at the 10%, 5%, and 1% levels.

Comparing the performance of SLM and SDM on log-likelihood, AIC, BIC, and other
indicators, it can be seen that the fitting effect of SLM is better than that of SDM. Therefore,
further analysis will be mainly based on the results of SLM. In Model 1, the coefficient of
income is significantly negative, indicating that it has a significant negative impact on the
recovery of road traffic volume, and hypothesis H1a is supported.

In Model 2, the coefficients of Income and Economic are found to be negative. The
coefficient of the interaction term is significantly positive, indicating that economic de-
velopment and income have a significant negative impact on the recovery of road traffic
volume, and economic development can play a positive moderating effect, and hypothesis
H1b is supported. Additionally, in Model 3 and Model 4, which are based on SDM, the
coefficients of the main explanatory variables are generally consistent with other models,
indicating that the above results are robust.

The empirical results of each explanatory variable in Model 5 to Model 8 are generally
consistent with those of the static spatial panel, proving that the spatial panel models are
less affected by endogeneity. W × Recoveryit, representing spatial effect, is significantly
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positive in Model 1 to Model 8, indicating that the recovery of road traffic volume will be
affected by the positive spatial spillover effect of the current situation in the surrounding
provinces. Therefore, hypothesis H3a is supported.

4.4. Robustness Tests

The distance weight matrix is replaced with the economic distance weight matrix for
robustness testing. Table 6 shows the results.

Table 6. Robustness and endogeneity tests.

Variables
SLM SDM Dynamic SLM Dynamic SDM

Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16

COVID-19 Cases −0.021 **
(−2.412)

−0.021 **
(−2.318)

−0.020 **
(−2.334)

−0.022 **
(−2.407)

−0.021 **
(−2.451)

−0.022 **
(−2.401)

−0.020 **
(−2.341)

−0.022 **
(−2.440)

THI 0.197 ***
(3.602)

0.184 ***
(3.265)

0.213 ***
(3.695)

0.190 ***
(3.183)

0.205 ***
(3.724)

0.190 ***
(3.368)

0.212 ***
(3.678)

0.188 ***
(3.142)

Income −0.498 ***
(−5.609)

−4.545 *
(−1.927)

−0.426 ***
(−4.643)

−4.373 *
(−1.860)

−0.490 ***
(−5.514)

−4.606 *
(−1.956)

−0.426 ***
(−4.642)

−4.397 *
(−1.870)

Economic n.a. −3.611 *
(−1.686) n.a. −3.505

(−1.642) n.a. −3.658 *
(−1.710) n.a. −3.522 *

(−1.650)

Income × Economic n.a. 0.471 *
(1.715) n.a. 0.457 *

(1.672) n.a. 0.479 *
(1.746) n.a. 0.459 *

(1.681)

AQI = 2 0.074 **
(1.976)

0.075 **
(1.978)

0.074 *
(1.957)

0.073 *
(1.928)

0.073 *
(1.955)

0.074 **
(1.972)

0.074 *
(1.957)

0.073 *
(1.927)

AQI = 3 0.156 ***
(3.205)

0.158 ***
(3.217)

0.146 ***
(2.972)

0.145 ***
(2.935)

0.149 ***
(3.054)

0.152 ***
(3.089)

0.146 ***
(2.978)

0.146 ***
(2.937)

AQI = 4 0.219 ***
(3.647)

0.222 ***
(3.662)

0.192 ***
(3.050)

0.192 ***
(3.033)

0.206 ***
(3.380)

0.209 ***
(3.415)

0.192 ***
(3.056)

0.192 ***
(3.035)

AQI = 5 0.338 ***
(4.484)

0.338 ***
(4.432)

0.294 ***
(3.797)

0.289 ***
(3.677)

0.317 ***
(4.124)

0.317 ***
(4.093)

0.295 ***
(3.802)

0.289 ***
(3.679)

Season −0.054 *
(−1.830)

−0.050 *
(−1.680)

−0.049
(−1.422)

−0.042
(−1.205)

−0.063 **
(−2.067)

−0.059 *
(−1.927)

−0.049
(−1.418)

−0.042
(−1.204)

W × COVID-19 Cases n.a. n.a. −0.079
(−1.106)

−0.081
(−1.092) n.a. n.a. −0.088

(−1.115)
−0.101

(−1.204)

W × THI n.a. n.a. −0.272
(−0.585)

−0.176
(−0.377) n.a. n.a. −0.263

(−0.564)
−0.156

(−0.333)

W × Income n.a. n.a. −3.094 **
(−2.310)

50.928
(0.861) n.a. n.a. −3.017 **

(−2.205)
52.267
(0.883)

W × Economic n.a. n.a. n.a. 49.643
(0.909) n.a. n.a. n.a. 50.794

(0.930)

W × Income × Economic n.a. n.a. n.a. −6.266
(−0.911) n.a. n.a. n.a. −6.400

(−0.930)

W × AQI2 n.a. n.a. −1.662
(−1.167)

−1.174
(−0.772) n.a. n.a. −1.665

(−1.169)
−1.183

(−0.775)

W × AQI3 n.a. n.a. −1.519
(−1.049)

−1.059
(−0.682) n.a. n.a. −1.512

(−1.044)
−1.064

(−0.684)

W × AQI4 n.a. n.a. −0.876
(−0.608)

−0.391
(−0.248) n.a. n.a. −0.846

(−0.582)
−0.387

(−0.246)

W × AQI5 n.a. n.a. −0.775
(−0.514)

−0.221
(−0.134) n.a. n.a. −0.708

(−0.454)
−0.200

(−0.119)

W × Season n.a. n.a. −0.222
(−0.913)

−0.246
(−1.011) n.a. n.a. −0.212

(−0.833)
−0.242

(−0.950)

W × Recoveryit
0.815 ***
(3.287)

0.824 ***
(3.341)

0.602 **
(2.146)

0.627 **
(2.244)

0.810 ***
(3.229)

0.820 ***
(3.284)

0.609 **
(2.168)

0.642 **
(2.297)

W × Recoveryit–1 n.a. n.a. n.a. n.a. 0.415
(1.340)

0.451
(1.456)

0.116
(0.267)

0.224
(0.506)

R2 0.226 0.232 0.247 0.254 0.227 0.233 0.246 0.252

*, **, and *** denote significance at the 10%, 5%, and 1% levels.

Comparative analysis of Tables 5 and 6 shows that the empirical results of the models
constructed with different spatial weight matrices do not differ significantly, indicating
that the effect of explanatory variables on the recovery is robust. In Model 10 and Model
12, the coefficient of the interaction term is significantly positive, consistent with the
results before replacing the spatial weight matrix, thereby verifying the robustness of the
moderating effect.

4.5. Mediating Effect and Spatial Effect Decomposition

In line with Jin et al. [81], a stepwise method is used to test the mediating effect based
on the dynamic SLM to test hypotheses H2a and H2b. Table 7 shows the results. Model
17 and Model 18 test the direct effect of COVID-19 Cases and THI on recovery, and the
results show that they have significant negative and positive effects, respectively. Model 19
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tests the indirect effect of THI on COVID-19 cases, and the results are significantly negative,
indicating that COVID-19 has more potent propagation in wet and cold weather. Model 8
tests the total effect of COVID-19 cases and THI on recovery, and the results show that the
regression coefficients are significant. The above models constitute a complete test path
for the mediating effect, indicating that the spread of COVID-19 can have a significant
mediating effect in the mechanism of THI acting on recovery. Therefore, hypotheses H2a
and H2b are supported.

Table 7. Results of the mediating effect tests.

Variables
Distance Weight Matrix Economic-Distance Weight Matrix

Model 17 Model 18 Model 19 Model 8 Model 20 Model 21 Model 22 Model 16

COVID-19 Cases n.a. −0.023 ***
(−2.953) n.a. −0.018 **

(−2.144) n.a. −0.031 ***
(−3.526) n.a. −0.022 **

(−2.401)

THI 0.158 ***
(3.185) n.a. −1.672 ***

(−5.063)
0.127 **
(2.455)

0.230 ***
(4.254) n.a. −1.926 ***

(−6.307)
0.190 ***
(3.368)

Income −5.361 **
(−2.544)

−5.399 **
(−2.560)

20.853
(1.579)

−4.970 **
(−2.361)

−5.067 **
(−2.142)

−5.217 **
(−2.190)

21.656
(1.620)

−4.606 *
(−1.956)

Economic −4.567 **
(−2.390)

−4.418 **
(−2.303)

22.136 *
(1.847)

−4.145 **
(−2.168)

−4.159 *
(−1.939)

−4.028 *
(−1.859)

23.439 *
(1.933)

−3.658 *
(−1.710)

Income × Economic 0.580 **
(2.366)

0.576 **
(2.345)

−2.431
(−1.582)

0.535 **
(2.183)

0.533 *
(1.935)

0.536 *
(1.933)

−2.536
(−1.630)

0.479 *
(1.746)

AQI = 2 0.068 **
(2.011)

0.065 *
(1.917)

0.137
(0.648)

0.070 **
(2.091)

0.071 *
(1.881)

0.066 *
(1.727)

0.136
(0.640)

0.074 **
(1.972)

AQI = 3 0.124 ***
(2.794)

0.111 **
(2.526)

0.149
(0.540)

0.125 ***
(2.841)

0.150 ***
(3.030)

0.131 ***
(2.638)

0.127
(0.456)

0.152 ***
(3.089)

AQI = 4 0.159 ***
(2.887)

0.121 **
(2.244)

−0.305
(−0.896)

0.151 ***
(2.747)

0.219 ***
(3.557)

0.163 ***
(2.688)

−0.318
(−0.922)

0.209 ***
(3.415)

AQI = 5 0.221 ***
(3.121)

0.161 **
(2.386)

−0.146
(−0.340)

0.215 ***
(3.044)

0.324 ***
(4.148)

0.233 ***
(3.133)

−0.134
(−0.309)

0.317 ***
(4.093)

Season −0.060 **
(−2.079)

−0.013
(−0.537)

0.499 ***
(2.975)

−0.053 *
(−1.824)

−0.070 **
(−2.324)

−0.001
(−0.035)

0.586 ***
(3.520)

−0.059 *
(−1.927)

W × Recoveryit
0.778 ***
(11.152)

0.791 ***
(11.677) n.a. 0.771 ***

(10.913)
0.820 ***
(3.279)

0.845 ***
(3.408) n.a. 0.820 ***

(3.284)

W × Recoveryit–1
0.126

(1.255)
0.123

(1.222) n.a. 0.149
(1.484)

0.405
(1.298)

0.367
(1.172) n.a. 0.451

(1.456)

W × COVID-19 Casesit n.a. n.a. 0.270 **
(2.328) n.a. n.a. n.a. 0.139

(0.502) n.a.

W × COVID-19 Casesit–1 n.a. n.a. 0.038
(0.251) n.a. n.a. n.a. −0.538

(−1.434) n.a.

R2 0.224 0.236 0.202 0.239 0.220 0.210 0.187 0.233

*, **, and *** denote significance at the 10%, 5%, and 1% levels.

In Model 16 and Model 20 to Model 22, we replace the distance weight matrix with
the economic distance weight matrix and repeat the above mediating effect test. The results
are generally consistent, which illustrates the robustness of the above results.

The spatial–temporal effect decomposition of the dynamic SLM is adopted. Table 8
shows the results. Among them, Model 5 and Model 6 represent the decomposition results
of the spatial–temporal effect before and after considering the moderating effect. In the short
term, COVID-19 cases had a significant direct, indirect, and total effect on the surrounding
provinces; the regression coefficients are all less than 0. The above results indicate that
COVID-19 not only has a significant negative impact on recovery in the local province
but also has a particular negative spatial spillover effect on the surrounding provinces.
Therefore, hypothesis H3b is supported.



Sustainability 2022, 14, 14297 14 of 20

Table 8. Results of spatial–temporal effect decomposition.

Effects Variables

Distance Weight Matrix Economic-Distance Weight Matrix

Model 5 Model 6 Model 13 Model 14

Short
Term Long Term Short

Term Long Term Short
Term Long Term Short

Term Long Term

Direct
effect COVID-9 Cases −0.021 **

(−2.518)
−0.023 *
(−1.922)

−0.020 **
(−2.252)

−0.022 *
(−1.898)

−0.022 ***
(−2.583)

−0.023 **
(−2.518)

−0.023 **
(−2.520)

−0.024 **
(−2.376)

THI 0.155 ***
(2.984)

0.172 **
(2.401)

0.143 ***
(2.696)

0.160 **
(2.068)

0.213 ***
(3.996)

0.221 ***
(3.658)

0.198 ***
(3.634)

0.206 ***
(3.457)

Income −0.407 ***
(−4.655)

−0.461 ***
(−2.722)

−5.422 **
(−2.379)

−6.123 *
(−1.781)

−0.495 ***
(−5.502)

−0.514 ***
(−4.603)

−4.676 **
(−1.982)

−4.882 *
(−1.909)

Economic n.a. n.a. −4.524 **
(−2.187)

−5.112 *
(−1.674) n.a. n.a. −3.714 *

(−1.735)
−3.879 *
(−1.685)

Income × Economic n.a. n.a. 0.584 **
(2.202)

0.660 *
(1.686) n.a. n.a. 0.486 *

(1.772)
0.508 *
(1.717)

Indirect
effect COVID-19 Cases −0.016 **

(−2.081)
−0.035

(−0.624)
−0.016 *
(−1.729)

−0.033
(−0.737)

−0.002 *
(−1.674)

−0.003
(−0.965)

−0.002
(−1.562)

−0.004
(−0.748)

THI 0.119 **
(2.424)

0.245
(0.722)

0.115 **
(2.184)

0.235
(0.639)

0.018 *
(1.939)

0.035
(0.894)

0.017 **
(2.078)

0.034
(1.106)

Income −0.317 ***
(−2.876)

−0.696
(−0.725)

−4.420 *
(−1.812)

−9.380
(−0.591)

−0.040 **
(−2.149)

−0.080
(−0.873)

−0.403
(−1.476)

−0.828
(−0.835)

Economic n.a. n.a. −3.693 *
(−1.711)

−7.857
(−0.574) n.a. n.a. −0.320

(−1.357)
−0.660

(−0.808)

Income × Economic n.a. n.a. 0.477 *
(1.717)

1.014
(0.578) n.a. n.a. 0.042

(1.374)
0.086

(0.804)

Total
effect COVID-19 Cases −0.036 **

(−2.413)
−0.058

(−0.880)
−0.036 **
(−2.079)

−0.055
(−1.011)

−0.024 **
(−2.570)

−0.026 **
(−2.284)

−0.025 **
(−2.488)

−0.027 **
(−1.999)

THI 0.273 ***
(2.882)

0.417
(1.052)

0.258 ***
(2.588)

0.395
(0.915)

0.231 ***
(3.926)

0.256 ***
(2.866)

0.215 ***
(3.613)

0.240 ***
(2.952)

Income −0.724 ***
(−3.984)

−1.157
(−1.039)

−9.842 **
(−2.182)

−15.502
(−0.823)

−0.535 ***
(−5.395)

−0.594 ***
(−3.190)

−5.079 **
(−1.974)

−5.711 *
(−1.736)

Economic n.a. n.a. −8.217 **
(−2.024)

−12.969
(−0.795) n.a. n.a. −4.034 *

(−1.730)
−4.538

(−1.560)

Income × Economic n.a. n.a. 1.061 **
(2.035)

1.674
(0.801) n.a. n.a. 0.528 *

(1.766)
0.594

(1.583)

*, **, and *** denote significance at the 10%, 5%, and 1% levels.

5. Discussion
5.1. Discussion of the Empirical Results

From a temporal perspective, Moran’s I fluctuates between −0.112 and 0.326 from
January to May, with an insignificant trend and small absolute value, indicating that the
spatial autocorrelation of recovery is relatively weak. Moran’s I reaches a peak of 0.544
in August and maintains a high level of 0.331 to 0.443 after August, indicating that the
spatial autocorrelation of road traffic volume in summer is the strongest, and the spatial
autocorrelation is stronger overall in the second half of the year than in the first half.

As Model 5 to Model 8 show, compared with the traditional static spatial panel model,
the dynamic spatial panel model can effectively test and avoid the endogeneity problem of
the model [82]. Income and economic development have a significant adverse effect on the
recovery of road traffic volume, and the level of economic development has a significant
positive moderating effect on the mechanism of income. The above results confirm the
mutual impact between the surrounding province in the recovery of road traffic volume,
indicating that the provinces should actively collaborate to jointly promote the recovery of
road traffic volume and the recovery of related industries.

In Models 13 to 16, we construct a dynamic spatial panel model based on the economic
distances weight matrix. Its main empirical results are generally consistent with the static
spatial panel model. In addition, W × Recoveryit is significantly positive in Model 9 to
Model 16, indicating a significant spatial spillover effect of recovery in both the distance
weight matrix and economic distance weight matrix. The above results further validate the
robustness of the above empirical findings and avoid the interference of endogeneity [83].

The result of the mediating effect test indicates that the spread of COVID-19 is more po-
tent in provinces with lower temperature and humidity indices, factors that can negatively
impact the recovery of road traffic volume. In line with Jankelova et al., the Sobel test is
used to further test the mediating effect [84]. The Z-value statistic is 2.28, corresponding to a
p-value of 0.023, which verifies the significance of the above mediating effect. Furthermore,
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by replacing the distance weight matrix with the economic distance weight matrix, the
robustness of the above empirical results is supported in this paper.

In the long term, the indirect effect of COVID-19 cases is not significant, indicating
that the spatial spillover effect of COVID-19 on recovery in the surrounding provinces
will gradually disappear in the long term. This is because China’s non-pharmaceutical
interventions for COVID-19 will be dynamically adjusted as the outbreak progresses,
whereby its negative impact on the recovery of road traffic volume in the surrounding
provinces will gradually diminish after the pandemic. Model 13 and Model 14 reflect the
decomposition results of the spatial effect after replacing the distance weight matrix with
the economic distance weight matrix, and it can be found that coefficients of explanatory
variables are generally unaffected, verifying the robustness of the above empirical results.

5.2. Policy Recommendations

Considering that factors such as the spread of COVID-19, income, and climate suit-
ability all significantly affect the recovery of road traffic volume, the government should
formulate policy measures that meet real needs according to the time and place. For ex-
ample, when the temperature and humidity indices are low, consideration can be given to
increasing policy support for traffic and other related industries to promote the recovery of
road traffic volume [85]. At the same time, because the recovery of road traffic volume has
a positive spatial spillover effect, the government should minimize traffic closures in the
surrounding province to achieve the overall recovery of the traffic volume.

The recovery of road traffic volume is poor in most provinces and fluctuates with the
spread of COVID-19. Therefore, traffic companies and other related companies should
adjust their risk response strategies and be prepared to face the pressure of the pandemic
in the long term [86] and consider the changes in travelers’ behavior [87]. Additionally,
traffic companies should focus on further market development in provinces with relatively
low income and economic development levels. This is because such provinces have better
recovery of road traffic volume.

Due to the negative impact and indirect spatial spillover effect of COVID-19 on traffic
volume, communities, residents, and other stakeholders should take measures to avoid
the spread of COVID-19, such as maintaining social distance [88]. If the spread of a new
pandemic begins, the recovery gains already achieved may be lost, and the development of
the surrounding provinces may also be adversely affected.

5.3. Comparison with Existing Studies

As we mentioned above, studying road traffic volume from the impact of COVID-19 is
one of the current hot topics of scientific research. Existing studies have mainly discussed
the mechanisms of COVID-19 effects on road traffic volume. For example, the number of
COVID-19 cases [37] and lockdown measures [7] lead to a decrease in road traffic volume,
which is consistent with the above findings. Therefore, the results of this study fit well with
the existing literature, and the research hypotheses are supported.

Furthermore, there are some unique findings in this study. According to a series of
existing studies, high-income provinces have higher road traffic volume [89]. However,
when we study the recovery index of road traffic volume, the opposite is found, with higher-
income provinces having a lower recovery index. This is because the current lockdown
measures are mainly for non-essential traffic [90], while it occupies a higher proportion of
the total traffic in high-income provinces [34]. As a result, it is more difficult for high-income
provinces to recover road traffic volume to pre-pandemic levels. This makes it necessary for
the government to consider different policies in different provinces to facilitate the recovery
of road traffic volume.

From another perspective, by constructing dynamic spatial panel models, we also
found the short-term indirect spatial spillover effect of COVID-19. In other words, local
COVID-19 cases lead to a short-term decrease in the recovery of road traffic volume in
surrounding provinces. This result has not been reported in the existing literature and
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has important implications for the transportation industry with the impact of COVID-19.
According to the above results, there is a need for solidarity and collaboration among
surrounding provinces to take measures to overcome the threat of the pandemic together;
otherwise, they will be negatively affected by each other.

6. Conclusions

Based on the spatial panel data of all 31 provinces in mainland China in 2021, this
paper uses PCA to evaluate the recovery of road traffic volume under the impact of the
pandemic. It investigates the spatial heterogeneity of the recovery of road traffic volume
and its mechanism by using the spatial autocorrelation index and dynamic spatial panel
model, with the following main findings.

The recovery of road traffic volume in China shows a strong positive spatial auto-
correlation in general [91]. It is relatively weak between January and May and strong
between June and December, indicating that the spatial autocorrelation of the recovery of
road traffic volume shows a trend from weak to strong. Road traffic volume in provinces
with better income and economic development is slower to recover to pre-pandemic lev-
els. This is because non-essential traffic demand accounts for a higher proportion of total
traffic demand [34], and this non-essential traffic demand is more negatively affected by
the pandemic than essential traffic demand [35]. From the other point of view, climate
suitability can affect the recovery of road traffic volume both indirectly through COVID-19
and directly. This indicates that a warm and humid climate is not conducive to the spread of
COVID-19 compared to a cold climate [49] and to the recovery of road traffic volume [92].

Furthermore, in terms of spatial heterogeneity, the recovery of road traffic volume has
a positive spatial spillover effect, which can be manifested as a mutual impact between
surrounding provinces. At the same time, COVID-19 can have a negative indirect spatial
spillover effect in the short term. For example, the spread of the pandemic in one province
may have a short-term negative impact on the recovery of road traffic volume in the
surrounding provinces [93]. Therefore, the government and other stakeholders should take
measures to reduce the spread of COVID-19 to facilitate the recovery of road traffic volume
in the local and surrounding provinces.

There are some limitations to our research. First, as COVID-19 continues to spread
globally, there is an opportunity to make new findings if further empirical analysis is
conducted based on the latest situation of the pandemic and the recovery of traffic volume.
Second, we mainly use the distance weight matrix and the economic distance weight matrix,
in addition to a variety of spatial weight matrices with different economic significance, for
further selection and study [94]. Considering the negative impact of COVID-19, further
research on the recovery of traffic would provide vital assistance to stakeholders.
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Nomenclature

Acronyms Definition
PCA Principal Component Analysis
SLM Spatial Lag Model
SEM Spatial Error Model
SDM Spatial Durbin Model
THI Temperature and Humidity Index
AQI Air Quality Index
LM Lagrange Multiplier
LR Likelihood Ratio
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
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