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Abstract: Self-compacting concrete (SCC) has been developed as a type of concrete capable of filling
narrow gaps in highly reinforced areas of a mold without internal or external vibration. Bleeding
and segregation in SCC can be prevented by the addition of superplasticizers. Due to these favorable
properties, SCC has been adopted worldwide. The workability of SCC is closely related to its yield
stress and plastic viscosity levels. Therefore, the accurate prediction of yield stress and plastic
viscosity of SCC has certain advantages. Predictions of the shear stress and plastic viscosity of SCC
is presented in the current study using four different ensemble machine learning techniques: Light
Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), random forest, and
Categorical Gradient Boosting (CatBoost). A new database containing the results of slump flow,
V-funnel, and L-Box tests with the corresponding shear stress and plastic viscosity values was curated
from the literature to develop these ensemble learning models. The performances of these algorithms
were compared using state-of-the-art statistical measures of accuracy. Afterward, the output of
these ensemble learning algorithms was interpreted with the help of SHapley Additive exPlanations
(SHAP) analysis and individual conditional expectation (ICE) plots. Each input variable’s effect on
the predictions of the model and their interdependencies have been illustrated. Highly accurate
predictions could be achieved with a coefficient of determination greater than 0.96 for both shear
stress and plastic viscosity.

Keywords: plastic viscosity; self-compacting concrete; yield stress; V-funnel flow; slump flow; L-Box;
XGBoost; LightGBM; CatBoost; SHAP

1. Introduction

Self-compacting concrete (SCC) is broadly used in the construction industry due to
its good mechanical properties, high fluidity, and ability to pass through and fill the gaps
between reinforcing bars without vibrations [1,2]. Self-compactibility and resistance to
segregation can be achieved by using superplasticizers, lowering the water-cement ratio,
and reducing coarse aggregate content [3]. The flowability of SCC is correlated with the
plastic viscosity, yield stress, and the outcome of empirical test procedures. The workability
of concrete can be defined as its ability to properly fill its molding while having sufficient
strength in its final hardened form [4]. To have good workability, a balance must be
maintained between the mechanical properties of concrete and its fluidity. Therefore, it is
important to have accurate procedures for the prediction of yield stress and plastic viscosity
as these properties determine the workability of concrete. The rheological properties of
fresh concrete can be investigated using various test procedures, including slump-flow,
L-box, and V-funnel tests. Past studies have aimed at finding correlations between the
properties, such as the correlation of slump flow diameter and V-funnel flow time with
the yield stress and plastic viscosity of fresh concrete. The yield stress of fresh concrete

Sustainability 2022, 14, 14640. https://doi.org/10.3390/su142114640 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142114640
https://doi.org/10.3390/su142114640
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-7329-1230
https://orcid.org/0000-0002-7327-9810
https://orcid.org/0000-0002-1423-6116
https://orcid.org/0000-0002-0370-5562
https://doi.org/10.3390/su142114640
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142114640?type=check_update&version=2


Sustainability 2022, 14, 14640 2 of 24

is defined as the minimum amount of stress that causes permanent deformation and
flows [5]. In addition to yield stress, another property of fresh concrete that determines its
workability is the plastic viscosity, which is defined as the resistance of concrete to flow
when the shear stress is higher than yield stress. Due to the practical significance of these
rheological properties, there have been studies aimed at developing models that predict
these properties. Neophytou et al. [6] proposed an empirical model that related the yield
stress of SCC to the non-dimensional final spread of concrete obtained from a slump flow
test. A linear relationship between the non-dimensional final spread and yield stress was
demonstrated. Schowalter and Christensen [7] developed an analytical equation that related
the slump of fresh concrete to its yield stress. Pashias et al. [4] investigated the relationship
between slump height and yield stress in flocculated materials. An approximating equation
that related yield stress to slump height was proposed. Le et al. [8] showed that the
yield stress of self-consolidating concrete could be predicted by considering concrete as an
aggregate suspension in cement paste. Based on excess paste theory and percolation theory,
it was shown that the yield stress could be predicted as a function of the excess paste layer
thickness, volume fraction of the aggregates, and percolation.

In recent years, machine learning techniques have been applied in various areas of en-
gineering such as bridge construction [9–13], reinforced concrete and steel frames [14–16],
modeling of concrete and masonry structures [17–20], modeling of pavement founda-
tions [21], and design of columns [22–24]. Machine learning models have also been applied
to plastic viscosity and yield stress prediction for concrete. Different predictive models
have been proposed that relates the yield stress and plastic viscosity of concrete to its
rheological properties. Benaicha et al. [25] developed an artificial neural network and
multi-variable regression models that predicted the yield stress and plastic viscosity of
concrete. The predictive models were developed using a dataset of 59 samples. The slump
flow diameter, V-funnel flow time, and L-Box ratio were the input variables in these models.
The increase in the slump flow diameter and V-funnel flow time was found to positively
impact yield stress and plastic viscosity. Alyamac and Ince [26] carried out an experimental
study including slump-flow, L-box, and V-funnel tests on SCC with the addition of three
different types of marble powder. Compression strength and split tension tests were con-
ducted on hardened concrete specimens. Based on these experiments, a concrete mix design
monogram was created that described the relationships between compressive strength,
water-cement ratio, aggregate-cement ratio, and cement content.

Data-driven prediction methodologies have also been applied to estimating the chlo-
ride permeability and mechanical properties of SCC. Carbon dioxide and chloride pene-
tration is a major factor leading to corrosion in reinforced concrete structures [27]. Yuan
et al. [28] investigated the chloride penetration in SCC using single and hybrid regression
methods. Cement content, fly ash, silica fume, fine and coarse aggregate percentages, and
temperature were the input variables in this study. The predictive model accuracies were
measured using the root mean square error, mean absolute error, mean absolute percentage
error, and performance index. Kumar et al. [29] demonstrated the applicability of the multi-
variate adaptive regression spline and minimax probability machine regression models to
predict the results of rapid chloride penetration tests. The effects of fly ash and silica fume
contents and temperature on the test results were investigated. Ge et al. [30] presented
optimized random forest models developed using particle swarm optimization, whale
optimization algorithm, and Harris hawks optimization. Input features included cement,
fly ash, silica fume, fine and soft aggregate contents, water-to-cement ratio, and tempera-
ture. Amin et al. [31] used a gene expression programming algorithm to investigate the
effects of fine and coarse aggregate contents, water-to-binder ratio, compressive strength,
and metakaolin content on rapid chloride penetration. Aggarwal et al. [32] developed
predictive models using random forest, random tree, multilayer perceptron, M5P, and
support vector regression algorithms, based on the contents of cement, fine and coarse
aggregates, metakaolin, rice husk ash, water, and superplasticizers as input features to
predict the 28-day compressive strength of SCC. The models were trained using a dataset
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of 159 samples. Farooq et al. [33] applied artificial neural network, support vector machine,
and gene expression programming techniques to predict the mechanical properties of
SCC. The coefficient of determination was used as the metric for accuracy. Zhu et al. [34]
developed hybrid predictive models by combining random forest, support vector regres-
sion, and multi-layer perceptron techniques with the grey wolf optimization algorithm.
The splitting tensile strength of concrete was predicted based on a dataset of 168 samples.
De-Prado-Gil et al. [35] compared the performances of extra trees regression, gradient
boosting, CatBoost, and XGBoost algorithms in predicting the splitting tensile strength of
SCC. The performances of these algorithms were compared on a database consisting of
381 samples using coefficient of determination, root mean square error, and mean absolute
error as the metrics for accuracy. The XGBoost algorithm was reported to perform best
according to all error metrics.

The current study presents the application of four different ensemble machine learning
models to predict the yield stress and plastic viscosity of SCC. The ensemble ML models
have been trained on a newly curated database that combines different experimental results
from past literature. Furthermore, the SHapley Additive exPlanations (SHAP) methodology
has been utilized to make the ensemble learning models explainable. The impact of each
rheological property on the predicted yield stress and viscosity was visualized according
to the SHAP algorithm. Finally, the effect of changing individual input variables on the
output of the ML models were shown using individual conditional expectation (ICE) plots.

2. Materials and Methods

The procedures for developing explainable predictive ensemble learning models for
the rheological properties of SCC are presented in this section. After a summary of the
test techniques used for generating the machine learning dataset, the applied ensemble
learning methods are described.

2.1. Test Procedures

This section briefly describes the experiments for the measurement of the rheological
properties of SCC.

2.1.1. Slump Flow Test

The slump flow test quantifies the filling ability of SCC. The test procedure followed
the EFNARC guidelines for SCC [36]. A mold with the shape of a truncated cone was
placed on a flow table, as shown in Figure 1, and filled with SCC. The mold had a top and
bottom diameter of 100 mm and 200 mm, respectively. The height of the cone was 300 mm.
A circle of 500 mm diameter with the cone was drawn on the flow table. After the mold
was lifted, SCC started to spread. The time needed for concrete to reach 500 mm diameter
was recorded as T500. Once SCC reached its final shape, the diameter of the spread was
measured in two perpendicular directions (D1 and D2, shown in Figure 1), and the average
value of these two measurements was recorded as the slump flow diameter.

Figure 1. Slump flow test setup.
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2.1.2. V-Funnel Test

The V-funnel test quantifies the ability of SCC to pass through narrow openings. The
test was carried out using a V-shaped funnel (Figure 2), through which SCC passed under
its weight. The standard dimensions of the equipment, shown in Figure 2, were adopted
from the JSCE guidelines [37].

Figure 2. V-funnel test equipment [1].

The V-funnel test was carried out with 11.2 L of concrete that filled the V-shaped
funnel. The time it took for this volume of SCC to completely flow out of the V-funnel was
recorded. V-funnel flow time is an indication of how quickly SCC can fill narrow voids.
Furthermore, greater V-funnel flow times indicate greater plastic viscosity [38].

2.1.3. L-Box Test

The equipment for the L-Box test consists of a vertical and horizontal section. Initially,
the vertical section is filled with SCC, and then the SCC is allowed to flow into the horizontal
section, passing through steel bars. A description of this test setup is shown in Figure 3.

Figure 3. L-Box test setup [11].

After stabilization of the concrete, the heights H1 and H2 are measured. The ratio
of these two values (H1/H2) is used as an indicator of the ability of SCC to pass through
narrow spaces. The ratio PA = H1/H2 is used as the passing ability parameter [39].

2.2. Ensemble Machine Learning Process

A dataset consisting of 170 samples was collected from the literature [3,25,39–41].
In this dataset, each sample contained the measurements for SCC from the V-funnel,
slump flow, and L-Box tests. Furthermore, the shear stress and plastic viscosity values
corresponding to each data sample was recorded using a rheometer. In this dataset, the
slump flow diameter, V-funnel flow time, and passing ability parameter were the input
features for the machine learning models, whereas shear stress and plastic viscosity were
the predicted output variables. In addition to these three input features, some models have



Sustainability 2022, 14, 14640 5 of 24

been developed where the input data has been augmented with the plastic viscosity values
when predicting shear stress, and vice versa. As the algorithms of predictive modeling,
Extreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), random
forest, and Light Gradient Boosting Machine (LightGBM) were selected. The models
were implemented using the Scikit-learn package available in the Python programming
language. This selection was based on various studies in the recent years that reported
these algorithms as some of the best-performing algorithms among state-of-the art machine
learning techniques. Rahman et al. [42] presented the results of eleven different machine
learning algorithms, including linear regression, ridge regression, lasso regression, decision
tree, random forest, support vector regression, k-nearest neighbors (KNN), artificial neural
network (ANN), XGBoost, AdaBoost, and CatBoost, in the prediction of the shear strength
of steel fiber-reinforced concrete beams. The XGBoost algorithm was shown to deliver the
best accuracy among these methods, followed by random forest, AdaBoost, and CatBoost.
Cakiroglu et al. [24] developed machine learning models for the prediction of the axial load
carrying capacity of concrete filled steel tubular stub columns. The performances of Lasso
regression, random forest, AdaBoost, LightGBM, Gradient Boosting Machine, XGBoost,
and CatBoost models were compared. The CatBoost, LightGBM, and XGBoost models were
demonstrated to perform better than the remaining models. Somala et al. [43] demonstrated
the application of linear regression, KNN, support vector machine, random forest, and
XGBoost models in predicting the peak ground acceleration and peak ground velocity
during an earthquake. The best predictions were obtained using the random forest and
XGBoost models for the prediction of peak ground acceleration and peak ground velocity,
respectively. Degtyarev and Naser [44] developed predictive models for the estimation
of the shear strength and elastic shear buckling load of cold-formed steel channels, using
the gradient boosting regressor, XGBoost, LightGBM, AdaBoost, and CatBoost methods.
The CatBoost method was observed to deliver the highest accuracy among these models.
Sun et al. [9] used the ANN, KNN, decision tree, random forest, AdaBoost, gradient
boosting regression tree, and XGBoost algorithms for the prediction of tuned mass damper
accelerations. Among these algorithms, the random forest model was shown to achieve the
best accuracy.

The maximum and minimum values, as well as the distribution of the input and
output features used in this study, have been visualized in Figure 4. In Figure 4, each
feature has been split into four compartments, with different colors based on the magnitude
of the features. The length of each compartment depends on the number of samples in that
compartment. The minimum and maximum values of each compartment are written above
the boundaries of the compartments.

Figure 4. Variable ranges and distributions.

In Figure 4, the slump flow diameter, V-funnel flow time, L-Box H2/H1 ratio, shear
stress, and plastic viscosity are shown with D, t, PA, τ, and µ, respectively. The majority
of cases (68%) have a V-funnel flow time between 7 and 20.25 s, whereas only 5.3% of the
samples have a V-funnel flow time between 33.5 and 60 s. In addition, 70.6% of the samples
have a slump flow diameter of less than 70.2 cm and 54.1% of the samples have a plastic
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viscosity higher than 87.7 Pa.s. A visualization of the correlation between the different
variables in this study is shown in Figure 5.

Figure 5. The correlation matrix with variable distributions (three stars indicate the significance
of correlation).

The correlation of all the variables in the dataset and their statistical distributions are
shown in Figure 5. Each tile on the diagonal shows the frequency distribution of a variable,
whereas the lower triangular area contains bivariate scatter plots with regression lines.
The upper triangular part of the correlation matrix contains the Pearson correlation values
between the variables, where the font size and number of stars indicate the strength of the
correlation. The Pearson correlation value rxy was computed as shown in Equation (1), and
an rxy value close to 1 indicates a strong correlation between the variables x and y.

rxy =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2
√

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
(1)

In Equation (1), x and y are two sets of values containing n samples each. For each
variable in Figure 5, a scale showing the magnitude of this variable is available on both the
horizontal and vertical axes. According to Figure 5, the passing ability (PA) and V-funnel
flow time (t) were correlated with a Pearson correlation coefficient of −0.93. The strongest
correlation between any two variables was observed between the V-funnel flow time (t)
and shear stress (τ). On the other hand, relatively weak correlations were found between
the slump flow diameter (D) and t, as well as between D and τ.

The dataset was randomly split into a training and test set for the training and testing
of the predictive models. Based on a consensus in the machine learning-related literature,
a 70% to 30% ratio between the training and test sets was adopted. Some of the notable
examples were studies carried out by Feng et al. [45] and Nguyen et al. [46]. Nguyen
et al. [46] carried out a comprehensive parametric study to demonstrate the effect of
changing training/test set split ratio on the predictive model output. A total of nine
split ratios ranging between 10/90 and 90/10 were tested, and the 70/30 split ratio was
demonstrated to be the most suitable split ratio. Table 1 shows the statistical properties of
the training and test sets where SD, As, and K denote standard deviation, skewness, and
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kurtosis, respectively. The grid search approach was adopted to tune the hyperparameters
of the predictive models using the training sets. Table 2 provides an overview of the
hyperparameters used in the predictive models. The hyperparameters of Table 2 were
obtained based on 10-fold cross-validation using the training set. In this process, the
training set was split into 10 equal-sized segments, and each of these segments was used as
a test set once, while the model was trained on the remaining part of the training set.

Table 1. Statistical properties of the training and test sets.

Dataset Property D t PA µ τ

Training
(119 samples)

Unit cm s - [Pa · s] [Pa · s]
Min 52.4 7.0 0.5 18.2 0.2
Max 88.0 60.0 1.0 296.3 98.6

Mean 68.19 18.10 0.83 107.40 29.23
SD 9.08 9.94 0.11 67.34 21.54
As 0.65 1.30 −0.69 0.57 1.18
K −0.54 2.09 0.35 −0.10 1.28

Test
(51 samples)

Min 54.0 7.0 0.52 18.3 0.8
Max 88.0 60.0 1.0 274.65 97.8

Mean 69.30 16.04 0.85 93.26 25.34
SD 9.12 9.57 0.11 58.22 20.71
As 0.59 2.38 −0.83 0.81 1.63
K −0.55 7.45 0.99 0.52 2.78

Table 2. Hyperparameters for the predictive models.

Model Parameter Value

Random Forest

Number of estimators (n_estimators) 5
Minimum samples for split (min_samples_split) 3

Minimum samples of leaf node (min_samples_leaf) 1
Maximum tree depth (max_depth) None
Number of features (max_features) “sqrt”

XGBoost

Number of estimators (n_estimators) 50
Step size shrinkage (eta) 0

Learning rate 0.1
Subsample ratio of the training instances

(subsample) 0.5

Maximum depth of a tree 6

LightGBM

Number of estimators (n_estimators) 500
Maximum number of decision leaves (num_leaves) 5

Maximum depth of a tree (max_depth) 4
Learning rate 0.2

use extremely randomized trees (extra_trees) True

CatBoost

Bagging temperature (bagging_temperature) 10
Learning rate 0.3

Depth 8
Tree growing policy (grow_policy) “Depthwise”

Figure 6 shows the learning curves of the predictive models. In each subplot of
Figure 6, the development of the R2 scores obtained from the training and test sets are
shown in red and green colors, respectively. For each model, the training samples were fed
into the algorithm in 30 batches and the performance of the model was plotted after the
model parameter updates. Figure 6 shows that the prediction performances of the test set
improves as the number of training samples increases. The learning curves converge to
their best performance, which indicates that the models have a good fit.
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Figure 6. Learning curves of the (a) XGBoost, (b) random forest, (c) LightGBM, and (d) CatBoost models.

Figures 7 and 8 show the variations of different variables used in the predictions for
shear stress (τ) and plastic viscosity (µ). In these plots, the colors of the dots represent
the changes in the magnitudes of the output variables. In Figure 7, as the magnitude of τ
increases, the colors of the dots change from blue to red. Similarly, in Figure 8, the colors
of the dots lighten as the magnitude of µ increases. Both Figures 7 and 8 show that as the
V-funnel flow time (t) decreases, the slump flow diameter rapidly increases for t < 15 s. A
similar relationship can be observed between D and passing ability (PA). Particularly, for
PA > 0.9, a rapid increase in D takes place. Both τ and µ are observed to decrease with
increasing D values, and increase with increasing t values. A nearly linear relationship is
observed between these variables (τ and µ) and the V-funnel flow time t, particularly for
t < 30 s.
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Figure 7. Relationships between the input variables and dependent variable τ.

Figure 8. Cont.
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Figure 8. Relationships between the input variables and dependent variable µ.

2.3. Gradient Boosting Algorithms

The gradient boosting algorithms in this study were built on the technique of combin-
ing weak decision trees to generate strong learners. This procedure is also called ensemble
learning. Among the algorithms in this category, the eXtreme Gradient Boosting (XG-
Boost) algorithm stands out as one of the most successful and frequently used algorithms.
Equation (2) describes the process of generating the predicted values, ŷi, for the i-th data
point in an XGBoost model. In Equation (2), the predictive model output is described as a
linear combination of the outputs of individual regression trees, fk(xi), where K is the total
number of regression trees. Here, xi denotes a vector of input features for a data point with
index i. Equation (2) also shows the regularized objective function, L(Φ), the minimization
of which yields the individual regression trees, fk. The leaf weights of these regression trees
are combined in the vectors wk, the total number of the leaves is denoted with T, and the
loss function, which depends on the difference between the target and predicted values, is
shown with L(yi, ŷi). In Equation (2), w∗j stands for the optimal values of the leaf weights
that minimize the loss function, and Ij is the set that contains the sample indices of the j-th
leaf [47,48].

ŷi =
K
∑

k=1
fk(xi)

L(Φ) = ∑
i

L(yi, ŷi) + ∑
k

Ω(fk) = ∑
i

L(yi, ŷi) + ∑
k
γT + 1

2λ||wk||2

w∗j = −
∑i∈Ij

gi

∑i∈Ij
hi+λ , gi =

∂L
(

yi,ŷ
(t−1)
i

)
∂ŷ(t−1)

i

, hi =
∂2L

(
yi,ŷ

(t−1)
i

)
∂
(

ŷ(t−1)
i

)2

(2)

Another algorithm that combines weak decision trees to generate strong learners is
the random forest algorithm. Bagging and random feature selection methodologies are
utilized to train each decision tree on a randomly selected subset of the training set. The
random forest model forecast is determined by the average value of the individual decision
tree predictions, as indicated in Equation (3). In Equation (3), m̂j(x) and m̂(x) denote the
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predictions of a single decision tree and the entire random forest model, respectively, for
the input vector x, where K is the total number of the decision trees in the model [49].

m̂(x) =
1
K

K

∑
j=1

m̂j(x) (3)

A more developed version of the gradient boosting machine algorithm with better
accuracy, more efficient memory usage, and increased speed is called the LightGBM algo-
rithm. Due to gradient-based one-side sampling (GOSS), parallel learning, and exclusive
feature bundling (EFB) techniques, the LightGBM algorithm is capable of processing large
datasets. The GOSS algorithm is based on the ranking of data instances to the magnitudes
of their gradients. Using this methodology, the predictive model can be trained on a smaller
training subset with greater gradient magnitudes, which increases model efficiency [50].

The CatBoost algorithm was mainly designed for the efficient processing of datasets
with categorical features. Better prediction accuracy is achieved through the ordered
boosting algorithm. Furthermore, using ordered target statistics, CatBoost eliminates the
prediction shift that is observed in the other ensemble learning methods [51].

3. Results

In this section, the predictions of the ensemble learning algorithms are compared
with the actual experimental values of shear stress and plastic viscosity. The accuracy and
computational speed of the predictive models were quantified and tabulated. For each
predictive model, the coefficient of determination (R2), root mean square error (RMSE),
and mean absolute error were used as the metrics for accuracy. Separate predictive models
were developed for the shear stress and plastic viscosity of SCC. The impact of each input
variable on model prediction was investigated using SHAP methodology. Individual
conditional expectation (ICE) plots were generated for each input feature.

Figure 9 shows the comparison between the predicted and actual experimental shear
stress values for the four different ensemble machine learning models. The predictions
of the training and test sets are shown separately, with different colors and symbols. The
predictive models in Figure 9 were developed using the slump flow diameter, V-funnel flow
time, L-Box passing ability, and plastic viscosity as the input features affecting the shear
stress τ. In Table 3, the best accuracy values are shown in bold font. Table 3 shows that the
XGBoost model delivered the best accuracy on the test set in terms of the R2 score, MAE,
VAF, and RMSE metrics, followed by the random forest and CatBoost algorithms. On the
other hand, the LightGBM algorithm was observed to have the worst performance in terms
of all four metrics. A comparison of the model performances on the test set revealed that
the XGBoost model performed best according to the R2, MAE, and RMSE metrics, whereas
the random forest algorithm performed best according to the VAF metric. The XGBoost,
random forest, and LightGBM algorithms fared almost equally in terms of processing
speed, whereas the CatBoost technique was significantly slower. Figure 10a shows the
comparison of the predicted and target shear stress values for the training and test sets,
where a close overlap between these two quantities can be observed. Figure 10b shows the
prediction errors in the training and test sets in terms of percentages. The error percentages
were reduced to near zero values for the entire training set, whereas up to 40% of over- or
underestimation of the shear stress could be observed for certain samples in the test set.
Figure 10c,d shows the distributions of the error percentages for the training and test sets,
respectively. Figure 10c shows that the error percentages of the training set are clustered
around the zero value, whereas a wider distribution can be observed with error percentages
that are an order of magnitude greater, as shown in Figure 10d.
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Figure 9. Comparison of the experimental and predicted shear stress values for (a) XGBoost, (b) ran-
dom forest, (c) LightGBM, and (d) CatBoost models.

Figure 10. Cont.
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Figure 10. (a) Predictions of the shear stress, (b) error percentages, (c) error distribution of the training
set, and (d) error distribution of the test set for the XGBoost model.

Table 3. Prediction accuracy of the machine learning models for shear stress.

Algorithm
R2 MAE VAF RMSE

Duration [s]
Train Test Train Test Train Test Train Test

XGBoost 0.9997 0.9802 0.094 1.712 99.99 97.04 0.397 2.885 4.54
Random Forest 0.9977 0.9797 0.658 1.795 99.76 98.05 1.037 2.924 3.24

LightGBM 0.8968 0.9111 4.104 3.624 90.08 90.80 6.888 6.114 4.04
CatBoost 0.9988 0.9779 0.572 2.120 99.92 97.98 0.747 3.047 22.69

Figure 11 shows the comparison between the predicted and target plastic viscosity
values. Similar to Figure 9, the accuracies of the models in predicting the plastic viscosity
values are visualized by the positions of the predicted/target value pairs. The slump flow
diameter, V-funnel flow time, L-Box passing ability, and shear stress were used as input
variables to predict the plastic viscosities (µ) in Figure 11. The model performances in
predicting plastic viscosity were quantified using the R2 score, MAE, VAF, and RMSE
metrics, as shown in Table 4. In Table 4, the best accuracy values have been shown in
bold font. The performance values in Table 4 show that the CatBoost model was the most
accurate for all four metrics, followed by random forest. On the other hand, the random
forest algorithm was the fastest in terms of computational speed, whereas the CatBoost
algorithm was significantly slower. Figure 12 shows the variation in the prediction error
percentages throughout the training and test sets. An overlap of the predicted and target
plastic viscosity values can be observed in Figure 12a. Error percentages increased in the
transition from training set to test set, shown in Figure 12b. The distribution of these error
percentages are shown as histogram plots in Figure 12c,d for the training and test sets,
respectively. According to Figure 12c, the error percentages are mainly clustered in the
±1% range, whereas the error percentages are distributed on a wider range in Figure 12d.
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Figure 11. Comparison of the experimental and predicted plastic viscosity values for (a) XGBoost,
(b) random forest, (c) LightGBM, and (d) CatBoost models.

Figure 12. Cont.
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Figure 12. (a) Predictions of the plastic viscosity, (b) error percentages, (c) error distribution of the
training set, and (d) error distribution of the test set for the CatBoost model.

Table 4. Prediction accuracy of the machine learning models for plastic viscosity.

Algorithm
R2 MAE VAF RMSE

Duration [s]
Train Test Train Test Train Test Train Test

XGBoost 0.9999 0.9132 0.041 8.274 99.99 91.56 0.084 16.986 4.66
Random Forest 0.9896 0.9570 3.665 7.703 98.74 95.44 6.846 11.961 3.15

LightGBM 0.9324 0.9387 9.527 9.286 93.61 93.18 17.437 14.270 3.65
CatBoost 0.9986 0.9654 1.764 7.602 99.95 96.32 2.487 10.727 19.82

SHAP Analysis

The SHAP methodology is an effective way of clarifying the impacts different input
features have on the predictions of a model. The SHAP technique explains complex ML
models using simpler explanation models that approximate the original model. This
method can be summarized through Equation (4), where s is the explanation model,
x′ ∈ {0, 1}M is a binary variable connected to the actual input feature values x through a
mapping function, such that x = hx(x′), and M is the total number of input features [52].

s(x′) = Φ0 +
M
∑

j=1
Φjx′j

Φj = ∑
S⊆F\{i}

|S|!(|F|−|S|−1)!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

] (4)

In Equation (4), Φj represents the effect of each input feature. The set of all features is
denoted with F, and S is a subset of F that does not contain the i-th feature. The values of the
input features in the subset S are contained in the vector xS. The output of the explanation
model for when all input features are missing is denoted with Φ0. In Equation (4), the
function f represents the actual predictive model. The Shapley regression values are
computed based on the differences between the model predictions with and without the
i-th input feature. The SHAP process can also be visually explained, as in Figure 13, where
Φ1 and Φ2 have an increasing effect and Φ3 has a decreasing effect on the model prediction.
Further details of this procedure can be found in [52].
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Figure 13. SHAP (SHapley Additive exPlanation) values [53].

The SHAP summary plots in Figures 14 and 15 visualize the impact of each input
variable on predicted shear stress and plastic viscosity, respectively. In Figures 14 and 15,
each data sample is shown with a dot for each input feature. The horizontal positions of
these dots are determined by their SHAP values. The positive SHAP values indicate an
increasing impact of the input feature on the model output, whereas negative SHAP values
indicate a decreasing impact. Furthermore, the magnitude of each feature in a certain
sample is represented by the color of its dot in the diagram, where shades of red correspond
to high feature values and shades of blue correspond to low feature values. Figure 14 is
based on the XGBoost model, whereas Figure 15 is generated using the CatBoost model, as
these were the models with the highest accuracy in the prediction of τ and µ, respectively.
According to Figure 14, the plastic viscosity had the highest impact on the XGBoost model
prediction, followed by V-funnel flow time, passing ability, and slump flow diameter.
Figure 15 shows that shear stress had the highest impact on the predicted plastic viscosity,
and the remaining features had the same ranking (D < PA < t) as in Figure 14. Figure 14
shows that high values of t and µ have an increasing effect on the predicted value of τ,
whereas high values of PA and D have a decreasing effect on τ. Similarly, Figure 15 shows
that high values of τ and t have an increasing effect on µ, and high values of PA and D
have a decreasing effect on µ. These observations are also supported by Figures 7 and 8.

Figure 14. SHAP summary plot for the prediction of shear stress (τ) (XGBoost).
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Figure 15. SHAP summary plot for the prediction of plastic viscosity (µ) (CatBoost).

The feature dependence plots in Figures 16 and 17 were generated from the XGBoost
and CatBoost models, respectively. The feature dependence plots were generated for each
input feature, and each feature dependence plot contains information about the variation of
the SHAP values of a feature, with respect to the magnitude of that feature. For each input
feature, another feature most dependent on that feature was included in the plots. The
magnitudes of the most dependent features are presented with colors. Figure 16a shows
that as the value of D increases, this variable begins to have negative SHAP values and the
V-funnel flow time t, which is the most dependent variable on D, begins to have smaller
values. From Figure 16b, as the value of t increases, passing ability (PA) decreases and
the SHAP value for t increases, which indicates that increases in t increases the predicted
shear stress (τ). Figure 16c shows that increasing the PA variable also increases D. On
the other hand, increases in both D and PA have a decreasing effect on the predicted τ.
According to Figure 16d, increasing the value of the plastic viscosity (µ) decreases D, but
has an increasing effect on τ. Figure 17 shows the feature dependence plots obtained
during the prediction of µ. Figure 17a shows that for the larger values of D, the SHAP value
becomes negative and shear stress decreases. The variation of t and corresponding SHAP
values in Figure 17b resembles Figure 16b, such that PA appears to be the input feature
most dependent on t in both plots, and is adversely affected by t. Figure 17c shows that an
increase in the passing ability of concrete reduces plastic viscosity (negative SHAP values)
and corresponds to lower τ values. According to Figure 17d, the SHAP values of τ almost
linearly increase, up to when τ reaches around 50 MPa. From this point, more irregular
variation in the SHAP value is observed, whereas the D values are on the lower side of the
spectrum for these larger values of τ.

Figure 16. Cont.
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Figure 16. Feature dependence plots for the variables in the prediction of τ: (a) D, (b) t, (c) PA, and
(d) µ.

Figure 17. Feature dependence plots for the variables in the prediction of µ: (a) D, (b) t, (c) PA, and
(d) τ.

The plots of prediction consistency in Figures 18 and 19 were generated using the
predictions of the models on the test sets, which comprised 30% of the entire data set. The
vertical axes in these plots show the ratio of the actual experimental values to predicted
values. For each predictive model, a linear curve was fitted onto the τexp/τpre and µexp/µpre
values in Figures 18 and 19, respectively. In addition to the linear curves, the τexp/τpre
and µexp/µpre values from the XGBoost and CatBoost plots have been presented as scatter
plots. The perfect match between the experimental and predicted values, as well as ±10%
deviation from the perfect match, has been shown with horizontal solid and dashed lines
in black in each subplot of Figures 18 and 19. The consistency plots present information
about the tendencies of each predictive model to overestimate or underestimate the target
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value. In this sense, a perfectly horizontal curve would indicate that the model predictions
are equally good for the entire range of input features. Figure 18 shows that the LightGBM
predictions shown with the solid blue line had the least consistency among the predictive
models. For D values less than 65 cm, the LightGBM predictions underestimated the τ
values, and for D values less than 58 cm, the LightGBM model underestimated τ over 10%.
Similarly, for D values greater than 75 cm, the LightGBM model overestimated τ more than
10%. A similar pattern of consistency could also be observed for other input features during
the estimation of τ. On the other hand, Figure 18 shows that the most consistent model in
the prediction of τ was the CatBoost model. A different pattern of consistency was observed
in the prediction such that LightGBM was observed to be the most consistent model. The
curve fit for the µexp/µpre values obtained through the LightGBM model exhibit a near
horizontal course for all input features. On the other hand, the least consistent model was
the XGBoost model in the prediction of µ. Overall, the predictive models exhibited better
consistency in the prediction of µ. XGBoost was the only model that over-or underestimated
the target value by more than 10% for τ > 75 MPa and t > 40 s.

Figure 18. Prediction consistency plots for the variables in the prediction of τ: (a) D, (b) t, (c) PA, and
(d) τ.
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Figure 19. Prediction consistency plots for the variables in the prediction of µ: (a) D, (b) t, (c) PA, and
(d) τ.

The ICE plots in Figures 20 and 21 show the variations in the predictive model output
to each input feature for each data sample in the dataset. For any given input feature and
data sample, all the values of the remaining input features were kept constant while the
model predictions (denoted by f(x)) were calculated for different values of that particular
input feature. As a result, for each data sample, a different curve was generated in the ICE
plots. These plots show whether there are differences in the interactions between the feature
values and model predictions for different samples. In addition to the individual curves,
Figures 20 and 21 also contain darker blue curves, which represent the average of all the
curves in a plot. Both Figures 20 and 21 show that most curves have a similar course in all
subplots, whereas only minor deviations from the average curve pattern can be observed
in some of the curves. For example, in Figure 21 for D > 70 cm, most curves exhibit a near
horizontal course, whereas in some of the samples, a slight increase in predicted µ values
can be observed for 70 < D < 75 cm. Similarly, in Figure 20, most of the curves exhibit a
near horizontal course for PA > 0.8, whereas some of the samples in the 0.88 < PA < 0.92
range show a slight increase in the predicted τ value. Also, for PA > 0.95, a slight drop in
the predicted τ value can be observed in some of the samples.
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Figure 20. Individual conditional expectation (ICE) plots for the variables in the prediction of τ: (a) D,
(b) t, (c) PA, and (d) µ.

Figure 21. Individual conditional expectation (ICE) plots for the variables in the prediction of µ: (a) D,
(b) t, (c) PA, and (d) τ.

4. Discussion and Conclusions

Yield stress and plastic viscosity are significant indicators of the workability of SCC.
Therefore, having the appropriate tools to accurately predict its material properties is a
great advantage. In recent years, machine learning techniques have been increasingly used
to investigate different engineering systems to predict their structural behavior. The current
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study demonstrates the performances of four ensemble learning techniques on a newly
curated data set that contains information about the relationships between the slump flow
diameter, V-funnel flow time, passing ability from L-Box tests, plastic viscosity, and shear
strength of SCC. By splitting the dataset into training and testing sets, the ensemble learning
models were developed on the training set, and then their performances were measured on
the test set. As the metrics for predictive model accuracy, the commonly used coefficient of
determination, root mean square error, and mean absolute error were adopted. The current
work includes extensive model interpretations based on the SHAP algorithm, consistency
plots, and individual conditional expectation (ICE) plots. The interactions between the
different input features and predictive model output values have been presented in detail
using feature dependence plots. The SHAP analysis revealed that plastic viscosity had the
greatest influence on model output when predicting shear stress, and shear stress had the
highest impact when predicting plastic viscosity. Furthermore, slump flow diameter was
found to have the lowest impact on the model output for the predictions of yield stress
and plastic viscosity of SCC. Among all ensemble learning models, the CatBoost model
was the most consistent model in the prediction of shear stress, and LightGBM was the
most consistent model in the prediction of plastic viscosity. The relationships between the
predictive model outputs and different input features were further clarified using ICE plots,
in which the model predictions were visualized for the entire range of input features for
each data sample. The average values of these predictions are presented in the ICE plots.
The main conclusions of the study can be summarized as follows:

• The XGBoost model performed best on the test set during the prediction of shear stress
as a function of the variables D, t, PA, and µ, with an R2 score of 0.9802, followed by
random forest (R2 = 0.9797), CatBoost (R2 = 0.9779), and LightGBM (R2 = 0.9111).

• The CatBoost model performed best on the test set during the prediction of plastic
viscosity as a function of D, t, PA, and τ, with an R2 score of 0.9654, followed by
random forest (R2 = 0.9570), LightGBM (R2 = 0.9387), and XGBoost (R2 = 0.9132).

• Shear strength and plastic viscosity features were found to have the highest impact
on the predictive model output during prediction of each other, based on the SHAP
analysis. In the prediction of both shear stress and plastic viscosity, the slump flow
diameter was found to have the lowest impact on the model output.

• In the prediction of shear stress, the most consistent predictions were made by the
CatBoost model, whereas the LightGBM model was most consistent in predicting
plastic viscosity.

Future research should include the study of the compressive strength and split ten-
sile strength of SCC as a function of different rheological properties. The results of sieve
segregation resistance tests could be included in predictive model development. Further-
more, closed-form equations could be developed with the help of optimization techniques
that relate different rheological parameters to compressive strength, split tension strength,
shear stress, and plastic viscosity of SCC. Overall, the availability of open-source machine
learning techniques and predictive models is a great benefit for practical engineers and
researchers working in the field of concrete research.
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