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Abstract: Indoor occupancy prediction can play a vital role in the energy-efficient operation of
building engineering systems and maintaining satisfactory indoor climate conditions at the lowest
possible energy use by operating these systems on the basis of occupancy data. Many methods have
been proposed to predict occupancy in residential buildings according to different data types, e.g.,
digital cameras, motion sensors, and indoor climate sensors. Among these proposed methods, those
with indoor climate data as input have received significant interest due to their less intrusive and
cost-effective approach. This paper proposes a deep learning method called CNN-XGBoost to predict
occupancy using indoor climate data and compares the performance of the proposed method with a
range of supervised and unsupervised machine learning algorithms plus artificial neural network
algorithms. The comparison is performed using mean absolute error, confusion matrix, and F1

score. Indoor climate data used in this work are CO2, relative humidity, and temperature measured
by sensors for 13 days in December 2021. We used inexpensive sensors in different rooms of a
residential building with a balanced mechanical ventilation system located in northwest Copenhagen,
Denmark. The proposed algorithm consists of two parts: a convolutional neural network that learns
the features of the input data and a scalable end-to-end tree-boosting classifier. The result indicates
that CNN-XGBoost outperforms other algorithms in predicting occupancy levels in all rooms of the
test building. In this experiment, we achieved the highest accuracy in occupancy detection using
inexpensive indoor climate sensors in a mechanically ventilated residential building with minimum
privacy invasion.

Keywords: occupancy detection; machine learning; CNN-XGboost; residential buildings; mechanical
ventilation; indoor climate data

1. Introduction

Residential buildings use a considerable amount of energy such that, according to
Eurostat, in 2020, households represented 28% of the total energy used in the EU [1].
This study also reported that space heating and cooling have the highest energy use in
households in the EU (2020), i.e., 63.2% of the total energy use in the residential sector [2].
One of the consequences of world population growth is the increase in residential houses
and energy consumption. Therefore, the need for modern technologies is growing to reduce
occupant-related energy consumption.

When it comes to occupants’ behavior, several studies have shown that the amount
of energy demanded by buildings can vary due to occupants’ behavior, i.e., occupants’
presence, the number of occupants, and their preferred thermal comfort [3–5].

Occupants have a significant role in reducing energy use. Therefore, to save energy,
a possible method is to detect occupants using cameras, Wi-Fi, Bluetooth, PIR sensors,
light sensors, RFIDs, and indoor climate sensors (e.g., temperature, relative humidity, and
CO2), as well as to configure the heating, ventilation, and air conditioning (HVAC) system
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using data from the occupants’ presence [6–13]. Studies have shown that using occupancy
detection can save up to 60% in HVAC energy use [13–15].

1.1. Related Works

Many studies have been conducted to detect occupancy levels. These methods can
be divided into four major categories: traditional statistical methods, unsupervised ma-
chine learning methods, supervised machine learning methods, and hybrid machine learn-
ing methods.

Most of the models applied in traditional statistical models are Markov chain-based
models [16–18]. To predict occupancy at the binary level and the number of occupants for
the offices located in the US, Li and Dong [19] proposed a Makov model including change-
point analysis with a moving window training and a modified random sampling approach.
These methods are compared with two simulation models (Page’s Markov and Reinhart’s
Lightswitch) and two machine learning methods (artificial neutral network (ANN) and
SV regression). They tested the predictive accuracy of the approaches in forecasting
the presence and number of occupants 15 min, 30 min, and 24 h ahead. The results
showed that the proposed Markov-based model outperformed the other four methods.
Huang et al. [20] used a Wi-Fi indoor positioning system to predict occupancy levels as a
function of dwell time distribution. They studied passenger flow at Shanghai Hongqiao
International Airport for 66 days. They modeled the distribution of passengers’ dwell time
using a Bayesian method. They predicted occupancy levels with a relative r-square of
0.747. Pedersen et al. [21] proposed an occupancy prediction method called plug-and-play
which follows the trajectory of indoor climate sensors data to calculate the probability
of occupancy according to a set of defined rules. This probability is then converted into
an unoccupied/occupied binary signal with a user-defined threshold. They used indoor
climate parameters CO2, air temperature, and humidity, in addition to passive infrared
(PIR), noise, and volatile organic compounds (VOCs) in a simple test room and a residential
apartment with three bedrooms. In the test room, the results showed that the occupancy
prediction based on the CO2 measurements had the minimum mean absolute error, in
comparison with the results obtained from the measurements of the other sensors. In the
apartment, the occupancy prediction based on the measurements of the PIR sensor gave
the most accurate occupancy prediction when the apartment went from unoccupied to
occupied, while occupancy prediction based on measurements of the VOC or CO2 sensors
gave the most accurate occupancy prediction when the apartment went from occupied
to unoccupied.

In today’s occupancy prediction literature, the use of ML methods is growing due to
their flexibility and accuracy in predicting occupancy either as a binary or according to the
number of occupants. To implement a prediction model utilizing machine learning methods
for residential buildings, we should pay attention to many principal subjects, i.e., occupants’
privacy, occupancy prediction accuracy, method implementation cost, method complexity,
speed of the method, etc. Dai et al. [22] reviewed the studies applying machine learning
(ML) methods to predict occupancy and window-opening behaviors in smart buildings.

Generally, ML algorithms are divided into supervised and unsupervised algorithms.
Unsupervised learning is a machine learning technique in which a model tries to cluster
untagged data. The goal of clustering is to find natural grouping relations in data and
discover if a data point belongs to a cluster or not. Examples of these algorithms are
k-means clustering and principal component analysis. Killian and Kozek [23] proposed a
model predictive control for smart homes using an unsupervised occupancy prediction
method. They combined the proper orthogonal decomposition [24] with KMC, which
is capable of using the full power of energy storage in a smart home with almost the
same comfort.

Supervised learning is a machine learning technique in that the model has input data
connected with a specific output. Examples of supervised algorithms are KNN, SV, GB, RF,
linear regression, LR, DT, neural networks (NNs), and naïve Bayes. KNN has been used
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to identify the presence, number, and location of the occupants using motion sensors and
RFID technology [25,26].

Aftab et el. [27] developed an automatic HVAC controller in a public mosque. This
controller can predict occupancy levels using linear regression. The study used a method
based on a Raspberry Pi 3 platform and a fish-eye camera to track occupancy. The analysis
showed that the method had a detection accuracy of 90% in real time and 85% accuracy in
occupancy forecast. Using the proposed model would enable building owners to save 20%
energy savings while maintaining the comfort of occupants. Privacy invasion is one of the
obstacles to implementing camera-based models in residential buildings. Razavi et al. [28]
applied some supervised algorithms such as GB, RF, SVM, NN, and KNN to detect the occu-
pancy of residential buildings using smart meter data. The authors concluded that GB with
a cross-validation accuracy of 0.982 and precision of 0.997 outperformed the other methods.
To forecast occupancy levels in two university laboratories, Mamidi et al. [29] used motion
detection, CO2 reading, sound level, ambient light, and door state sensors. They applied
several ML and ANN methods: ensemble learning, LR, SVM, and multilayer perceptron
(MLP) to predict occupancy levels. The authors concluded that MLP outperformed the
other methods in terms of prediction accuracy. To forecast the number of occupants of a
test room using an RF classifier, Sangogboye et al. [30] employed common sensors (e.g.,
temperature, CO2, and PIR) and dedicated sensors (e.g., 3D stereovision camera) separately.
The method with common sensors was called GAKF, and the method with dedicated
sensors was called CAM. The result showed a normalized mean squared prediction error
of 2.972 and 6.57 for CAM and GAKF, respectively, considering that implementing the
CAM method costs more than the GAKF method because 3D stereovision cameras are
much more expensive than temperature and CO2 sensors. Kampezidou [31] proposed an
approach including a physics-informed pattern-recognition machine (PIPRM) to predict
binary occupancy in a 3.6 m × 3.6 m × 2.7 m residential room using CO2 and temperature
sensor measurements placed on a stand at 50 cm height, away from occupants. Data were
collected for 7 days in March, April, and May at different hours. Their model showed the
capability of predicting real-time occupancy with an accuracy and an F1 score of 97% and
92.3%, respectively, on test data.

More complicated neural network methods can be found in Kim et al. [32] to cope
with the problem of occupancy prediction in large exhibition halls. They proposed spatial
partitioning of large exhibition halls and an occupancy prediction model based on a long
short-term memory (LSTM) recurrent neural network. They tested their proposed model in
a 126 m × 90 m exhibition hall in Goyang, South Korea. They divided the hall into multiple
zones and recorded the occupancy using 50 image sensors for 10 days in July 2018. They
compared their model with autoregressive integrated moving average (ARIMA) and Holt–
Winters models used to predict occupancy in large exhibition halls. The result indicated that
ARIMA and Holt–Winters models only showed good performance in short-term (15 min)
occupancy prediction, but their model was effective and stable in both short-term and
long-term (180 min) occupancy prediction. A neural network learns a person’s behavior
and predicts it. This network is unable to predict another person’s behavior accurately. To
cope with this problem, Leeraksakiat and Pora [33] applied LSTM to enhance the power
of the network when a person occupies a place or changes their comfort, or when a new
person enters the place. First, they used a norm dataset to train the network, and then
new batches of sampling data were added to update the network, i.e., transferring new
knowledge to the previous information. They showed that transfer learning could increase
the power of the network to recognize the behavior changes of the occupants.

Compared to other machine learning methods, hybrid method applications are some-
what limited [16]. Hybrid methods are combinations of supervised and unsupervised
methods. Sama et al. [34] examined a compression-based sequential prediction approach,
based on the Active LeZi algorithm, to predict the occupancy and movement of smart
home residents for automation applications. They used motion detector sensors to test
their model. Liang et al. [35] worked on the problem of occupancy pattern learning and
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occupancy schedule prediction in office buildings. Their hybrid approach first recognizes
the occupants’ presence patterns using cluster analysis and then learns the schedule rules
using the decision tree. The final step is to predict occupancy schedules. They tested their
approach using 1 year data related to an office building in Philadelphia, US. The input data
were the time-series data of people entering and exiting the building. Validation results
showed that the approach had a remarkable improvement in the accuracy of occupancy
schedule prediction. Nacer et al. [36] proposed a method called automatic learning of an oc-
cupancy schedule (ALOS). Their method was a combination of two parts: an unsupervised
clustering method to classify leaving and coming of the occupants in a family residential
building consisting of four occupants and a building with one elderly person living alone;
a mixture model to determine the doweling time of the occupants. This method was intro-
duced to predict the occupancy of residential buildings to manage the heating system. They
installed PIR sensors, CO2 detectors, sound-level meters, hygrometers, and thermometers
in their work. The results of their research showed that ALOS could achieve up to 90%
accuracy in predicting occupancy.

1.2. Research Gap and Contribution

In occupancy detection, several factors including the accuracy of the model, privacy of
occupants, speed of the model, ease of model implementation, and model implementation
cost should be considered. Camera-based models are among the most accurate existing
models, but they are relatively expensive and invade the residents’ privacy [37]. Wi-Fi
and Bluetooth-based models suffer from two issues; occupants need to always carry their
smartphone with Bluetooth or Wi-Fi turned on. Moreover, the implementation of these
models demands additional costs and maintenance [38]. PIR sensors are unreliable because,
when the occupants stay still and motionless, these sensors may log misleading occupancy
information [39]. RFIDs are intrusive tags that residents should always take with them.
If one of the residents or guests does not take one of these tags, their presence in the
environment is not recorded [38]. In general, RFIDs are more suitable for offices than
residential buildings.

Most existing research studies were based on prediction models requiring indoor
climate data as input. Indoor climate sensors are relatively inexpensive, usually available
in existing modern buildings, and easy to implement; however, to compensate for their
low prediction accuracy, more complicated models such as ML models are needed [38].
These inexpensive indoor climate sensors are also increasingly available in today’s smart
homes. Despite the great potential for energy saving with occupancy detection in residential
buildings, little research has been conducted on residential buildings [40,41]. In comparison
with office buildings, occupancy detection in residential buildings is more challenging
due to the rather low number of occupants and the difficulty in collecting ground-truth
data without privacy violations. On the other hand, the implementation of mechanical
ventilation systems has been increasing in residential buildings. Occupancy prediction
based on indoor climate data is particularly challenging in residential buildings with a
mechanical ventilation system since CO2, temperature, and humidity are controlled by the
ventilation system to be within certain limits. Interference of the mechanical ventilation
system in indoor air causes the accuracy of the model to decrease; hence, the power of the
model should be increased.

This literature review revealed a significant contribution of existing research in the
advancement of occupancy prediction, but a gap remains with regard to the existence of a
fast, cost-effective, and accurate method without violating the privacy of occupants in resi-
dential buildings with a balanced mechanical ventilation system. A few studies addressed
occupancy detection in residential buildings with a balanced mechanical ventilation system,
but most of them did not consider real-life situations. Among the few studies, the work
in [31] evaluated the proposed occupancy detection method in a residential building with a
mechanical ventilation system. However, the experimental procedure was rather simple, in
which only one room in a residential building was considered. The study [42] evaluated
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a methodology for occupancy detection based on hidden Markov models for different
rooms in a passive residential house with a mechanical ventilation system. However, this
study only evaluated average daily and hourly occupancy estimation. Likewise, the study
in [21] evaluated the occupancy detection method in a three-room dorm apartment with a
mechanical ventilation system. However, in this study, the sensor data were only logged at
the apartment level, which lowered the accuracy of occupancy detection at the room level.
To the authors’ best knowledge, no study in the existing literature has evaluated an indoor
climate-based occupancy detection method at room level in a residential building equipped
with balanced mechanical ventilation, in which several rooms with different occupancy
patterns have been tested.

To fill this gap, we propose an approach that is inexpensive, accurate, easy to install,
and fast. In this work, we apply CNN-XGBoost to predict the occupancy in rooms of a
residential building using purely indoor climate measurements. Compared to the previous
studies conducted in residential buildings with mechanical ventilation, this model extracts
the features from indoor climate data to achieve the highest accuracy using inexpensive
sensors. The proposed model consists of a convolutional neural network that extracts
features of indoor climate data and performs the classification operation with a robust
classifier. The main contributions of this work are as follows:

1. We experimentally evaluate an ML method to accurately detect occupancy in sev-
eral rooms with different occupancy patterns in a residential household equipped
with a balanced mechanical ventilation system, while, with the least privacy inva-
sion, we impose no limitation on the occupants in using the HVAC system, doors,
and windows.

2. We propose a novel ML model for occupancy prediction in residential buildings that is
fast and sufficiently accurate. The model fills the lack of feature extraction in previous
models used in residential buildings with a mechanical ventilation system.

2. Materials and Methods

The present study employs the accuracy and feature extraction capability of convo-
lutional neural networks and the speed, accuracy, and flexibility of XGBoost, developed
by Chen et al. [43], for the first time in predicting the occupancy of residential buildings.
Chen et al. [43] proposed XGBoost as a sparsity-aware algorithm for sparse data, a weighted
quantile sketch for approximate tree learning, and a cache-aware algorithm for out-of-core
tree learning.

We use inexpensive non-intrusive sensors that can be easily installed in residential
buildings. Our proposed model can compensate for the lower prediction accuracy based
on these sensors compared to digital cameras, providing an accurate but cost-effective
prediction in residential buildings with balanced mechanical ventilation systems. We
applied the Python programming language (Python 3.9) installed on a machine with 16 GB
of RAM, an Intel Core i7 1.90 GHz CPU, and a hard disk of 500 GB to implement the
algorithm. To verify the power of the model we compared it with LR, DT, RF, GB, KMC,
KNN, SV, CNN, and XG-Boost classifiers using the MAE, confusion matrix, and F1 score.

2.1. CNN-XGBoost Algorithm Description

CNN-XGBoost is the combination of a CNN [44] for feature extraction and XG-
Boost [43] as the classifier (see Figure 1).

The first part of the model is a deep learning algorithm consisting of two key layers: the
convolution layer which obtains the local features, and the pooling layer which performs a
specific function such as max pooling, providing the maximum value in a filter region (see
Figure 2).

CNN part of the model receives the sensor data as input and learns the features
of the data. This part has five layers: input, convolution, pooling, reshape, and fully
connected layers. The input layer is a 3 × 1 vector that receives sensor data. First, we
check the data for missing values and standardize them, and then the clean data are used
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as input of the CNN part of the model. An example of convolution and max pooling
operations on indoor climate data is shown in Figure 2. The CNN part is trained by a
backpropagation algorithm [45]. The XGBoost part of the model is a scalable end-to-end
tree-boosting algorithm [43] that is replaced by the output layer of the CNN part [46].
To prevent overfitting, XGBoost uses the learning rate (or shrinkage) parameter and the
number of trees parameter. The former manages the learning process by weighing new
trees added to the model. The latter controls the number of trees.
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XGBoost has outperformed other algorithms in many machine learning cases [47]. The
XGBoost algorithm does not contain a feature learning part, and this problem can be solved
by adding the convolution layer of a CNN to XGBoost [47]. The output of the XGBoost is
either 0 or 1, where 0 stands for unoccupied and 1 stands for occupied.

2.2. Studied Rooms in a Residential Building

The developed model was validated using experimental data from three different
rooms in a single-family house located on the northwestern outskirts of Copenhagen,
Denmark. Figure 3 shows the building plan, in which the three rooms under study are
highlighted. The details of the studied rooms are listed in Table 1. The rooms were
mechanically ventilated with an air change rate of approximately 0.6 per hour during the
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experiment. All the windows and external doors were closed, whereas all the internal
doors were open during the experiment. Even though the doors of the rooms were open
during the test and the air was exchanged inside the house, in addition to the ventilation
system, the proposed model could accurately detect presence and absence. These conditions
indicate that we did not place any restrictions on the residents in this experiment, and the
residents remained in normal living conditions.
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Table 1. Details of the rooms under study.

Big Office Small Office Bedroom 1

Volume 97 m3 24 m3 48 m3

Number of windows 3 0 1
Number of doors 2 3 1
Max number of
occupants 1 1 2

Two volunteers registered their presence for 13 days in December 2021 at 5 min time
intervals. CO2 concentration, temperature, and relative humidity were measured and
logged during this period with the same time interval. The sensors sent the climate data to
cloud storage. To access the measured data, we use an application programming interface
(API) through an open package provided for Python and Matlab programming languages.

2.3. Sensors

In this work, we used inexpensive sensors available in the market, i.e., CO2, tem-
perature, and relative humidity sensors to facilitate the implementation of the method
in any residential building. Simultaneously, we tried to use the fewest possible sensors.
Although all sensors threaten privacy, we employed sensors that are commonly used in
smart buildings today. The typical inaccuracy of the temperature and relative humidity
sensors was ±0.2 ◦C and ±2% RH, respectively. The CO2 sensor was equipped with diffu-
sion technology and intelligent calibration to measure the concentration of CO2 in the air.
Table 2 depicts the specifications and the typical inaccuracies of the sensors.
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Table 2. Sensors’ specifications.

Type Measuring Range Typical Inaccuracy

Temperature −40 ◦C to +85 ◦C ±0.2 ◦C at +5 ◦C to +60 ◦C
± 0.5 ◦C at −20 ◦C to +85 ◦C

Relative humidity 0–100% RH
±2% RH at 20–80% RH
±3% RH at 10–90% RH
±3.5% RH at 0–100% RH

CO2 0–5000 ppm ±(50 ppm + 3%)

2.4. Data Collection

The total dataset contained 3612 records. We split the data into training and test
datasets. Since our dataset was used for classification, the model was memoryless. Each
set of inputs (CO2, temperature, and relative humidity) was mapped to a specific output
(occupancy) independent of time. This feature enabled us to randomly select training and
test datasets to increase the accuracy of the model. To compare the performance of the
models, we used 20% of the data as test data [48]. The test data were not involved in the
process of training. Thus, models were trained using only the training data. We used the
same training and test datasets to train and test the available models. All hyperparameters
of the classifiers were tuned before use. We performed an exhaustive search over large,
specified parameters using a small portion of training data as a validation set, which was
not presented for training. As shown in Figure 4, we were faced with an imbalanced
occupancy dataset. To preserve the same proportion of occupancy and vacancy conditions
in the test dataset, we used a stratified sampling method to sample test data from the
original dataset.
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Figure 4. The frequency of occupancy and vacancy in the studied rooms showing the presence of an
imbalanced dataset.

To evaluate the power of the proposed method, we compared it with several machine
learning algorithms: LR, DT, RF, GB, KMC, KNN, SV, CNN, and XGBoost classifiers.
Considering the imbalanced data and binary classification, we used the F1 score (see
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Equation (3)) [49] to compare the methods. We also report the mean absolute error of
each method.

Recall =
TP

TP + TN
. (1)

Precision =
TP

TP + FP
. (2)

F1 Score = 2 × Precision × Recall
Precision + Recall

. (3)

F1 score is the harmonic mean of recall (Equation (1)) and precision (Equation (2)).
Since the occupancy data were imbalanced, we used the F1 score instead of accuracy,
because accuracy can be affected by a large number of zeros.

2.4.1. Bedroom 1

According to the plan of the building (see Figure 3), bedroom 1 had a window on
the east wall. This window was closed during the experiment while the internal door to
the small office was open during the experiment. Figure 5 shows the indoor climate data
measured by the sensors and ground-truth data recorded by the occupants of bedroom
1. Figure 5 shows the existence of a pattern in CO2 time-series data associated with the
presence and absence of occupants in this room, while we cannot see such an obvious
pattern for temperature and relative humidity time-series data.
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To better understand the relationship between the occupancy and indoor climate
data in bedroom 1, the pairwise scatter plot is shown in Figure 6. On the diagonal of this
matrix, we see the histogram of temperature, relative humidity, and CO2 distributions
colored by occupancy and vacancy. For CO2, we can see two distinguishable distributions
for occupied and unoccupied conditions. This did not happen for relative humidity and
temperature. Both the mean and the median for CO2 data when the room was occupied
were equal to 808. For unoccupied conditions, we had a mean and median equal to 534
and 525, respectively. It can be understood from the temperature–CO2 and humidity–CO2
plots that there were two separate clusters of data for occupancy and vacancy. In contrast,
in the temperature–humidity plots, we could not easily separate occupancy from vacancy.
These graphs indicate that the occupancy was mostly reflected in the CO2 measurements.
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2.4.2. Small Office

There were four doors: the entrance door, the door to bedroom 1, the door to the
living room, and the door to bath 1. The doors to bedroom 1 and the living room were
always open during the experiment; hence, there was an air exchange between these rooms.
Looking at the time-series data of this room (see Figure 7), we can see no obvious pattern
in the CO2 and relative humidity plots associated with ground-truth occupancy data while
the temperature plot shows a relatively cyclic pattern affiliated with occupancy. Later,
we examined the effect of relative humidity and CO2 data on increasing the accuracy of
occupancy prediction.
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Figure 7. Time-series plots of indoor climate and occupancy data measured for the small office from
8 December 2021 to 20 December 2022.

As displayed in Figure 8, there was no apparent linear correlation between indoor
climate data. The mean temperature when the room was occupied was 22 ◦C. From the
CO2–temperature plot, occupancy data were clumped at temperatures higher than 22 ◦C.



Sustainability 2022, 14, 14644 11 of 17Sustainability 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Pairwise scatter plots of the indoor climate data for the small office. Occupancy data are 
shown as a hue. 

2.4.3. Big Office 
The big office had characteristics that caused the weakest occupancy prediction 

among all rooms under the study. This room was the largest in this study. This factor 
made it hard for sensors to accurately measure real-time changes in indoor climate. This 
room had two windows and two doors, one of which was always open to the living room 
during the study. This condition caused turbulence in the indoor climate. 

This turbulence can be understood from the time-series plots (see Figure 9) of the big 
office indoor climate and occupancy data. Temperature and relative humidity showed no 
fluctuation affiliated with the occupancy data. The CO2 sensor showed a better perfor-
mance compared to the other sensors, in measuring CO2 changes that arose from occu-
pancy, although this performance was not as obvious as what we saw earlier for bedroom 
1. Looking at Figure 10, we can see that occupancy was more connected to the CO2 data. 

 
Figure 9. Time-series plot of indoor climate and occupancy data measured for the big office from 8 
December 2021 to 20 December 2022. 

Figure 8. Pairwise scatter plots of the indoor climate data for the small office. Occupancy data are
shown as a hue.

2.4.3. Big Office

The big office had characteristics that caused the weakest occupancy prediction among
all rooms under the study. This room was the largest in this study. This factor made it
hard for sensors to accurately measure real-time changes in indoor climate. This room had
two windows and two doors, one of which was always open to the living room during the
study. This condition caused turbulence in the indoor climate.

This turbulence can be understood from the time-series plots (see Figure 9) of the big
office indoor climate and occupancy data. Temperature and relative humidity showed no
fluctuation affiliated with the occupancy data. The CO2 sensor showed a better performance
compared to the other sensors, in measuring CO2 changes that arose from occupancy,
although this performance was not as obvious as what we saw earlier for bedroom 1.
Looking at Figure 10, we can see that occupancy was more connected to the CO2 data.
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3. Result and Discussion

This section aims to apply previously introduced machine learning models to the data
collected from various rooms of the residential building explained in Section 2.4. We also
compare the accuracy of the proposed model with other machine learning models using
mean absolute error as a measure of prediction error. Considering the imbalanced data, we
could not consider the correct predictions

total predictions ratio as a measure of accuracy. For example, in the
small office, we had 428 ones against 3184 zeros. If a model can classify only zeros, then it
can achieve high accuracy just by predicting zeros while it is unable to classify ones. We
applied the F1 score as a measure of accuracy, whereby a model unable to classify ones
would have a lower F1 score.

Below, model comparison tables are presented separately for the studied rooms. All
hyperparameters of the classifiers were tuned before use. This process was performed
using the GridSearchCV function in Python. We conducted an exhaustive search over large,
specified parameters using this function. Table 3 shows the model comparison for bedroom
1. Our proposed classifier outperformed other classifiers with the highest F1 score equal to
0.986 and the lowest mean absolute error or misclassification rate [50] FN+FP

TP+FN+FP+TN equal
to 0.011.

Table 3. Model comparison table for bedroom 1.

Classifier MAE TP FN FP TN F1 Score Execution Time (s)

LR 0.019 423 4 10 285 0.976 0.146
DT 0.024 420 4 13 285 0.971 0.004
RF 0.029 424 12 9 277 0.963 0.228
GB 0.022 423 6 10 283 0.973 0.153
KMC 0.026 422 8 11 281 0.967 0.254
KNN 0.028 424 11 9 278 0.965 0.090
SV 0.028 423 10 10 279 0.965 0.079
CNN 0.033 419 10 14 279 0.959 20.831
XBGoost 0.014 428 5 5 284 0.983 0.511
CNN-
XGBoost 0.011 427 2 6 287 0.986 18.013

Some other classifiers performed similarly to our model, i.e., XGBoost and logistic
regression. The reason was the strong correlation between occupancy and CO2 data in
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bedroom 1. If we look at the histogram of the CO2 data (see Figure 6), we can see that it
followed a mixed distribution: one cluster of data with a mean equal to 534 when the room
was unoccupied and another one with a mean equal to 808 when the room was occupied.
This increased the power of the classifiers in predicting occupancy.

To check whether the other sensors, except CO2, improved the power of the classifier,
we used only CO2 as input, and the result is depicted in Table 4.

Table 4. CNN-XGBoost performance for bedroom 1 with CO2 as the only input.

Classifier MAE TP FN FP TN F1 Score Execution
Time (s)

CNN-XGBoost 0.037 419 13 14 276 0.953 18.059

The result shows that using only CO2 data significantly decreased the accuracy of the
model. This means that the presence of the other sensors was vital to increasing the power
of the classifier.

Table 5 shows the model comparison for the small office. In Table 5, we can see that
SV was unable to predict vacancy. KNN and KMC showed poor performance in predicting
occupancy. This was rooted in two issues: the imbalanced occupancy data and the inability
of the indoor climate data to capture frequent changes between occupancy and vacancy.
Here again, we can see that the proposed model showed the best performance among the
other models. This means the purposed model could learn the relation between occupancy
data and slight changes in indoor data. The misclassification rate was 0.029. This means
that the model misclassified only 10 + 11 = 21 out of 722 occupied/unoccupied conditions.

Table 5. Model comparison table for the small office.

Classifier MAE TP FN FP TN F1 Score Execution Time (s)

LR 0.072 621 36 16 49 0.653 0.045
DT 0.040 619 11 18 74 0.836 0.009
RF 0.035 628 16 9 69 0.847 0.446
GB 0.048 619 17 18 68 0.795 0.357
KMC 0.447 336 22 301 63 0.281 0.075
KNN 0.116 617 64 20 21 0.333 0.086
SV 0.118 637 85 0 0 0.000 0.263
CNN 0.116 567 14 70 71 0.628 20.389
XBGoost 0.036 625 14 12 71 0.845 0.304
CNN-
XGBoost 0.029 627 11 10 74 0.876 23.117

As shown in Figure 8, there was a possible correlation between temperature and
occupancy. The distribution of the temperature data in the small office showed no appar-
ent signs of a mixed distribution; however, we examined whether eliminating CO2 and
humidity worsened the prediction.

Table 6 shows that, by removing the CO2 and relative humidity data from the input,
we obtained a worse prediction when predicting the occupancy of the small office.

Table 6. CNN-XGBoost performance for the small office when the only input was temperature.

Classifier MAE TP FN FP TN F1 Score Execution
Time (s)

CNN-XGBoost 0.071 617 31 20 54 0.679 13.674

The final model comparison was performed for the big office. As shown earlier (see
Figures 9 and 10), there was no obvious pattern between the indoor climate data and
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occupancy data. Table 7 confirms this and shows that the classifiers were unable to predict
occupancy accurately. As expected, the proposed model was convincingly the best model
among those evaluated in this study. The misclassification ratio was 0.073. This ratio
indicates that the model could predict 92.67% of occupied/unoccupied situations.

Table 7. Model comparison table for the big office.

Classifier MAE TP FN FP TN F1 Score Execution
Time (s)

LR 0.124 584 58 32 49 0.521 0.043
DT 0.093 575 26 41 81 0.707 0.009
RF 0.082 589 32 27 75 0.718 0.383
GB 0.094 594 46 22 61 0.642 0.316
KMC 0.237 465 20 151 87 0.504 0.075
KNN 0.137 572 55 44 52 0.512 0.082
SV 0.141 611 97 5 10 0.164 0.250
CNN 0.133 604 84 12 23 0.324 20.808
XBGoost 0.077 590 30 26 77 0.733 0.307
CNN-XGBoost 0.073 590 27 26 80 0.751 24.250

We increased the accuracy of the occupancy prediction in residential buildings with
mechanical ventilation. This process was conducted by combining two leading methods to
take advantage of the feature extraction capability of CNN with the speed, accuracy, and
flexibility of XGBoost. We proposed an accurate model without using expensive privacy-
invading camera-based implementations. The implementation of the model was performed
simply by installing inexpensive sensors and connecting them to the classifier. The whole
procedure is performed automatically from feature extracting to classification. This model
can accurately predict the occupancy of residential buildings with a balanced mechanical
ventilation system.

In three rooms, CNN-XGBoost showed that, even in the worst scenarios, it could pre-
cisely learn the relations between the input and the output data and consistently outperform
the other available methods. In this work, we picked two methods (CNN and XGBoost)
rarely used in building occupancy detection contexts [16,22] to examine the power of these
models separately and combined. Despite XGBoost, which showed the best performance
after CNN-XGBoost in two of three rooms, CNN worked poorly in the small and big offices.
The performance of XGBoost confirmed that XGBoost needs a feature learning part, which
can be solved by adding the convolution layer of a CNN to XGBoost [47].

In the end, it is good to briefly state some limitations of this research. To collect the
most accurate ground-truth data, we asked the occupants to register their presence in a 5
min time interval, rather than using other occupancy sensors. Therefore, this limited the
period of collecting ground-truth data to 13 days. The period was only in winter when the
windows are usually closed. In future work, the proposed model should be validated for
an extended period and in different seasons. More diverse data can increase the accuracy
of the model. Furthermore, during the experiment, the ventilation rate was constant. It is
recommended to test the model in buildings with variable air volume ventilation systems.

4. Conclusions and Recommendations for Future Research

In this paper, we proposed a CNN-XGBoost model for occupancy detection in res-
idential buildings with a balanced mechanical ventilation system using indoor climate
sensors. Unlike previous studies that applied complex implementation to both models and
sensors, our method uses a simple deep learning model and inexpensive sensors. Instead of
using a test room and placing some restrictions, we validated our model in a single-family
residential building and did not impose any restrictions on the use of doors, windows,
HVAC, etc.
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The presented model consists of a CNN part that automatically extracts features of
indoor climate data and a XGBoost part that is a scalable gradient-boosted decision tree
ML algorithm. We compared our proposed model with a range of occupancy detection
models. Our proposed model outperformed all other approaches. In two of three study
rooms, XGBoost had the best performance after CNN-XGBoost. Ignoring the execution
time of the two methods due to their nature, i.e., gradient boosting and neural network,
the difference between the MAEs was less than 0.01. Although this difference may seem
low, it caused more than a 15% difference in false predictions (FP + FN). This difference
indicates the importance of the CNN part. Although relative humidity and temperature
measurements have little effect on occupancy detection, the proposed model can learn the
relationship between minor changes in humidity and temperature and occupancy. The big
office was the largest room with the weakest results for occupancy detection. Due to the
dimensions of the big office, finding the optimal place to install the sensor would improve
the results.

For future research, the model can be applied to the measurements of the sensors
installed in several locations and heights. The best place for installing the sensor would
be that with the best results. Another solution to this issue is to use more than one sensor
in the big office and compare the result with the current situation. We used our model in
a building with a mechanical ventilation system. Using the proposed model in buildings
with natural ventilation systems is recommended. Lastly, the proposed model can be
implemented to detect not only presence and absence, but also the number of occupants in
residential buildings.
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Nomenclature

LR Logistic regression
DT Decision tree
RF Random forest
GB Gradient boosting
KMC K-means clustering
KNN K-nearest neighbors
SV Support vector
CNN Convolutional neural network
XGBoost Extreme gradient boosting
CNN-XGBoost Convolutional neural network extreme gradient boosting
TP True positive: number of conditions correctly identified as unoccupied
TN True negative: number of conditions correctly identified as occupied
FP False positive: number of conditions incorrectly identified as unoccupied
FN False negative: number of conditions incorrectly identified as occupied
ppm Parts per million
RH Relative humidity
p Probability
MAE Mean absolute error
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