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Abstract: Using local spatial statistics to explore local spatial association of geo-referenced data
has attracted much attention. As is known, a local statistic is formulated at a particular sampling
unit based on a prespecific proximity relationship and the observations in the neighborhood of this
sampling unit. However, geostatistical data such as meteorological data and air pollution data are
generally collected from meteorological or monitoring stations which are usually sparsely located or
highly clustered over space. For such data, a local spatial statistic formulated at an isolate sampling
point may be ineffective because of its distant neighbors, or the statistic is undefinable in the sub-
regions where no observations are available, which limits the comprehensive exploration of local
spatial association over the whole studied region. In order to overcome the predicament, a local-linear
geographically weighted interpolation method is proposed in this paper to obtain the predictors of the
underlying spatial process on a lattice spatial tessellation, on which a local spatial statistic can be well
formulated at each interpolation point. Furthermore, the bootstrap test is suggested to identify the
locations where local spatial association is significant using the interpolated-value-based local spatial
statistics. Simulation with comparison to some existing interpolation and test methods is conducted
to assess the performance of the proposed interpolation and the suggested test methods and a case
study based on PM2.5 concentration data in Guangdong province, China, is used to demonstrate
their applicability. The results show that the proposed interpolation method performs accurately in
retrieving an underlying spatial process and the bootstrap test with the interpolated-value-based
local statistics is powerful in identifying local patterns of spatial association.

Keywords: geographically weighted interpolation; local spatial statistic; local spatial association;
bootstrap

1. Introduction

Spatial autocorrelation or association is one of the fundamental properties of spatial
data [1] and the exploration of spatial association patterns is of great importance in under-
standing the intrinsic characteristics of underlying processes and making related decisions
in applications. However, due to the other fundamental property of spatial heterogeneity
or non-stationarity of spatial data, the assumption of stationarity or structural stability
over space may be highly unrealistic [2]. Therefore, more emphasis has been placed on
the development of local modeling methodologies for spatial data analysis [3,4]. In the
analysis of spatial association in particular, the use of local spatial statistics to explore local
patterns of spatial association has attracted considerable attention in recent decades (for
general overviews, see for example [5–7]). Among many kinds of local spatial statistics,
the most popular ones are perhaps Getis and Ord’s Gi and G∗i [8,9] and Anselin’s LISAs [2]
including the most commonly used local Moran’s Ii and Geary’s ci, which mainly focus on
exploring local clusters of similarity (either large values or small values) or dissimilarity
among spatial data, a very important kind of spatial patterns in practical applications. As
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a class of the most used local statistics, both LISAs and Gi or G∗i have been extended to
spatiotemporal data for exploring spatiotemporal association [10–12]. In addition, the ci
statistic has also been extended in the multivariate setting for measuring multivariate spa-
tial autocorrelation [13]. Driven by substantial practical problems related to the exploration
of spatial association patterns, a lot of local spatial or spatiotemporal statistics have been
proposed and applied to a variety of practical fields. One can refer to the references [14–16]
for an overview of local spatial statistics with their extensive applications.

In view of the fact that the observations of a variable are collected generally with noise
such as measurement error and/or the influence of some uncontrollable factors, it is reason-
able to treat a local spatial statistic as a random variable. Therefore, statistical significance
tests are essential for a local spatial statistic to be used to detect spatial association patterns
in order to make the analyzing results have a solid statistical basis. In such tests, the null
or reference distribution (i.e., the distribution of a local statistic under the null hypothesis
that no spatial association exist at the focal location) plays a fundamental role in deriving
p-value of the test. Several methodologies for the derivation of the null distributions of
local spatial statistics have been developed. The commonly used methods include the
asymptotic, especially normal distribution approximation [2,9,17,18], the approximation
based on the distribution theory of quadratic forms in normal variables [19,20], and the
Monte Carlo approximation including the randomized permutation and the bootstrap
methods [2,12,21,22]. In particular, Mei et al. [23] recently proved that the bootstrap approx-
imation to the null distributions of the local Moran’s Ii, local Geary’s ci, and local Getis and
Ord’s G∗i are statistically consistent, which establishes a theoretical basis for the bootstrap
approximation to the null distributions of these commonly used local spatial statistics.

A local spatial statistic is a measure of spatial association at a particular spatial unit
where the observation of the interested variable is collected. It is constructed based on
the spatial proximity relationship characterized by the pre-specified weights and the ob-
servations in the neighborhood of this particular spatial unit. According to Cressie [24],
spatial data can be mainly categorized as regional data observed at a finite collection of
locations or regular/irregular areas and as geostatistical data collected from a continuous
surface defined on the studied geographical region. For regional data and such geosta-
tistical data that are collected at relatively densely and uniformly distributed locations
over the region, a local spatial statistic can be well formulated based on the observations
and the proximity relationship among the areas or locations with, for example, the rook’s
or queen’s tessellation or the k-nearest neighborhood scheme. However, many real-life
geostatistical data sets such as meteorological data and air pollution data are only available
at the observation stations which are usually unevenly located over space, leading to very
sparse or isolate sampling locations in some areas and dense or highly clustered ones in
other areas. For example, the left panel of Figure 2 in Section 2 shows the 101 air quality
monitoring stations in Guangdong province, China, from which we can observe that the
stations are highly clustered in the center part of southeast area and very sparse in the north
and west areas with several counties having only one or two stations. For such geostatistical
data set, although one can routinely formulate a local spatial statistic of spatial association
at an isolate sampling location, the statistic may be ineffective in exploring local spatial
association because its distant neighbors violate the Tobler’s first law of geography that
near things are more correlated than distant things [25]. Moreover, a local spatial statistic
could not be formulated in the extensive west boundary area where there are no monitoring
stations, which limits the comprehensive exploration of local spatial association patterns of
an underlying process over the whole province.

Nevertheless, for geostatistical data, as the underlying process from which the geo-
statistical data are collected is assumed to be continuous, interpolation at, for example, a
lattice spatial tessellation seems a promising methodology to deal with the above predica-
ment. Based on the interpolated values at the lattice spatial tessellation, a local spatial
statistic can be formulated for the effective and comprehensive exploration of local spatial
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association patterns of the underlying process, provided that the interpolation method can
yield accurate interpolated values at the latticed locations.

Among many interpolation methods, kriging has been one of the most popular in-
terpolation approaches and many types of kriging have been developed for different
orientations [24]. Although the standard kriging can obtain the best linear unbiased predic-
tor of an underlying spatial process at any an unsampled location, it needs the assumption
that the covariance function of the process is fully known, which is usually unobtainable in
practice. To handle this problem, a spatial process which the kriging interpolation focus
on is assumed to be second-order stationary and a pre-specified parametric homogeneous
semi-variogram is fitted by the observations to yield the interpolated values. The homoge-
neous semi-variogram may violate the fundamental heterogeneity property of spatial data
and, as a result, the kriging interpolation may fail in yielding accurate predictors.

Another most commonly used interpolation method for spatial data is perhaps the
inverse distance weighted (IDW) interpolation [26], in which the interpolation value at a
given location is a weighted average of the observations collected at sampling locations
and the weight for each observation is inverse of the distance between the interpolation
location and the corresponding sampling location to some positive power with the power
parameter generally taken to be 1 or 2. The rationale of IDW interpolation is in line with
the Tobler’s first law of geography [25] and IDW is in fact a non-parametric smoothing
technique with fixed weights for a given interpolation location. Because of the fixed weights
for a given interpolation location, the IDW interpolation method may also produce less
accurate interpolated values even for a continuous spatial process.

Although the IDW interpolation method is not flexible enough to adaptively yield
interpolated values, this non-parametric methodology motivates us to improve interpo-
lation method by using the local smoothing techniques [27]. In the recent decades, local
smoothing techniques have been well established in the literature of non-parametric re-
gression, which can adaptively fit heterogeneity of the underlying process by embedding
an unfixed smoothing parameter or bandwidth into the weights with the optimal band-
width size selected by some data driven criterion, making them especially suitable for the
interpolation of a continuous surface. In particular, the local polynomial smoother has
been theoretically shown having good asymptotic behaviors in bias and variance of the
predictor and the attractive property of automatically correcting the boundary effect, i.e.,
resulting in an equally accurate predictor on the boundary and in the inner of the domain
of the underlying process [27]. As the most commonly used local polynomial smoother, the
local-linear smoothing methodology is extended in this article to derive the interpolated
values for a spatial process. Because the extended local-linear smoother for a spatial process
is in fact a locally weighted least-squares procedure with spatial distance decay weights,
we call the interpolation method the local-linear geographically weighted interpolation
(LGWI) henceforth. Based on the interpolated values on a lattice tessellation, any a local
spatial statistic such as the local Moran’s Ii or the Getis and Ord’s G∗i can be formulated to
measure local spatial association among the observations of an underlying spatial process.

As aforementioned, formal statistical tests are another important issue related to
the exploration of spatial association using local spatial statistics and several kinds of
methods have been developed. Nevertheless, the normal distribution approximation has
been empirically or theoretically shown to be sometimes problematic [2,18,28,29]. The
approximation based on the quadratic form distribution theory is closely related to the
assumption that the data is normally distributed [19,20], which might be invalid to many
real-life data sets. Fueled by modern computers, the randomized permutation and the
bootstrap approximations have become an attractive way to derive the null distributions
of the local spatial statistics [2,8,12,22]. Especially, in view of the theoretical result that
the bootstrap approximation to the null distributions of the commonly used local spatial
statistics is consistent [23] and the bootstrap method is in fact free of the assumption that the
observations are collected from a normal distribution, we therefore suggest the bootstrap
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approximation to derive the p-values of the related tests for identifying the locations where
local spatial association is statistically significant.

The rest of this article is organized as follows. In Section 2, the LGWI method and the
interpolated-value-based local spatial statistics with the bootstrap test for the significance
of local spatial association are introduced, respectively; the synthetic data from a properly
designed experiment and the real-life data of PM2.5 concentration in Guangdong province,
China, are then formulated to evaluate the performance of both the interpolation and
the test methods and demonstrate their applicability, respectively. The related analyzing
results with the comparison to some existing interpolation and test methods are reported
in Section 3. The paper is ended with conclusion and discussion.

2. Methods and Data Sources for Evaluation of the Methods and Demonstration of
Their Applicability
2.1. Local-Linear Geographically Weighted Interpolation and Interpolated-Value-Based Local
Spatial Statistics with the Bootstrap Test for Significance of Local Spatial Association
2.1.1. Local-Linear Geographically Weighted Interpolation (LGWI)

Let Y be the interested attribute variable and let f (u, v), an unknown function of the
spatial coordinates (u, v) defined on the region D, be the underlying spatial process from
which the observations of Y are collected. Considering noise, we formulate the following
non-parametric regression model between Y and f (u, v):

Y = f (u, v) + ε,

where ε is the random error term with E(ε) = 0 and Var(ε) = σ2 > 0. Let {yi}n
i=1 be the

observations of Y collected at the spatial locations or sampling points {(ui, vi)}n
i=1. The

resulting sample form of the above model shows

yi = f (ui, vi) + εi, i = 1, 2, · · ·, n. (1)

Suppose further that f (u, v) is of continuous partial derivatives with respect to u and
v, respectively, which we denote by f (u)(u, v) and f (v)(u, v) henceforth. Given an interpo-
lation point (u0, v0) and according to the Taylor’s expansion, f (u, v) can be approximated
in the neighborhood of (u0, v0) by

f (u, v) ≈ f (u0, v0) + f (u)(u0, v0)(u− u0) + f (v)(u0, v0)(v− v0).

The LGWI predictor of f (u, v) at (u0, v0) is the solution of f (u0, v0) in the following locally
weighted least-squares problem. Namely, minimize the objective function

n

∑
i=1

(
yi − f (u0, v0)− f (u)(u0, v0)(ui − u0)− f (v)(u0, v0)(vi − v0)

)2
wi(u0, v0) (2)

with respect to f (u0, v0), f (u)(u0, v0) and f (v)(u0, v0), where {wi(u0, v0)}n
i=1 are the weights

at (u0, v0). Let

X(u0, v0) =


1 u1 − u0 v1 − v0
1 u2 − u0 v2 − v0
...

...
...

1 un − u0 vn − v0

, y =


y1

y2
...

yn

, a(u0, u0) =

 f (u0, v0)

f (u)(u0, v0)

f (v)(u0, v0)

,

and
W(u0, v0) = Diag(w1(u0, v0), w2(u0, v0), · · ·, wn(u0, v0)). (3)
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Then the solution of the above optimization problem is

â(u0, v0) =
(

f̂ (u0, v0), f̂ (u)(u0, v0), f̂ (v)(u0, v0)
)T

=
(
XT(u0, v0)W(u0, v0)X(u0, v0)

)−1XT(u0, v0)W(u0, v0)y
(4)

and the LGWI predictor of f (u, v) at (u0, v0), which we denote by z0, is then

z0 = f̂ (u0, v0) = (1, 0, 0)â(u0, v0) = (1, 0, 0)Q(u0, v0)y, (5)

where
Q(u0, v0) =

(
XT(u0, v0)W(u0, v0)X(u0, v0)

)−1
XT(u0, v0)W(u0, v0). (6)

The weights {wi(u0, v0)}n
i=1 at (u0, v0) are generated by a kernel function, usually

the Gaussian or bisquare kernel with a fixed or adaptive bandwidth [30]. For irregular
sampling points, Gollini et al. [31] recommended the use of the weights with an adaptive
bandwidth to perform the locally smoothing procedure. Specifically, given an integer k, let
d0k be the Euclidean distance from (u0, v0) to its k-th nearest sampling point and {d0i}n

i=1
be the Euclidean distances from (u0, v0) to all of the sampling points {(ui, vi)}n

i=1. Then
the weights with an adaptive bandwidth are generated by

wi(k)(u0, v0) =


(

1−
(

d0i
d0k

)2
)2

, if d0i ≤ d0k;

0, otherwise,
i = 1, 2, · · ·, n, (7)

where d0k is the adaptive bandwidth, which is in general different for a different interpola-
tion point (u0, v0) and guarantees that k observations of Y in the neighborhood of (u0, v0)
are used to derive the interpolated value z0 at (u0, v0).

The parameter k, which is a proxy of the adaptive bandwidth and will be called
pseudo-bandwidth henceforth, plays a key role in the local smoothing technique and its
optimal size should be firstly determined based on the available data {yi; (ui, vi)}n

i=1 in
order to implement the foregoing interpolation procedure at any an unsampled location.
Here, the AICc criterion [30] is used to search for the optimal size of k. Specifically, given
an integer k, set (u0, v0) in Equation (5) to be each of the sampling points {(ui, vi)}n

i=1 and
compute the fitted value of Y at (ui, vi), which we denote by ŷi(k), yielding

ŷi(k) = f̂ (ui, vi) = (1, 0, 0)Q(ui, vi)y, i = 1, 2, · · ·, n.

Then the fitted vector of Y at n sampling points can be expressed as

ŷ = (ŷ1(k), ŷ2(k), · · ·, ŷn(k))
T = H(k)y, (8)

where

H(k) =


(1, 0, 0)Q(u1, v1)
(1, 0, 0)Q(u2, v2)

...
(1, 0, 0)Q(un, vn)


is the hat matrix of the local-linear smoother. The residual sum of squares is then

RSS(k) = (y− ŷ)T(y− ŷ) = yT(I−H(k))T(I−H(k))y,

and the AICc score is

AICc(k) = log
(

1
n

RSS(k)
)
+

n + tr(H(k))
n− 2− tr(H(k))

, (9)
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where tr(H(k)) stands for the trace of H(k). The optimal size of the pseudo-bandwidth k is
such the integer that minimizes AICc(k) score, i.e.,

k0 = argminAICc(k).
k

(10)

Substituting k0 into the weights in Equation (7) to fully determine the elements of
the weight matrix W(u0, v0), the interpolated value z0 of the variable Y at (u0, v0) is
consequently obtained by Equation (5). By taking (u0, v0) to be each of the candidate
interpolation points, say {(ũi, ṽi)}m

i=1, we then obtain the interpolated values of Y by

zi = (1, 0, 0)Q(ũi, ṽi)y, i = 1, 2, · · ·, m, (11)

where Q(ũi, ṽi) is the matrix shown in Equation (6) with (u0, v0) replaced by (ũi, ṽi).

2.1.2. Interpolated-Value-Based Local Spatial Statistics with the Bootstrap Test for
Significance of Local Spatial Association

We first lattice under a properly resolution the whole region D as a grid tessellation
consisting of, for example, squares with same size. Here we denote by (ũi, ṽi) the spatial
coordinates of the centroid of each grid and by m the number of the grids with their
centroids being on the region D. With this lattice partition of the region D, a spatial
proximity matrix, which we denote by W̃ =

(
wij
)

m×m in order to distinguish it from the
previous diagonal weight matrix W(u0, v0) in Equation (3), is defined by, for example, the
rook or the queen continuity scheme with binary codes 0 and 1.

We then compute the interpolated values of the attribute variable Y at the grid cen-
troids {(ũi, ṽi)}m

i=1 according to Equation (11), which we denote by

z = (z1, z2, · · ·, zm).

Based on z = (z1, z2, · · ·, zm) and W = (wij)m×m, a local spatial statistic can be formulated
to measure local spatial association and the related statistical test can further be employed
to infer the significance of local spatial association that the statistic measures.

For example, as two of the most commonly used Anselin’s LISAs [2], the local Moran’s
Ii at each (ũi, ṽi), defined by

Ii =

(zi − z)
m
∑

j=1
wij
(
zj − z

)
1
m

m
∑

j=1

(
zj − z

)2
(12)

with z = 1
m

m
∑

j=1
zj, and the local Geary’s ci at (ũi, ṽi), defined by

ci =

m
∑

j=1
wij
(
zi − zj

)2

1
m

m
∑

j=1

(
zj − z

)2
, (13)

measure the local spatial autocorrelation between zi and its surrounding values, where
wii = 0 (i = 1, 2, · · ·, m) are assumed by convention. A positive (negative) value of Ii
indicates local positive (negative) spatial autocorrelation or a spatial cluster of similar
(dissimilar) values at (ũi, ṽi). In contrast, a large (small) value of ci suggests local negative
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(positive) spatial autocorrelation. Another popular local spatial statistic is Getis and Ord’s
G∗i [8,9], which is defined at (ũi, ṽi) by

G∗i =

m
∑

j=1
wijzj

m
∑

j=1
zj

, (14)

where zj > 0 (j = 1, 2, · · ·, m) are assumed and wjj > 0 (j = 1, 2, · · ·, m) are allowed. The
local statistic G∗i is commonly used to identify a spatial cluster of large values (a hot spot)
or a spatial cluster of small values (a cold spot) at (ũi, ṽi) depending upon high or low
value of G∗i .

Given a local spatial statistic, the related statistical test is necessary to evaluate sig-
nificance of the local spatial association that the statistic measures. As mentioned in the
introduction section, the bootstrap method is suggested to derive the p-value of the related
test. Here, we only take the local Moran’s Ii as an example to describe the main steps
of deriving the p-value of testing for positive or negative spatial autocorrelation. The
procedures for other commonly used local spatial statistics such as Geary’s ci and Getis
and Ord’s G∗i are similar.

The bootstrap procedure for deriving the p-value of the local Moran’s Ii based test at a
given interpolation location (ũi, ṽi) is as follows.

(i) Based on the interpolated data z = (z1, z2, · · ·, zm) and the spatial proximity matrix
W̃ =

(
wij
)

m×m, compute the observed value of Ii according to Equation (12), which

we denote by I(0)i .
(ii) Draw a bootstrap sample z∗ =

(
z∗1 , z∗2 , · · ·, z∗m

)
with replacement from the interpo-

lated data z = (z1, z2, · · ·, zm), on which the bootstrap value of Ii, denoted by I∗i , is
computed by

I∗i =

(
z∗i − z∗

) m
∑

j=1
wij

(
z∗j − z∗

)
1
m

m
∑

j=1

(
z∗j − z∗

)2 ,

where z∗ = 1
m

m
∑

j=1
z∗j .

(iii) Repeat Step (ii) B times and obtain B bootstrap values of Ii, which we denote by
I∗i(1), I∗i(2), · · ·, I∗i(B).

(iv) The p-value of testing for positive spatial autocorrelation is

pi+ =
1
B

#
{

I∗i(j) : I∗i(j) ≥ I(0)i , j = 1, 2, · · ·, B
}

, (15)

and the p-value of testing for negative spatial autocorrelation is

pi− =
1
B

#
{

I∗i(j) : I∗i(j) ≤ I(0)i , j = 1, 2, · · ·, B
}

, (16)

where #{A} stands for the number of the elements in the set A.

2.2. Data Sources for Evaluating the Performance of LGWI and the Bootstrap Test with
Interpolated-Value-Based Local Spatial Statistics

In this section, the synthetic spatial data are formulated to evaluate the performance
of the proposed LGWI method and the bootstrap test and a real-life example is presented
to demonstrate their applicability. Specifically, several data sets from different perspectives
are generated by a properly designed experiment to assess the accuracy of the LGWI
method and the power of the bootstrap test in identifying spatial association patterns based
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on the local spatial statistics constructed by the interpolated values. Furthermore, the
proposed LGWI method is compared with the ordinary kriging and IDW interpolation
methods to show the superiority of LGWI and the bootstrap test is compared with the
conditional permutation test to illustrate their power and computation efficiency. A real-life
example based on PM2.5 concentration data is given to demonstrate the applicability of
the proposed LGWI method and the bootstrap test with the interpolated-value-based local
spatial statistics for identifying significant spatial association patterns.

2.2.1. Synthetic Data for Evaluating Accuracy of LGWI and Power of the Test

(i) Designed spatial region, sampling points and interpolation points.

We took the unit square D = [0, 1] × [0, 1] in a Cartesian coordinate system as the
studied spatial region. The following two types of irregularly distributed sampling points
of size n = 200 were designed.

(a) Uniformly distributed sampling points on D: 200 pairs of random numbers were
independently drawn from the uniform distribution U(0, 1) with each pair of the
random numbers (ui, vi) forming a sampling point on D.

(b) Unevenly distributed sampling points on D: 100 pairs of random numbers {(ui, vi)}100
i=1

were drawn from the normal distribution N
(

1/4, (9/50)2
)

, where only the points
in D were retained and the others were discarded until 100 sampling points were
obtained. With the same way, the other 100 pairs of random numbers were drawn
from N

(
3/4, (1/5)2

)
. Because of different means and variances of the two normal

distributions, the sampling points form roughly two clusters around the means 1/4
and 3/4 respectively and are sparely distributed at the upper-left and lower-right
corners.

The interpolation points of the size m = 400 were designed as the lattice points on D.
Specifically, we equally partitioned the unit square [0, 1]× [0, 1] as 400 small squares by
linking the equally spaced points on the two pairs of the parallel sides of the unit square
and took the centroid point of each small square as an interpolation point. The coordinates
of the interpolation points can be expressed as

(ũi, ṽi) =

(
1
20

mod
(

i− 1
20

)
+

1
40

,
1
20

int
(

i− 1
20

)
+

1
40

)
, i = 1, 2, · · ·, m,

where mod (a/b) and int(a/b) denote the remainder and the integer part of a divided by
b, respectively, and m = 400.

The two types of the sampling points and the interpolation points are depicted in
Figure 1, which were taken to be fixed throughout the simulation study.

(ii) Model for generating data.

The model for generating the synthetic spatial data is

Y = f (u, v) + ε, (17)

where the model error ε follows the normal distribution N(0, 0.52) and the following three
underlying spatial processes with different levels of spatial heterogeneity were considered:

(a) f1(u, v) = 2(u + v);
(b) f2(u, v) = 4 sin(πu);
(c) f3(u, v) = 1 + 600(uv)5(1− u)(1− v).

The true surfaces of the above spatial processes are shown in the first column of both
Figures 3 and 6.
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Given each of the above spatial processes f j(u, v) (j = 1, 2, 3), the observations {yi}n
i=1

of Y with f (u, v) = f j(u, v) in Equation (17) were generated at all of the n = 200 sampling
points {(ui, vi)}n

i=1 by
yi = f j(ui, vi) + εi, i = 1, 2, · · ·, n, (18)

where {εi}n
i=1 are the random numbers independently drawn from N(0, 0.52).
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(iii) Indices for measuring accuracy of the interpolation methods and power of the tests.

Based on the data {yi}n
i=1 generated by each of the foregoing spatial processes, the

proposed LGWI procedure as well as the kriging and IDW methods for comparison were
used to derive the interpolated values {zi}m

i=1 at the interpolation points {(ũi, ṽi)}m
i=1. In

order to alleviate sampling error, N replications in each experimental setting were run,
where the model errors {εi}m

i=1 were re-drawn in each replication. For each interpolation
method, let z1(j)(ũi, ṽi), z2(j)(ũi, ṽi), · · · , zm(j)(ũi, ṽi) be the interpolated values at (ũi, ṽi) in
the j-th replication, we took their average value

z(ũi, ṽi) =
1
N

N

∑
j=1

zi(j)(ũi, ṽi) (19)

for each of i = 1, 2, · · ·, m as the final interpolated value of the underlying spatial process at
(ũi, ṽi). As well known, the mean square error at each (ũi, ṽi) is

MSE(ũi, ṽi) =
1
N

N

∑
j=1

(
zi(j)(ũi, ṽi)− f (ũi, ṽi)

)2

, i = 1, 2, · · ·, m.

We use in this article the square root of the averaged mean square errors (RAMSE) over all
of the interpolation points, showing

RAMSE =

√
1
m

m

∑
i=1

MSE(ũi, ṽi) , (20)

as an index to measure the global accuracy of each interpolation method for the underlying
spatial process f (u, v).

Given a significance level α, the rate of rejecting the null hypothesis at an interpolation
point (ũi, ṽi) in the N experiment replications, which we denote by rN(ũi, ṽi), is employed
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to assess the performance of the bootstrap and conditional permutation tests. As well
known in statistics, rN(ũi, ṽi) measures the type-I error of a test when the null hypothesis
at (ũi, ṽi) is true and the power of the test when the alternative hypothesis is true. If
the test is well formulated, rN(ũi, ṽi) should be close to the significance level α when no
spatial association exists; it should be large enough when spatial association does exist at
(ũi, ṽi). Therefore, the larger the rejection rate rN(ũi, ṽi) is, the more powerful the test is in
identifying local spatial association at (ũi, ṽi).

2.2.2. Real-Life Data for Demonstrating Applicability of LGWI and the Test Methods

To demonstrate the applicability of the proposed LGWI method and the suggested
bootstrap test for identifying significant spatial association patterns, the PM2.5 concen-
tration data in Guangdong province, China, are chosen to achieve the task. The reasons
for choosing such data are two-fold. On one hand, PM2.5 concentrations are the typical
geostatistical data that this article mainly focuses on. On the other hand, the air quality
monitoring stations where the data are collected in Guangdong province, as shown in the
left panel of Figure 2, are highly clustered and unevenly distributed over space, which is
just the challenge for the LGWI method to overcome.
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Guangdong province.

(i) Original data with preprocessing.

The original data, which are available at http://air.cnemc.cn:18007/ (accessed on
20 August 2020), include the hourly PM2.5 concentrations collected from 101 air quality
monitoring stations in Guangdong province, China, in 2019. The longitude and latitude of
each monitoring station are also attached. In the original data, there are a few missing data.
Firstly, we replenished each missing datum with the mean of its preceding and subsequent
data, which is reasonable because the time duration is only 1 h between two adjacent data.
Furthermore, since the Cartesian coordinates of the spatial locations for interpolation are
needed in the proposed LGWI method, we therefore employed the simplified latitude
planar projection [32] to transform the longitude and latitude to the Cartesian coordinates,
where the horizontal axis is the equator of the Earth and the vertical axis is the meridian
crossing the origin of the Xi’an 80 coordinate system of China with the longitude being
108.92◦. Specifically, let (λ, ϕ) be the longitude and latitude of a location on the Earth, its
Cartesian coordinates (u, v) transformed by the simplified planar projection are

u = R
π

180
(λ− 108.92) cos

( π

180
ϕ
)

;

v = R
π

180
ϕ,

where R = 6367.554 km is the radius of the Earth. We then latticed the whole region of
the province as m = 152 grids and took the centroids of the grids as the interpolation
points. With the foregoing notations, we denoted the Cartesian coordinates of the sampling

http://air.cnemc.cn:18007/
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points (i.e., the spatial locations at which the monitoring stations locate) by {(ui, vi)}n
i=1

with n = 101 and those of the interpolation points by {(ũi, ṽi)}m
i=1 with m = 152. Figure 2

shows the sampling points and the interpolation points on the map of Guangdong province,
from which we can observe that the sampling points are highly clustered and unevenly
distributed over the province.

(ii) Data sets formulated to explore seasonal local spatial association patterns of PM2.5
concentration.

The typical climatic characteristic in Guangdong province, China, is the subtropical
monsoon climate, which may make air pollution show different patterns in different
seasons. Therefore, it is of interest to identify the patterns of local spatial association of
PM2.5 concentration in different seasons especially the areas where the level of PM2.5
concentration is significantly high or low. This task can be well achieved by simultaneously
using the interpolated-value-based local Moran’s Ii and local Getis and Ord’s G∗i . According
to aerography, January, April, July and October are four typical months standing for winter,
spring, summer and autumn seasons in the northern hemisphere, respectively. We therefore
took the preprocessed data in these four months of each monitoring station to conduct
the case study. Specifically, the hourly PM2.5 concentrations in each of the four months
were averaged at each monitoring station as the monthly PM2.5 concentrations at that
station, resulting in the four monthly average data sets with the size of n = 101, which
will be used to detect seasonal local spatial association patterns of PM2.5 concentration in
Guangdong province.

3. Results with Comments
3.1. Simulation Results of Evaluating Accuracy of the LGWI Method and Power of the Test
3.1.1. Accuracy of LGWI

Here, the number of the experiment replications was set to be N = 500. In addition
to the proposed LGWI method, the ordinary kriging interpolation with a spherical semi-
variogram and an exponential semi-variogram and the IDW interpolation with the values of
the power parameter being respectively 1 and 2 were also conducted for each experimental
setting under the same synthetic data sets. Table 1 reports the resulting values of RAMSE
for the three interpolation methods in each experimental setting. The final interpolated
surfaces characterized by the values {z(ũi, ṽi)}m

i=1 defined in Equation (19) for each of the
three interpolation methods under the two sampling schemes are depicted in Figures 3–5
with the true surfaces of the three underlying spatial processes attached in the first column
of Figure 3 for comparison.

Table 1. Values of RAMSE for the three interpolation methods under 500 experimental replications.

Interpolated Method Spatial
Process

Uniformly
Sampling Scheme

Unevenly
Sampling Scheme

LGWI f1(u, v) 0.0762 0.0997
f2(u, v) 0.2018 0.2797
f3(u, v) 0.2302 0.2450

Kriging (spherical
semi-variogram)

f1(u, v) 0.1659 0.1830
f2(u, v) 0.3162 0.3879
f3(u, v) 0.2074 0.2144

Kriging (exponential
semi-variogram)

f1(u, v) 0.1607 0.1757
f2(u, v) 0.2891 0.3840
f3(u, v) 0.2089 0.2146

IDW (power parameter = 1) f1(u, v) 0.4824 0.4004
f2(u, v) 0.9300 1.0080
f3(u, v) 0.4194 0.4067

IDW (power parameter = 2) f1(u, v) 0.2591 0.2186
f2(u, v) 0.5029 0.7242
f3(u, v) 0.2803 0.3017
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Focusing on the accuracy of LGWI first, we observe from Table 1 that the LGWI
method performs especially well for both sampling schemes when the underlying spatial
process is a linear function of spatial coordinates. Although the accuracy decreases with
spatial heterogeneity of the underlying process increasing and with the sampling points
becoming unevenly distributed over space, the values of RAMSE are very small comparing
with the range of about the interval [0, 4] for each of the spatial processes. Ordinary kriging
interpolation seems somewhat robust to spatial heterogeneity of the underlying process
and to the chosen semi-variograms. However, except for the comparable accuracy to that
of LGWI for f3(u, v), the kriging method yields significantly larger values of RAMSE for
the other two spatial processes even for the simplest linear function. The IDW interpolation
method seems quite sensitive to the value of power parameter and performs worst among
the three interpolation methods. It yields much larger values of RAMSE than the proposed
LGWI and the ordinary kriging methods. In summary, LGWI performs best in terms
of RAMSE.

Figures 3–5 show more detailed information about the interpolated surfaces. It is
observed that, under both sampling schemes, both LGWI and kriging retrieve true surfaces
of the underlying spatial processes quite well. However, the interpolated surfaces of
f2(u, v) produced by kriging show more serious distortion on the boundary area especially
under the unevenly sampling scheme. In contrast, IDW interpolation yields very rough
interpolated surfaces even for the linear function f1(u, v). More seriously, the basic spatial
pattern of f2(u, v) is not well retrieved.

3.1.2. Power of the Bootstrap Test with the Interpolated-Value-Based Local Statistics in
Identifying Local Spatial Association

The foregoing simulation results demonstrate that all of the interpolated surfaces by
LGWI can well retain their respective spatial patterns of the underlying spatial processes,
which makes it reliable to use the LGWI interpolated-value-based local spatial statistics
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to detect local spatial association of the underlying processes. Here the interpolated-
value-based local spatial statistics Ii and G∗i were exemplified to evaluate the power of
the bootstrap test in identifying local spatial association of the underlying processes,
in which the queen spatial scheme was chosen to formulate the binary spatial prox-
imity matrix W̃ =

(
wij
)

m×m for the grids of the interpolation spatial layout shown in
Figure 1c. Namely, wij = 1 if grids i and j have a common vertex and wij = 0 if otherwise;
wii = 0 (i = 1, 2, · · ·, m) in Ii and wii = 1 (i = 1, 2, · · ·, m) in G∗i are assumed. The same
data sets in the foregoing N experiment replications for obtaining the interpolated values
of each spatial process were used to compute the rejection rate at each interpolated point.

What we focus here is to identify local positive autocorrelation using Ii and hot spots
using G∗i . Specifically, in each replication, we first obtained the interpolated values {zi}m

i=1
at the interpolation points {(ũi, ṽi)}m

i=1 with m = 400, on which the values of Ii and G∗i
were computed at each interpolation point (ũi, ṽi). Then, the bootstrap procedure was used
to derive the p-values of the Ii and G∗i based tests at each (ũi, ṽi), where the number of
the bootstrap sampling was set to be B = 500 and the p-values of pi+ for testing positive
spatial association were computed for Ii and G∗i , respectively. Given a significance level α,
if pi+ < α, we rejected the null hypothesis that there is no positive spatial association at
(ũi, ṽi). After the N = 500 replications were run, the rejection rate rN(ũi, ṽi) at each (ũi, ṽi)
was obtained.

The rejection rates {rN(ũi, ṽi)}m
i=1 with α = 0.05 under the unevenly sampling scheme

for each of the spatial processes are shown via the heat maps in Figure 6, where the true
surfaces of the three spatial processes are also attached for the purpose of comparison. For
the uniformly sampling scheme, the corresponding heat maps show the similar but more
evident patterns for each of the spatial processes because of the more accurate interpolated
surfaces shown in the second column of Figure 3. Therefore, the heat maps under the
uniformly sampling scheme are omitted here to save space.

Comparing the spatial patterns of the underlying spatial processes with the corre-
sponding heat maps of the rejection rates, we can clearly observe that both Moran’s Ii based
and Getis and Ord’s G∗i based tests can powerfully identify the grids where local positive
spatial association exists. Specifically, Ii based test can correctly identify the locations where
the similar (either low or high) values cluster with their rejection rates are all close to 1,
meaning that the locations where positive spatial autocorrelation exists can be almost surely
identified. G∗i based test is also powerful in identifying hot spots or locations where larger
values cluster. The rejection rates where positive spatial association are not significant are
all less than or approximately equal to the significance level of α = 0.05, indicating that the
bootstrap test has a valid nominal probability. Although the inaccurate interpolated values
in the area where the sampling points are very sparse have somewhat adverse effect on the
test power, the basic spatial association patterns of the underlying processes are still well
uncovered by the bootstrap test.

Furthermore, for the purpose of comparison, the conditional permutation test [2] was
conducted based on the same interpolated values by LGWI under the unevenly sampling
scheme and the same local spatial statistics for identifying positive spatial association. The
conditional permutation test is similar to the forgoing bootstrap test in the principle and
procedures except that the permutation samples are obtained by fixing the observation at
each focal sampling point and permutating the other observations among the remainder
sampling points, which is, as mentioned in [12], slightly more complicated than bootstrap
sampling where the bootstrap samples are drawn with replacement. We obtain the almost
same heat maps of the reject rates as those shown in Figure 6a,b, which we omit here to save
place. Such results are in accord with the finding in [12] for spatiotemporal data. In view
of the computation efficiency, the two test methods are almost similar in our simulation
which took about 6 s on our common personal computer for each experiment replication
with the sample size m = 400. However, in the case of large sample size of more than
2000, Yan et al. [12] found that the bootstrap test is more efficient than the permutation
test. The above comparison demonstrates that the conditional permutation test could be an
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alternative choice for identifying significant spatial association patterns of an underlying
spatial process.
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3.2. Seasonal Local Spatial Association Patterns of PM2.5 Concentration in Guangdong Province

As mentioned in Section 2.2.2 (ii), what we are interested in is to identify the areas
where PM2.5 concentration is significantly high and the areas where it is significantly low,
which can be achieved, as has shown in the simulation study, by simultaneously using Ii
and G∗i to explore local positive spatial association at each interpolation point. With the
p-values of the Ii and G∗i based tests for the significance of local positive spatial association,
the interpolation points where both p-values of the Ii and G∗i based tests are less than a
given significance level, for example, α = 0.05 indicate the areas where PM2.5 concentration
is high, while the interpolation points where only the p-values of the Ii based test are less
than α imply the areas where PM2.5 concentration is low.

Along the above line of reasoning, for each of the four data sets formulated in
Section 2.2.2, the LGWI procedure was used to obtain the interpolated PM2.5 concen-
trations at the interpolation points {(ũi, ṽi)}m

i=1 with m = 152, on which both Ii and G∗i
were used to locally measure spatial association among the PM2.5 concentrations. In the
calculation of the local spatial statistics, the queen spatial scheme among the grids was once
again taken to specify the spatial proximity matrix W̃ =

(
wij
)

m×m. In the bootstrap test,
B = 500 bootstrap samples were drawn from the interpolated values and the p-values for
testing positive spatial association were computed for both Ii and G∗i based tests. Figure 7
shows the heat maps of the interpolated values of PM2.5 concentration on the grids on
which the corresponding interpolated values rounded to integers were overlapped and the
choropleth maps of the p-values of the Ii and G∗i based tests for the four months.
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Figure 7. Heat maps of the interpolated surfaces of PM2.5 concentration and choropleth maps of
p-values of the Ii and G∗i based tests for identifying positive spatial association in the four months.
Column (a) interpolated surface; column (b) p-values of Ii based test; column (c) p-values of G∗i
based test.

It can be observed from the heat maps in the first column of Figure 7 that, as a whole,
the PM2.5 concentration is highest in January, the typical month in winter, while it is lowest
in July, the typical month in summer. In addition, the heat maps in the four months all
show obvious spatial heterogeneity over the province. The choropleth maps of the p-values
of Ii and G∗i based tests attached in the second and third columns of Figure 7 can be jointly
used, as aforementioned, to uncover the areas where the PM2.5 concentration is heavy or
light in each specific month. According to the choropleth maps of the p-values, it can be
concluded that, under the significance level of α = 0.05, the heavily polluted areas are in
the southwest part of the province while the lightly polluted areas locate at the north part
in January; in April, however, the situation is opposite. In July, the areas with high PM2.5
concentration are along the northwest boundary of the province and those with low PM2.5
concentration are mainly along the costal line with an additional area being in the northeast.
In October, besides the lightly polluted area in the southernmost part, both heavily and
lightly polluted areas are in the north part with the heavily polluted area being in the west
and the lightly polluted area being along the eastern boundary. In summary, both heavily
polluted areas and lightly polluted ones by PM2.5 pollutant change over the province from
season to season, showing different spatial association patterns in each season.
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4. Conclusions and Discussion

This paper proposes the LGWI approach for geostatistical data to deal with the prob-
lem that the data are only available at unevenly distributed locations over the studied
region, making it troublesome to construct a local spatial statistic for the exploration of local
patterns of spatial association over the whole studied region. This method can implement
interpolation on a lattice spatial tessellation on which a local spatial statistic can be well
defined. Furthermore, the bootstrap test is suggested to identify significant local spatial as-
sociation patterns of an underlying spatial process based on interpolated-value-based local
spatial statistics. The simulation study has shown that the proposed interpolation method
can adequately retrieve the true patterns of underlying processes with different levels of
spatial heterogeneity and the bootstrap test is powerful in identifying significant local pat-
terns of spatial association. The case study of PM2.5 concentration has demonstrated that
the interpolation and the test methods perform well in comprehensively identifying spatial
association patterns of real-life geostatistical data with their sampling points unevenly
distributed and highly clustered over space.

The performance comparison made in the simulation study shows that the proposed
LGWI interpolation is more flexible than the existing commonly used kriging and IDW
interpolation methods and yields more accurate interpolated values for an underlying
spatial process. The comparison between the bootstrap test and the conditional permutation
test demonstrates the latter could also be taken as an alternative method for identifying
significant local spatial association patterns especially when the sample size is moderate
or small. Although the proposed LGWI interpolation method is motived by overcoming
the challenge that the unevenly distributed sampling points make it difficult to use local
spatial statistics for the exploration of local spatial association among geostatistical data,
it contributes a new method to the toolbox of interpolation methodologies. In addition,
although the proposed interpolation and test methods were evaluated for their performance
and applicability by the local spatial statistics Ii and G∗i and PM2.5 concentration data
in this article, they are of generality to be used for other local spatial statistic and any a
geostatistical data set.

Nevertheless, it should be noted that, like any a local spatial statistic based test, the
interpolated-value-based test involves the multiple comparison issue because the test
should be in general conducted over all of the interpolation points in order to comprehen-
sively uncover the interested local spatial association patterns of the underlying process.
As pointed in [2], the Bonferroni and the Sidák methods for dealing with the multiple
comparison issue are usually very conservative. Fortunately, the false discovery rate (FDR)
criterion proposed by Benjamini and Hochberg [33] has been widely applied to a variety
of fields for handling the multiple comparison issue. This criterion has also been used to
deal with the multiple comparison issue in local spatial statistic based tests and the results
have shown that the FDR criterion is more powerful than the Bonferroni and the Sidák
methods by de Castro and Singer [34]. Therefore, it is expected that the results for testing
significant spatial association patterns in this paper would be more convincing if some well
performed procedure for dealing with the multiple comparison issue was considered in the
interpolated-value-based bootstrap test.

As a future research direction, it seems possible to extend LGWI and the related testing
procedure to identify spatiotemporal association for geostatistical spatiotemporal data.
The interpolation at a lattice spatiotemporal tessellation can be implemented by assuming
the nonparametric regression model y = f (u, v, t) + ε and obtaining the predictor at each
interpolation point by the local-linear geographically weighted least-squares procedure,
where the spatiotemporal distance like that in the geographically and temporally weighted
regression technique [35] could be used to generate the spatiotemporal weights. Then,
based on the latticed spatiotemporal interpolation points and the interpolated values of Y,
some local spatiotemporal statistics [10–12,36] can be constructed and the bootstrap test
developed in [12] or the randomized permutation procedure could be used to identify
significance of local spatiotemporal association of the underlying spatiotemporal process.
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In view of the wide application backgrounds of identifying local association among geo-
statistical spatiotemporal data, the extension of the interpolation and the test methods to
geostatistical spatiotemporal data deserves to be studied in the future.
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