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Abstract: Fuel cells have lately received growing attention since they allow the use of non-precious
metals as catalysts, which reduce the cost per kilowatt of power in fuel cell devices to some extent.
Until recent years, the major barrier in the development of fuel cells was the obtainability of highly
conductive anion exchange membranes (AEMs). On the other hand, improvements show that newly
enhanced anion exchange membranes have already reached high conductivity levels, leading to
the suitable presentation of the cell. Currently, an increasing number of studies have described the
performance results of fuel cells. Much of the literature reporting cell performance is founded on
hydrogen-anion exchange membrane fuel cells (AEMFCs), though a growing number of studies have
also reported utilizing fuels other than hydrogen—such as alcohols, non-alcohol C-based fuels, and
N-based fuels. This article reviews the types, performance, utilized membranes, and operational
conditions of anion exchange membranes for fuel cells.

Keywords: fuel cells; anion exchange membrane; PEMFC; hydroxide exchange membrane;
performance of AEMFC

1. Introduction

Rapid industrialization and a massive increase in the global population are the main
reasons for the energy crisis and current resource deficiency. The global population is
continuing to grow, increasing the demand for energy resources. The combustion of primary
energy sources (fossil fuels, for example, coal, natural gas, and oil) produces greenhouse gas
emissions and harms human health. Additionally, combustion is an incompetent conversion
of chemical energy into electrical energy according to the second law of thermodynamics [1].
Over the earlier decades, the exhaustion and ineffective use of energy sources have been
observed as the utmost critical issues in energy policy planning. The severe nature of these
issues has led to an excessive rise in the request for new renewable energy technologies [2].
In latest years, clean energy technologies, for example, fuel cells, solar energy, wind power,
and hydropower, are progressively preferred by governments and scientists. Of all types of
renewable and new energy technologies, fuel cells are receiving growing attention since
they can directly change chemical energy to electrical energy through the oxidation of
fossil fuels that are devoid of discharged hazardous chemicals [3]. Fuel cells have potential
in different implementations, for instance, portable power, vehicle propulsion, immobile
electricity generation, and huge electrical plants. The fuel cells are categorized as reliant
on several factors, such as conditions for the duration of operation (humidity, pressure,
temperature), the structure of the fuel cell (implementation system and scale), and the
appearance of the polymer electrolyte of the fuel cell [4].
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Fuel cells appeared as green energy technology. Such an electrochemical system
converts the chemical energy stored in H2 into electricity. These electrochemical systems are
developing technologies whose implementation is not limited to geographic constraints [5].
In the history of fuel cell improvement, alkaline fuel cells (AFCs) have been used as the first
fuel cell technology in external space. Nevertheless, to discover the implementations of fuel
cells on earth, polyelectrolyte membrane fuel cells (PMFCs) have concerned the attention
of the research community because of the introduction of ion-exchange polyelectrolytes
(H+/OH−) as solid electrolytes, which address the issues related with liquid-electrolyte
leaks and the variability of electrolytes in anion fuel cells [6].

The first to report such cell performance were Lu et al. [7], who exhibited in 2008 a Ni–
Cr anode and Ag catalyzed cathode with a favorable peak power density of 50 mW/cm2.
Five years later, two more studies attained peak power densities of 76 and 40 mW/cm2,
developing the membrane fuel cells founded on Ni/Ag and NiW/CoPPY-based (an-
ode/cathode) electrocatalysts, respectively [8]. The anion exchange membrane fuel cells
have attained significant attention, as illustrated in Figure 1, showing the number of publi-
cations in the anion exchange membrane fuel cells field since 2000. More than 2000 publica-
tions were reported on this technology over the years, whereas most were published in just
the past four years, suggesting that this technology is a blooming research area in fuel cell
technology. Most of the studies in the anion exchange membrane fuel cell field have been
applied in various countries worldwide, with the maximum number of reports originating
from China and North America [9].
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Fuel cells that are under enormous study can be categorized into several types: viz,
polymer exchange membrane fuel cells (i.e., proton exchange membrane fuel cells (PEM-
FCs)), alkaline fuel cells (AFCs), solid oxide fuel cells, phosphoric acid, and molten carbon-
ate fuel cells [10]. Anion exchange membrane fuel cells are the utmost favorable alternative
over PEMFCs. Over the past two decades, they have drawn incredible research interest
due to several unique properties such as improved oxygen reduction kinetics, non-precious
metal catalysts, minor corrosion, easy water management, and better fuel oxidation. As the
major component of the anion exchange membrane fuel cells, anion exchange membrane
(AEM) should have vital qualities such as low swelling ratio, good hydroxide conductivity,
and prolonged alkaline stability [11]. The low-performance stability is mainly produced by
the chemical removal of the anion conducting ionomers because of the high pH environ-
ment existing for the duration of the procedure of the fuel cell [12–14].

The development of different functional groups of the anion exchange membrane
improved its stability in hydrated alkaline environments [15–21]. However, numerous
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recent studies found that the high pH environment combined with a low hydration level
at the cathode side of the cells could clarify the chemical degradation [22–24] and the
decay in performance for the duration of the AEMFC process [9,25]. For instance, the high
pH and low hydration levels expose the quaternary ammonium (QA) cation functional
groups in the ionomer to chemical attack via poorly solvated and extremely reactive
hydroxide anions [23]. This breakdown of the monomeric materials in the cell leads to a
continuous harmful reduction in ion exchange capacity (IEC) which, in sequence, results in
a continuous reduction in ionic conductivity and a rise in cell resistance, leading to a quick
reduction in performance [9].

2. Classifications of Fuel Cells

Currently, five significant kinds of fuel cells can be recognized according to the type
of electrolyte [26]. Any fuel cell is divided into three main components. The electrodes,
electrolyte, and external circuit constitute a single fuel cell. Inter-connector plates are often
used when it is desired to stack multiple fuel cells.

2.1. Alkaline Fuel Cells (AFCs)

A significant advantage of Alkaline Fuel Cell (AFC) technologies is the capability to
use more abundant, inexpensive, and non-platinum catalysts [27]. While the air containing
oxygen is fed across the cathode electrode, the fuel (H2) is supplied over the anode. Gener-
ally, the liquid electrolyte used in an AFC is an aqueous KOH electrolyte. However, any
CO2 in the air feed stream leads to carbonate precipitation via the formation of large metal
carbonate crystals, which possibly will close the pores of the gas diffusion layer on the elec-
trode [28]. If electrolyte concentration is not high enough, water molecules and electrons
are produced due to the reaction of hydroxyl ions from the cathode through the electrolyte
and the hydrogen charged at the anode. The electrons are then transported through the
external circuit back to the cathode, where the hydroxyl ions have been formed due to an
oxygen reaction with water molecules (see Figure 2).
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Anode : 2H2 + 4OH− → 4H2O + 4e− (1)

Cathode : O2 + 2H2O + 4e− → 4OH− (2)

Overall : 2H2 + O2 → H2O + Electrical Energy + Heat (3)

reduced by re-circulating the electrolyte, which raises the cell’s efficiency, and the water
generated can be removed by evaporation [29]. In AFCs, the reaction kinetics are more
facile, resulting in higher cell voltages [30]. Compared to SOFC (>700 ◦C) and other fuel
cells, AFCs are relatively easy to handle and have a rather low operating temperature
(23–70 ◦C) [29]. AEMs are solid polymer electrolyte membranes that include positive ionic
sets (normally quaternary ammonium (QA) functional sets, for example, poly- NMe+3) and
moveable negatively charged anions. A widely quoted attention with AEMs is membrane
stability, especially at raised temperatures [31,32]. The prevalent matters are:

1. The diffusion coefficients and motilities of OH− anions are fewer than H+ in many
media and quaternary ammonium ionic sets are not as much dissociated as the
standard sets of sulfonic acid where (acid dissociation constant) pKa for sulfonic acid
sets are usually −1. However, for quaternary ammonium groups, the associated pKb
values are approximately +4. There were worries that AEMs would not have sufficient
intrinsic ionic conductivities for implementation in fuel cells [33].

2. The OH− anions are active nucleophiles that potentially cause removal by using (a)
a direct nucleophilic dislocation and/or (b) a Hofmann removal reaction when a
b-hydrogen is present; it is possible that OH− will also displace methyl groups (-CH3),
forming tertiary amines and methanol [31,32]. If the AEMs include good leaving
sets (e.g., QA –NMe+3 sets), then the chemical stability of the AEMs may have been
insufficient for use in fuel cells, mainly at elevated temperatures.

3. The precursor anion-exchange membranes are usually immersed in aqueous NaOH/KOH
solutions to convert them to the OH− form AEM. The anion exchange membrane
should have the chemical stability to endure this process. A decade ago, the stabilities
of different benzyltrimethylammonium-based AEMs were tested and found to be
stable up to 75 ◦C in NaOHaq at concentrations up to 6 mol/dm3 for many days [34].

2.2. Proton Exchange Membrane Fuel Cells (PEMFCs)

Among all kinds of fuel cells, the proton exchange membrane fuel cell (PEMFC)
has become extensively accepted for powering electric devices and vehicles [35]. Proton
exchange membrane fuel cells, which ordinarily produce electricity over a chemical reaction
amid hydrogen and oxygen or an additional oxidizing agent, have become more abundant
in recent years because of their inherent benefits [36]. PEMFCs have several outstanding
features, for example, high energy density; high energy efficiency; low working noise; low
general cost; low working temperature; sulfur oxides, zero emissions of nitrogen oxides
and CO2; short startup time; zero corrosion; use of solid electrolytes; and long life [37].
The protons formed at the anode are transferred to the cathode through the proton exchange
membrane, whereas electrons are transferred through graphite plates from the anode to
the cathode via an external circuit. Oxygen and electrons generate water and heat at the
cathode side. The proton exchange membrane is the heart of the fuel cell [38]. The basic
design of the mono-proton exchange membrane fuel is displayed schematically in Figure 3.

The chemical reactions followed in the fuel cell are displayed below:

Anode : H2 → 2H+ + 2e− (4)

Cathode :
1
2

O2 + 2H+ + 2e− → H2O (5)

Overall : H2 +
1
2

O2 → H2O + Q1 + Q2 (6)

where Q1 is electrical energy and Q2 is heat energy.
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The sulfonated aromatic polymer is an ideal raw material for proton exchange mem-
branes and is synthesized from industrialized monomers. Furthermore, its physicochemi-
cal features can be regulated via functionalizing monomers or adjusting the last polymer.
Thus, as a substitute proton exchange membrane, the sulfonated aromatic polymer has
made significant progress in the synthesis [39]. Generally, these sulfonated polymers need
low equivalent weights (EW) to attain high electrical conductivity [40]. Unfortunately,
low water content typically leads to high water content absorption and even the loss of
mechanical features of membranes; nevertheless, sulfonated membrane crosslinking post-
treatment can limit the absorption of water via sacrificing proton conductivity [41]. So, it
is essential to preserve good proton conductivity and decrease water absorption to attain
high mechanical properties.

A series of sulfonated poly (fluorene ether ketone nitriles) with low EW were created
via one-step polycondensation from marketable raw materials. Varying from the conven-
tional sulfonated aromatic polymers, they have high proton conductivity and a sudden
decrease in water uptake. Additionally, they present excellent thermal and chemical sta-
bility. These features provide it with vast implementation visions in high-temperature
PEMFCs [42].

2.3. Solid Oxide Fuel Cells (SOFCs)

The solid oxide fuel cell is a power production technology that, step by step, varies
the traditional main scheme of power source into a decentralized scheme of power source
and directly fits power generation with the consuming of power needs at the household
position [43]. An essential benefit of this structure is its simple structure that does not
need a separator or gas storage [44]. The electrochemical charge transference reaction
and restructuring reaction happen in solid oxide fuel cells. On the cathode (air electrode),
oxygen molecules attain electrons and are decreased to ions of oxygen. Under the action of
an electric field, ions of oxygen transfer to the anode through the vacancies of oxygen in
the electrolyte to trigger an oxidation reaction with fuel CH4 or H2 and electrons produce a
current through external circuits, as displayed in Figure 4. The chemical potential energy
(or Gibbs free energy) of the global reaction of the fuel and oxidant is transformed into
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electricity and heat for the duration of the chemical reaction. The electrochemical reactions
on the cathode and anode in solid oxide fuel cell are exothermic [45].
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Figure 4. The basic operational principles of solid oxide fuel cell membrane electrode assembly (MEA).
In the left bubble, oxygen molecules are dropped at the cathode and oxygen ions are conducted
over the electrolyte. The ions of oxygen are transferred by the electrolyte to the anode (right bubble),
where they are utilized for electrochemical oxidation of fuel at the three-phase boundary. Electrons
free in the charge-transfer reactions are conducted over the anode (metal) to the external circuit [45].

The traditional materials utilized for solid oxide fuel cell cathodes and oxygen sepa-
ration membranes are perovskites, for example, ferrites-nickelates (LSFN), Sr-doped La
manganites (LSM), and ferrites-cobaltites (LSFC). Regardless of the high electronic (for
LSM) or mixed ionic-electronic (for LSFC and LSFN) conductivity (from ~102 to 103 S/cm
at 700 ◦C), these materials have subjects concerning their thermomechanical and chemical
compatibility with electrolyte materials’ lengthways (variations in the thermal expan-
sion coefficient and formation of poor conducting Sr and La zirconates/cerates at the
cathode-electrolyte interface) with their low stability to carbonization that limits their
implementation [46]. Renouncing the strategy of doping the A-site with alkaline earth
metal cations is one probable method to progress the chemical stability of perovskite ma-
terials (such materials are more stable to carbonization) [47–49] in addition to utilizing
host A-cations with smaller ionic radii (such as Pr+3 [50]) since their zirconated and cerates
are thermodynamically unstable [48,51,52]. Pr nickelates-cobaltites (PNC) are promising
materials for solid oxide fuel cell cathodes and perm-selective layers of membranes of
oxygen separation because of their compatibility with electrolytes (for example, doped
ceria), their stability to carbonization and their higher oxygen transference characteristics
(the oxygen tracer diffusion coefficient (D*) value is up to ~10−8 cm2/s at 700 ◦C) [53–55].

2.4. Phosphoric Acid Fuel Cells (PACFs)

In phosphoric acid fuel cells, hydrogen can be produced in situ from methanol (or
similar liquid fuel) compared to the traditional techniques where the compressed liquid
hydrogen is used directly. Thus, the phosphoric acid fuel cells are working by utilizing
accessible schemes of distribution and refueling [56]. A phosphoric acid fuel cell typically
houses phosphoric acid (H3PO4, PA) trapped in a matrix (usually silicon carbide, SiC)
as the electrolyte. Platinum with various loadings on carbon-based gas diffusion layers
produces the electrodes, i.e., cathode and anode. The fuel source and the oxidant are
circulated via bipolar plates (BPPs) on opposed sides of the electrolyte, as shown in Figure 5.
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However, hydrogen is oxidized to electrons and protons at the anode. While the electrons
route via the external circuit, the protons pass through the electrolyte. The oxygen is
combined with the protons and electrons at the cathode for water production and the heat
released during the reaction is generally utilized for heating water and space heating [57].
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The overall Ohmic overpotential (η ohmic) acquired in the cell is the totality of the losses
because of the resistance of the membrane (η membrane) and interfacial contact resistance
(ICR) (η ICR). If the membrane is hydrated sufficiently, it conducts protons efficiently, thus
offering less resistance. On the other hand, a cell with insufficient clamping pressure will
face high contact resistance subsequent to a significant ohmic drop. A correctly clamped
cell is observed to have an interfacial contact resistance of almost 55% of the overall ohmic
resistance (Figure 6) [58].
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ode activation overpotential; the quantity of energy essential to overwhelm the cathodic reaction
activation barrier, and ηact = total activation overpotential of the reaction.
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2.5. Molten Carbonate Fuel Cells (MCFCs)

As a high-temperature fuel cell, a molten carbonate fuel cell has an extensive range
of fuel bases and does not depend on valuable metals as electrode catalysts. Additionally,
molten carbonate fuel cells can be united using gas or steam turbines to attain collective
power and heat, beneficent energy use, and conversion effectiveness [59]. The molten
carbonate fuel cell arranges a mixing of alkali carbonates as the electrolyte and works at
intermediary temperatures (550–650 ◦C) utilizing carbonaceous fuels such as natural gas.
The important electrochemistry of a molten carbonate fuel cell includes the construction of
carbonate ions (CO3

−2) at the cathode via the mixture of O2, CO2, and two electrons; the
passage of the ions carbonate to the anode over a carbonate-containing electrolyte (“ma-
trix”); and, lastly, the reaction of the carbonate ion with hydrogen at the anode produces
CO2, H2O, and two electrons as displayed in Figure 7. The subsequent electrochemical
reactions occur [60]:

Reaction at cathode : CO2 +
1
2

O2 + 2e− → CO−2
3 (7)

Reaction at anode : H2 + CO−2
3 → H2O + CO2 + 2e− (8)

Total : H2 +
1
2

O2 → H2O (9)Sustainability 2022, 14, 14653 9 of 52 
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Figure 7. Schematic of the MCFC system: oxygen and carbon dioxide attain electrons to generate
carbonate ions, carbon generates CO2 or CO and electrons at the anode, and carbonate ions at the
cathode. At the same time, the carbonate ion can possibly decompose into O−2 and CO2 [61].

Figure 8 presents a graphical illustration of the system configuration. The reforming
unit was equipped with water vapor and pre-heated fuel, which interacted with the
catalytic combustion burner on a thermal basis to achieve the heat essential for reforming.
Fuel products that were reformed arrived in the anode chamber containing CO2, H2, CO,
and H2O. In the catalytic combustion burner (CCB), the air supplied by the mechanical
blower was mixed with the remaining fuels lengthways with a portion of the remaining
air generated by the cathode. For the electrochemical processes in the stack of fuel cells,
the cathode input was supplied with hot CO2-enriched air. The water vapor and fuel
combinations were pre-heated using the hot consumed gas leftovers leaving the cathode
and released into the atmosphere as evaporated water.
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Figure 8. A standalone MCFC (molten carbonate fuel cell) module schematic diagram [62].

Regarding the technology of the membrane, utilized in a varied range of implemen-
tations for gas separation, many membrane kinds have been examined for CO2 capture:
inorganic, polymeric, mixed, facilitated transport membranes, hybrid, and capillary mem-
branes, though most are for small-scale implementations. Mixed matrix membranes are
a well-known route to improve the properties of the membrane. Their microstructure
involves an inorganic material in the form of micro- or nanoparticles (discrete phase) in-
corporated into a polymeric matrix (continuous phase). Using two materials each with a
different flux and selectivity delivers the probability of better designing a membrane for
capturing CO2 by permitting the synergistic mixture of polymers’ easy process capabilities
and the superior gas separation performance of inorganic materials. If scale-up problems
were to be resolved, they would offer substantial advantages over absorption processes
only for flue gases with a CO2 content exceeding 20% [63–66].

Due to the MCFC CO2-concentrating effect, the membrane separation sizing for the
800 MW Natural Gas Combined Cycles has a 4-fold lower feed flow and a 3.6-fold higher
CO2 concentration than the reference. Polyethylene oxide (PEO) is a promising material for
CO2-selective membranes due to its strong affinity to CO2. Hence, CO2 permeates selec-
tively through the membrane and H2 retains at the high-pressure feed side. High-pressure
H2 can therefore be produced without additional recompression since Kawakami et al. [67]
found that PEO had a high CO2 affinity. The membrane permeability and selectivity are
based on [68,69]. This selectivity is consistent with the findings of Chen et al. [70] for
CO2/H2 and CO2/N2 in the polymer-ionic liquid blend. Table 1 summarizes the fuel
cell types according to their main components (viz, electrodes, electrolytes, and external
circuits).
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Table 1. The fuel cell types and their main components (electrodes, electrolytes, and external circuits).

Types of Fuel Cells
The Main Components of Fuel Cells

Electrodes Electrolyte External Circuit

Alkaline Fuel Cells (AFCs)
X The electrodes consist of a double-layer

structure: an active electrocatalyst layer
and a hydrophobic layer. The active layer
is composed of an organic mixture
(carbon black, catalyst, and PTFE) that is
ground and then rolled at room
temperature to cross-link the powder and
form a self-supporting sheet.
The hydrophobic layer prevents the
electrolyte from leaking into the reactant
gas’ low channels and ensures diffusion of
the gases to the reaction site [28].

AFCs use liquid KOH (a potassium hydroxide solution) as an
electrolyte and are fueled by hydrogen. The oxidant must be pure
oxygen, not air, due to the carbonatation of the electrolyte by CO2
content. The alkaline electrolyte means that carbon dioxide, which
degrades (carbonates) the electrolyte, must be eliminated. Only highly
purified hydrogen and oxygen can be used, the cost of which imposes
a severe limitation to applications other than space [71]. Inorganic
materials such as layered perovskite-type oxides such as LaSr3Fe3O10,
NaLaTiO4, Sr4Co1.6Ti1.4O8(OH)2·xH2O, RbLaNb2O7, LaFeO3, and
NaCo2O4 have been used as the electrolyte in the alkaline fuel cell, but
the study of these new inorganic electrolyte membranes is still in its
infancy [27].

AFCs produce electricity through oxidation-reduction reactions
between oxygen and hydrogen. Water is generated from the chemical
reaction and two electrons are released. The electrons flow through an
external circuit and return to the cathode oxygen reduction in an
electrochemical reaction; thus, hydroxide ions are produced.
Electricity is created as a byproduct of this product [72]. The electronic
charge balances the flow of ionic charge through the electrolyte and
the external circuit, producing electricity up to 20 KW [28].

Proton Exchange Membrane
Fuel Cells (PEMFCs) X Anode and cathode are carbon-supported

platinum deposited on both sides of a
proton-conducting polymer membrane
(electrolyte), and the assembly is called a
Membrane Electrode Assembly (MEA),
where the dissociation of hydrogen
generates protons and electrons using the
platinum catalyst [39].

Careful monitoring of the electrolyte/acid structure and its leaching is
also necessary to understand the performance degradation of the
device. The widely used phosphoric acid and recently introduced
phosphonic acid (and their derivatives) play a vital role in the proton
conductivity of PEMFCs. These acids mostly undergo degradation
because of high temperatures and oxidative degradation. Phosphonic
acid and its derivatives degrade by condensation resulting in an
adverse effect on the conductivity of the membrane. Moreover, the
thermal stability of the electrolyte/acid could be improved by using
additives. The addition of 20 wt% of perfluoroalkyl phosphonic acid
(C2F5PO3H2 and CF3PO3H2) in H3PO4 could lead the electrolyte
mixtures to show excellent thermal stability for high-temperature
PEMFCs operating between 140 and 200 ◦C [73].

The electrons transfer from the anode side to the cathode side through
an external circuit, while the proton will transfer through the
electrolyte layer at the cathode side. The oxygen gas reacts with
electrons and protons to generate water. The produced electrical
power is up to 250 KW [38]. The ohmic polarization in the circuit of
PEMFCs varies directly with the current, increasing over the entire
range of the current because the cell resistance remains essentially
constant. Ohmic losses occur due to the resistance of the electron
transfer between electrodes and the protons traveling through the
solid polymer membrane. The dominant ohmic losses through the
electrolyte are reduced by decreasing the electrode separation and
enhancing the ionic conductivity of the electrolyte [74].

Solid Oxide Fuel Cells
X The electrode consists of anode materials,

particularly in the context of carbon
deposition and tolerance to sulfur
poisoning. However, the traditional
materials utilized for solid oxide fuel cell
cathodes and oxygen separation
membranes are perovskites, for example,
ferrites-nickelates (LSFN), Sr-doped La
manganites (LSM), and ferrites-cobaltites
(LSFC) [46].

The electrolyte usually consists of a dense solid metal oxide. One of
the most common electrolyte materials in SOFCs is yttria-stabilized
zirconia (YSZ)-zirconia (ZrO2) with 8% yttrium added as a dopant.
In the temperature range of 650–1000 ◦C, YSZ is a good conductor of
oxygen ions O−2 [45]. Other doped zirconia materials with higher
ionic conductivities, such as Sc- and Yb-stabilized zirconia, are
suggested to lower the cell working temperature. However, only YSZ
provides a compromising combination of stability and ionic transport
properties among doped zirconia-based electrolyte materials [47].

Electrons from the chemical reaction at the anode surface must be
transported to the external circuit. Since the electrolyte has a large
surface area, a metallic-screen current collector is used to reduce the
distance electrons must travel in the anode itself; the electrons are
transported long distances to the external circuit by the current
collector. Nevertheless, resistive losses within the anode must be
minimized by having a catalytic anode that is an excellent electronic
conductor. If the anode supports the thin ceramic electrolyte, the
electrons must travel a longer distance in the anode to reach the
current collector, which requires a higher electronic conductivity of the
catalytic anode material [75]. The resultant electricity is near
>200 KW [47].
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Table 1. Cont.

Types of Fuel Cells
The Main Components of Fuel Cells

Electrodes Electrolyte External Circuit

Phosphoric Acid Fuel Cells
(PACFs) X Platinum with various loadings on

carbon-based gas diffusion layer
constitutes the electrodes, i.e., cathode and
anode [56].

Phosphoric acid, an inorganic acid in an utterly dissociated ionic state,
is a good ionic conductor. Its high ionic conductivity makes it an ideal
choice as an electrolyte in PAFCs. In the earlier developmental stages
of PAFCs, diluted electrolytes were used to avoid corrosion.
However, a concentrated electrolyte minimizes the water vapor
pressure, thereby managing the water better and easier than
PEMFCs [57].

The negatively charged electrons are stripped from the hydrogen fuel
through the external electrode circuit. The remaining positive ions
travel through the electrolyte to the other porous electrode (the
cathode), where they combine with oxygen ions that form when the
free electrons combine with oxygen fed in at the cathode.
The by-product of the reaction is electricity produced from the flow of
electrons from the anode to the cathode. Cells are then “stacked” in
series with their respective electrodes to create a prescribed direct
current (DC) voltage level [76], which produces power about
>50 KW [57].

Molten Carbonate Fuel Cells
(MCFCs) X The nickel anode is considered to have a

much thinner electrolyte film because it is
less wetted by the carbonate electrolyte
compared with the nickel oxide (NiO)
cathode. The anode material type is
essential in the wetting properties and the
active surface area. It has been reported
that using Ni–Cr provides a more wetted
area compared with other materials
because of the formation of a large
fraction of tiny pores (<0.4 mm) through
the formation of lithium chromium
dioxide (LiCrO2) (oxidation and lithiation
of the chromium additive) [60].

Molten carbonate salt is commonly used in MCFCs. It is compatible
with CO2 as an electrolyte and provides excellent ionic conductivity at
a relatively low temperature. The operating temperature of the
MCFCs is reduced by changing the carbonate composition while
maintaining cell performance, which is another positive factor when
using molten carbonate as an electrolyte. The Li–Na carbonate has
often been used as an electrolyte in MCFC to substitute the Li–K
carbonate. Nevertheless, there may be a risk of a rapid decrease in cell
voltage with Li–Na carbonate at atmospheric pressure and low
temperature (≤600 ◦C) because of the relatively low solubility of
oxygen in this eutectic [61].

Introducing carbonate in the MCFC system is conducive to improving
cell performance of open-circuit voltage and output power.
The carbonate accelerates ion transfer as a medium or is a catalyst for
carbon oxidation and gasification reaction with a producing power
>1 MW [61]. The overall reaction is exo-energetic. This energy is an
electric part consumed in the external electric circuit when the
electrochemical reaction is reversible. One part of an energy T∆S
cannot be converted to electric energy and must be released as
heat [77].
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3. Basics and Materials

To confirm that the hydrogen oxidation reaction (HOR) and the oxygen reduction
process (ORR) run efficiently, the fuel cell components must be chosen to maintain ini-
tial durability and lifetime effectiveness. Several issues need to be handled for activa-
tion enhancement and decreasing the transport losses, including, containing a durable
electrocatalyst and lowering its loading, water management, contamination of the reac-
tant/membrane, and removal. Consequently, material advancements and enhancements
for fuel cells are essential and characteristics that provide a substance with its features and
the fuel cell performance through various operating conditions are highly desirable [78].

3.1. Membrane

Membrane refers to a thin layer of electrolyte typically 10–100 µm that conducts
protons from the anode to the cathode. The required membrane materials show high
ionic conductivities, inhibiting the transference of electrons and the cross-over of oxygen
reactants from the cathode and hydrogen fuel from the anode. Additionally, they must
be chemically stable in environs with HO− and HOO radicals, thermally stable through
the operating temperatures, and mechanically robust. The present membranes are mainly
based on perfluorosulfonic acid, the most protuberant Nafion, first developed by the Com-
pany of DuPont in the 1960s. Nafion® has a backbone structure of polytetrafluoroethylene
(PTFE, recognized by the trade name Teflon), which delivers the membrane with phys-
ical strength. The sulfonic acid functional groups in Nafion deliver charge sites for the
transference of proton. In addition, other perfluorinated polymer materials, for example,
Neosepta-F™ (Tokuyama), Flemion ™ (Asahi Glass Company), Gore-Select™ (W.L. Gore
and Associates, Inc.), and Asiplex™ (Asahi Chemical Industry) are also accepted for PEM
fuel cell applications. Furthermore, materials of the membrane that can operate at high
temperatures (100–200 ◦C) are favored for high-temperature PEM fuel cells, which have the
benefits of better catalyst tolerances to CO and stratagems of cooling for fuel cells [79,80].

Perfluorosulfonic acid (PFSA) is commonly used in PEM fuel cells as a PEM component.
The main chain is highly hydrophobic and has Teflon-like characteristics. On the side
chain, sulfonic acid is an extremely hydrophilic end group, enabling proton conduction
by allowing water to adsorb. Membrane hydration is essential and should be regulated to
the highest value possible to ensure enough water is available for proton passage without
flooding the gas diffusion layers (GDLs) and catalyst layers (CLs). The side chain length
is a necessary parameter in defining the stability and performance of the membrane. For
implementations of proton exchange membrane fuel cells, two kinds of PFSA membranes
are used and categorized, respectively, as long side chain (LSC), for example, Nafion®, and
short side chain (SSC), e.g., Aquiviun®, membranes. The quantity of CF2 units and the side
chain structure are the most significant variances, as shown in Figure 9a [81]. Figure 9b
demonstrates the morphology of a Nafion XL membrane (LSC) [75].
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Figure 9. (a) Nafion and Hyflon Ion/Dow polymer structures [81], (b) shows the SEM image of
Nafion XL membranes in their as-received shape after being handled using water. Small (×3000),
moderate (×9000), and large (×43,000) magnification are presented throughout rows from topmost
to bottommost [82].

Two main modes of transference occur in membranes: transport of water and proton.
Gierke and Hsu defined the polymeric membrane, a cluster model, in terms of a reversed
micellar structure in which the ion-exchange places are detached from the fluorocarbon
backbone, joining the spherical clusters (pores) via short-cramped channels [83]. The cluster
sizes rely on the content of local water. The gradient of the electrical potential of the elec-
trolyte considers the major driving force for the transference of protons. The transference
of protons crosses the membrane primarily because of the gradient of electrolyte potential
and the relatively tiny diffusion influence. Water in the membrane is necessary for the
transference of protons (diffusion of vehicular mechanism). By forming hydronium ions
(H3O+), protons can transfer from high to low concentration regions, named the diffusion
of vehicular [84]. So, this mechanism mainly relies on the diffusivity of water in the mem-
branes. One more is through the “Hopping” mechanism that happens when the acceptable
water content exists to attach the side chains of sulfonic groups, where protons can transfer
straight from one site to another [85,86]. One of the furthermost generally utilized proton-
conductivity models is the experimental correlation advanced by Springer et al. [87] for the
Nafion® 117 membranes:

K = (0.005193λ− 0.00326) exp
[

1268
(

1
303
− 1

273 + Tcell

)]
(10)

λ : Water content
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Additionally, according to one concept, the polymer backbone (–CF2–) could react
with hydrogen via –CF2– + 2H2 → –CH2– + 2HF, producing membrane degradation [88].
Therefore, for many years, the emphasis of polymer research in proton exchange membrane
fuel cells was on developing cost-competitive membrane materials and providing superior
endurance and stability along with a wide range of operating conditions, especially under
extreme conditions of high temperature (e.g., >120 ◦C) and sub-zero temperatures and
low humidity (e.g., 0% RH); they have gained considerable attention in the scientific
literature [89,90].

Low-cost solid polymer electrolyte compounds are available in various forms while
eliminating the necessity of humidification. Nevertheless, for the period of the FC’s
working life, their stability and conductivity deteriorate. The main alternative membrane
compositions are summarized in Table 2. Machine learning has the potential to significantly
contribute to membrane material enhancement. Membranes with high conductivity of ions
at a competitive price, durability, and slight hydration necessity are extremely required for
proton exchange membrane fuel cells. Furthermore, other fields have extensively explored
polymer membranes that conduct protons, such as Chlor-alkali production, metal-ion
recovery, electrolysis of water, humidification/drying of gas, and flow battery. Machine
learning aids analyze the massive amount of material data sets throughout literary works,
for example, the structure of material, ionic conductivity, hybrid configuration, function
groups, and performance of subfreezing, for the selection and optimization of material.
In the operation of the fuel cell, the species cross-over, permeation/diffusion of water,
transport of ions, and degradation of material all happen within the cell membrane, which
can also be incorporated into machine learning along with its underlying mechanisms,
control system enhancement, and diagnostics in real-time [78].
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Table 2. Summary of alternative membrane materials to PFSA [78].

Material Preparation Comments

Polystyrene-sulfonic acid (PSSA)
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were mixed with Polyphthalamide (60 g) and put in a
round-bottom flask delivered with a reflux condenser with an inlet
for nitrogen. The mixture was raised in temperature to 190 ◦C for
20 h. The Polybenzimidazole PBI powder was collected and then
dissolved in n-n DiMethyl Acetamide to prepare 10 wt% of the
solution of PBI. The incompletely dissolved Polybenzimidazole
powder in DiMethyl Acetamide was eliminated via simple
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They are tailored for operation at 160–220 ◦C and thus are suitable
for PAFCs. The main challenges are: (i) electrolyte leakage, (ii) the
presence of a liquid electrolyte and hence possible GDL flooding,
and (iii) unsuitability for portable and transport applications.
R&D also uses them in a new class of membranes with an
improved matrix for H3PO4.
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on a glass plate led to the production of transparent membranes of
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Modification of Membranes for Fuel Cell Applications

The construction strategies for Nafion membranes can be classified into two categories:
(i) material engineering toward Nafion-based composite membranes and non-Nafion mem-
branes and (ii) structural engineering oriented toward surface-patterned Nafion membranes
SPNMs. The composite membrane is based on a material composition process for reshaping
the membrane’s material properties, fuel crossover reduction, and mechanical properties
improvement [97].

Many studies investigate the role of membranes and focus on the synthesis, charac-
terization, and modification of these membranes to achieve the best results for fuel cell
applications. Salleh et al. [98] investigated the stability of SPEEK/Cloisite®/TAP nanocom-
posite membrane in the Fenton reagent test to duplicate the polymer electrolyte membrane
degradation mechanism using the radical attack during direct methanol fuel cell opera-
tion. The SP/CL/TAP nanocomposite membrane has shown higher water uptake, proton
conductivity, and methanol permeability changes than the Nafion® membrane. Figure 10
shows that the Nafion® 117 membrane has the lowest weight loss among the tested mem-
branes, followed by the SP/CL/TAP nanocomposite membrane and the pristine SPEEK
membrane [98].
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In another study, novel hybrid composite membranes were fabricated by blending
polyethylene glycol functionalized polyhedral oligomeric silsesquioxane [PPOSS] as a
nanofiller. The concentration of the nanofiller was from 1 to 5% (w/w) into sulfonated
polyether ether ketone [SPEEK], with the degree of sulfonation 55% for proton exchange
membrane fuel cells [PEMFCs]. Figure 11 depicts the plot of the storage modulus versus
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the temperature for neat SPEEK, composite, and Nafion 112 membranes. SPEEK, and its
composite membranes, exhibits higher storage modulus values than Nafion 112 over the
whole temperature range [99].
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Ni et al. [100] fabricated two sulfonated fluorenyl-containing polyether ether ketone
ketones (SFPEEKKs) to be the matrix of composite proton exchange membranes via directly
sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and
sulfonatable fluorenyl-containing segments. The proton conductivity of each membrane
increased as the temperature increased, as shown in Figure 12a,b. They found that proton
conductivity was a thermally activated process and that the proton conductivity of pure
SFPEEKK-30 membrane was 0.106 S.cm−1 at 90 ◦C, compared to that of Nafion 117 [100].
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Quaternary-ammonium or quaternary-phosphonium functional groups are used as
high-performance engineering polymers for anion exchange membrane fabrication. How-
ever, the membranes with such high functional group concentrations could suffer from
significant swelling leading to efficiency reduction. Cross-linking between polymer chains
is used to minimize the unwanted effects [101]. Among the various anion exchange func-
tional groups that can hold hydroxide ions, quaternized trimethylamine has been used as a
fluorinated film for the radiolytic preparation of anion exchange membranes through the
radiation grafting of vinylbenzyl chloride (VBC) monomer and subsequent treatment with
trimethylamine [102]. Due to low maintenance costs and favorable environmental proper-
ties, proton exchange membrane (PEM) technology has recently attracted more attention.
The hydrogen storage concept is summarized in three main steps: production, storage,
and consumption. These steps are performed in a PEM electrolyzer (PEME), pressurized
hydrogen tank, and PEM fuel cell (PEMFC) [103]. Elumalai et al. [104] synthesized a series
of novel composite anion exchange membranes for alkaline fuel cells. The membranes were
prepared by casting the synthesized quaternary ammonium functionalized Polyhedral
Oligomeric Silsesquioxane (QA-POSS) with Quaternary polysulfone (QPSU). The electro-
chemical tests in Figure 13 showed that the composite membranes possessed high OCVs of
0.835, 0.895, and 0.955 V for 5%, 10%, and 15% QA-POSS/QPSU, respectively, compared to
the neat QPSU (0.66 V). They reported that the formation of denser composite membranes
than the neat QPSU might reduce the fuel cross-over. Polarization plots showed that
the maximum power density values were 154, 215, 248, and 321 mW/cm2 of QPSU, 5%
QA-POSS/QPSU, 10%QA-POSS/QPSU, and 15% QA-POSS/QPSU, respectively. Addition-
ally, the current densities of QPSU, 5% QA-POSS/QPSU, 10%QA- POSS/QPSU, and 15%
QA-POSS/QPSU were 425, 610, 680, and 720 mA/cm2 (Figure 13). The higher hydroxide
conductivity of the composite membranes is due to using different percentages of QA-POSS
and some degree of water uptake, leading to higher fuel cell performance [104].
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Modifying functionalized polymers using hydrophilic polymers to enhance the organic-
organic phase interaction and thermal properties were reported for thermal-specific appli-
cations. However, different inorganic materials, such as silica, clays, metal oxides, carbon
nanotubes, and a few others, are used to improve the properties of proton exchange mem-
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branes [105]. Incorporating inorganic materials into proton exchange membranes results
in the formation of nanocomposite membranes, where the nanostructures improve the
thermal and mechanical stability of such membranes [106]. Feife et al. [107] synthesized a
mixed matrix membrane comprising sulfonated graphene nanoplates (sGNP) and Nafion
ionomers with aligned proton channels vertical to the membrane surface with an alternat-
ing electric field. They found that embedding sGNP enhanced the membrane’s trans-plane
conductivity. The trans-plane conductivity of the mixed matrix membrane can reach 0.155
S cm−1 at 80 ◦C and 100% RH (a 48% increase compared with the conventional cast Nafion
membrane). In terms of H2/O2 fuel cells’ power outputs, all mixed matrix membranes are
superior to the traditional cast Nafion membrane (Figure 14).
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Figure 14. Performances of single fuel cell with pure Nafion or sGNP-Nafion mixed matrix mem-
branes. The feeding flow rate of the humidified H2 and O2 gas were 75 mL min−1 and 150 mL min−1,
respectively. The operating temperature and backpressure were 80 ◦C and 0.1 MPa [107].

3.2. Catalyst Layers

The catalyst layer (CL) is a very thin active site (about 10 µm) where the oxygen
reduction reaction (ORR) or hydrogen oxidation reaction (HOR) happens. Several phases
included in a catalyst layer are essential to the electrochemical reaction: (1) carbon en-
hancement with particles of Pt catalyst spread on the carbon surface, (2) ionomer, and
(3) space of void. The catalyst plays a serious role in dropping the reaction activation
barrier. The oxygen reduction reaction occurs in the cathode, whereas hydrogen fuel is
oxidized in the anode. An alloy of platinum or platinum element is a prevalent catalyst
for oxygen reduction and hydrogen oxidation reactions. Consequently, the catalysts layer
contributes an integral part of the cost of a fuel cell. Platinum and its alloys (Pt–Co, Pt–Ni,
Pt–Fe, Pt–V, Pt–Mn, and Pt–Cr) show good catalyst kinetics. The lattice parameter of Pt
in PtCo/C catalyst was 0.3820 nm, which is lesser than the Pt/C catalyst of 0.3920 nm.
The lessening in the lattice factor of the alloy of PtCo/C shows that adding cobalt to the Pt
crystal dropped the spacing of the atoms of Pt–Pt, which is considered a mechanism for
improving oxygen dropping activity [108–110]. The Pt loading is a significant parameter
in the improvement of CL. The US Department of Energy target is 0.30 and 0.20 mg.cm−2

for 2010 and 2015, respectively, and lately the 3 M company attains 0.150 mg.cm−2 with
PtCoMn alloy [111]. The ionomer functions as a conductor of proton and a linker for the
Pt/C particles. The difference in the loading of ionomers increases the transference or
ohmic loss; including a minimal number of ionomers reduces proton conductivity, while
a great quantity boosts the resistance of gaseous reactants to the transference. On the
other hand, non-conventional catalyst layers are structured such that one of the main parts
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in their traditional counterparts is removed. The kind and content of the binder define
the permeability of gas, durability, catalytic activity, wettability, and ionic conductivity of
CL [95,112,113].

The nanostructured thin film (NSTF) catalysts layer from 3M is the most effective
non-conventional catalyst layer. They involve whiskers, in which the catalyst is implanted
without the ionomer specified for proton conduction to deliver a more advanced activity
than traditional catalyst layers over time [114].

Pt is the ideal electrocatalyst option within the reaction of oxygen reduction in fuel
cells based on PEM since it has a great activity. Pt loading at a high level is essential for
reaching the objective duration when deprived of a significant loss of efficiency and when
the catalyst of Pt is arranged in a method that does not entirely use the catalyst layer. Yun
et al. employed a spherical agglomerate model to enhance the content of the ionomer
and the loading of Pt in the cathode. They considered three formulations and concluded
that a classified distribution of Pt might develop using Pt [115–117]. Other CLs that are
either Pt alloys or Pt-free are being explored. Two prominent past studies on the subject
are provided by [118,119]. A brief of the various catalysts, their present statuses, and their
challenges are delivered in Figure 15 and Table 3.
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Though thin, the catalyst layer structure is complex and usually contains a number of
unified networks for proton, electron, and reactant transference; projected mathematical
techniques have been used to recreate the microstructure digitally [120].

Furthermore, the catalyst layer might be exposed to mass transference limitation or
a significant ohmic loss. The basic cube size is 25 × 10−2 µm, signifying the size of the
pore that is selected. So, 40 cubes are carried out in the thickness direction to simulate
the 10.0 µm thick CL comparable to the method in the companion paper [121]. By the
way, further dropping the catalyst layer thickness is essential to advance its presentation.
A catalyst layer model that sufficiently captures the major transport phenomena and the
hydrogen oxidation reaction or oxygen reduction reaction at the three-phase interface can
be used to enhance the thickness of the catalyst layer. Such a model can clarify the influence
of CL thinning on the performance of proton exchange membrane fuel cells [122,123].
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Table 3. Illustrates the benefits and challenges of electrocatalysts [118].

Catalysts Type Benefits Remaining Challenges

Pt
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3.3. Gas Diffusion Layers

Gas diffusion layers (GDLs) and micro-porous layers (MPLs), together named diffusion
media (DM), perform several roles: (1) transference of reactant and elimination of heat/water,
(2) electronic connection amid the bipolar plate with channel-land structure and the electrode,
(3) mechanical enhancement to the membrane electrode assemblage (MEA), and (4) safeguarding
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of the CL from corrosion or erosion affected by flows or other causes. In the case of interdigitated
projects, the diffusion media convective permeability should be great enough to allow the path
of gas to be deprived of the extreme reduction in pressure [124–126]. The gas diffusion layer
is a critical section of the anion exchange membrane fuel cell system as they have various
functions and are the auxiliary substance for membrane electrode assemblage [127]. The gas
diffusion layers are expected to have a great permeability of gas to transfer the reactant gases
to the catalyst layer. They must be enhanced to balance the hydrophobicity to eject water
out of the cell- and hydrophilicity to recollect the water and save the adequately hydrated
membrane [128]. They must also have outstanding electronic conductivity to drive the electrons
from the catalyst layer to the circuit and great thermal and chemical stability below vital
conditions [129,130]. Woven carbon fibers or cloths are usually recognized as substrates of the
gas diffusion layer through which gases are transported to the catalyst layer; these are preserved
using polytetrafluoroethylene to be hydrophobized and avoid liquid water accumulation [129].
As the gas diffusion layer is in direct interaction with catalyst layers where the water is formed
and expanded, its suitable engineering is active to manage water. Numerous plans have
been created to fabricate an ideal gas diffusion layer to efficiently achieve the liquid water in
the cell, including changing the hydrophobicity, containing a varying microstructure, adding
hydrophobic and/or hydrophilic additives, and including/excluding hydrophobic microporous
layers [131]. Carbon sheets are a combination of carbon fibers with fibers that are 7.0 µm in
diameter. A binder holds the fibers collected, accounting for 5–15% of the last paperweight [124].
The carbon paper gas diffusion layer should be hydrophobic to develop the removal of water
and prevent the flooding of the electrode. Polytetrafluoroethylene PTFE trademark (Teflon) is
frequently added to carbon paper hydrophobicity enhancement. Additionally, the formation of
carbon paper gas diffusion layers is anisotropic, as demonstrated in Figure 16.
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20.0% Polytetrafluoroethylene; and (d) cross-sectional image of TORAY-TPGH-120 with 50.0%
Polytetrafluoroethylene-the in-plane path is definite as the plane vertical to the carbon fibers (a and b
display the xy plane, c and d show the xz plane, and the in-plane path is vertical to the xz plane) [132].
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Furthermore, gas diffusion layers might be applied to disintegration after long-term
processes, for example, wettability variation because of the loss of polytetrafluoroethylene
and breakage of fiber rising from freeze/thaw cycling. The features of the surface were
assessed via Wood et al. [133], who introduced single fiber contact-angle and surface-energy
data of a broad spectrum of gas diffusion layer kinds to define the influences of hydrophobic
post-processing handlings. Wang et al. [134] further exhibited the cathode catalyst layer
and gas diffusion layer mass-transport overpotentials and examined the variations in
durability. They discovered a minor rise in the gas diffusion layer mass-transport overpotential
for the duration of the first period of approximately 500 h, but a substantial rise during the
second period of roughly 500 h. Though Mukherjee et al. [135] showed a mathematical analysis
on the influence of the durability gas diffusion layer on fuel-cell performance, the modeling of
degradation mechanisms is still lacking and remains a challenge and therefore needs more studies.

A microporous layer (MPL) is regularly presented amid the two layers to develop the
physical interaction of the gas diffusion layer-catalyst layer. It typically has a pore size amid
the gas diffusion layer and catalyst layer and has been stated to improve the performance
of a fuel cell sometimes due to the enhanced management of water in the cathode [136].
It has pores that are mostly smaller than 0.50 µm with a 0.320 µm mean size [137], whereas
those in the gas diffusion layer and catalyst layer are typically around (6–20) µm and less
than 0.020 µm, respectively [138]. Firmly compacted carbon black particles are collected in
a microporous layer, bound by polytetrafluoroethylene, causing the microporous layer to
be hydrophobic. The microporous layer ink is typically coated onto the surface of the gas
diffusion layer for the duration of fabrication. Their primary goal is to deliver a smooth
catalyst and continuous interface amid a gas diffusion layer, thus decreasing the interfa-
cial resistance. The advantages of having additional microporous layers include: (i) the
modification of electrode flooding; (ii) reduced general ohmic loss mostly because of the
rise of membrane hydration; and (iii) improvement of the membrane electrode assemblage
mechanical and chemical stability [139,140]. Machine learning can be carried out to enhance
the gas diffusion layers and microporous layer design, containing the sizes of the pore,
permeability, polytetrafluoroethylene loading, and physical dimensions. The equations
of heat transfer and electric current conductance, species transference, Darcy‘s law, and
the two-phase flow model are essential to be determined in the neural networks for active
physics-informed machine learning.

Briefly, in the actual electrochemical reaction process, the functional layers of GDL, CL,
and PEM must coordinate and participate together. Improving the material structure of each
functional layer could play a significant role in improving the PEMFC performance [141].
A GLD plays a critical role in evacuating the water generated inside the fuel cell during the
redox process and distributing the reacting gases on the catalyst surface. Several studies
have been carried out to evaluate the role played by the GDLs on the performance and
durability of a fuel cell and how specific GDL characteristics, such as their thickness and
pore size distribution, affect its performance [142]. Water vapor transport through the GDL
on the microscale is dominated by two diffusion mechanisms—molecular diffusion and
Knudsen diffusion [143]. Various correlations have been developed between microscale
parameters such as GDL material morphology and larger scale parameters (viz, tortuos-
ity, diffusivity, and velocity) via pore-scale modeling and pore network modeling [144].
Nam et al. [145] used scanning electron microscopy to observe vapor condensation, liq-
uid water morphology, and breakthrough in porous GDLs. Their model found that the
morphology of the liquid deteriorates the efficiency of the electrochemical reactions in the
catalyst layer and increases the water saturation in GDL. As the water droplets start to
accumulate and occupy the pore space in the GDL, it blocks critical passages and reduces
the gas reactants supply to the catalyst, which decreases the cell efficiency and performance.
Carbon paper and carbon cloth are the two materials commonly used as GDL in fuel cells.
The surface of the GDL material is usually treated with hydrophobic additives to promote
droplet removal and the walls of other surfaces may be hydrophilic to draw water away
from the GDL surface.
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El. Kharouf [146] investigated the effect of different GDL properties of a wide range of
commercial DGL materials on the performance of membrane electrode assembly (MEA)
as different GDLs were used as cathode diffusion layers. The results show a decrease
in the performance of MEA with increasing GDL thickness. The main effect of the GDL
thickness is evident in the mass transport region. The water transport ability of the MEA
is significantly affected by the increase in the thickness of GDL due to the increase in the
permeability. Navarro [147] suggested that the GDL is the main component at the heart of
a fuel cell. Thus, an ex situ and in situ study was carried out to show the characteristics of
the new GDL called eCo. They concluded that the new gas diffusion layer called the eCo
Cell shows an optimum performance for the range of temperatures studied due to its high
hydrophobicity, bimodal pore distribution, low thermal conductivity, and high electrical
conductivity.

Intuitively, a thinner GDL could aid the electrode performance because it would
reduce resistance to the transport of oxygen and electrons. However, simulation results
indicate the average distance from the current collector edge to a catalyst site at the middle
of the flow channel compared to a catalyst site directly underneath the current collector.
In general, increasing the GDL thickness can flatten the current density profile across the
channel and land area. However, the effect of the GDL thickness on the local reaction
rate (current density) is complicated and depends on the competing effects of oxygen and
electron transport. At low overpotential, electron transport plays a more critical role in
determining the local reaction rate [148].

4. Effect of Operating Conditions on AEMFCs Performance

The operating conditions of anion exchange membrane fuel cells, for example, inlet
relative humidity, current density, and backpressure, deliver exterior controls to reduce
the influence of flooding on performance. For the cathode and anode, irregular relative
humidity and pressure operations were projected to simplify the diffusion of water from
the anode to the cathode [149]. Water vapor pressure at the cathode can be improved
using unbalanced pressure operation, which lessens the ohmic loss and develops the
performance of cell. In contrast, the backpressure and relative humidity in the anode
need to be excellently regulated [150]. The boiling point of water increases once the
backpressure increases, which is not conducive to remove water from the anode. Studies of
fuel cells determine the significance of the asymmetric regulation of anode and cathode inlet
gases for enhancing environs of transfer of mass and electrochemical reactions. Likewise,
relative humidity proved that inadequate humidification of the cathode is valuable for cell
performance [151]. Unsaturated humidification at the cathode can raise the water gradient
amid the anode and cathode, which is conducive to speeding up the back diffusion of water
to cathode from anode. Therefore, this alleviates the flooding of the anode and resolves
the problem of drying the cathode. The anion exchange membrane fuel cell catalyst layer
is a complex subassembly affected by various parameters. A comprehensive study of the
effects of inlet gas relative humidity, ionomer content, anode backpressure, and the role
of MPL was carried out [152]. It is found that better performance of the cell is achieved
with improved ionomer content under gas relative humidity due to the enhancement
of membrane hydration and enrichment of the ionic conductivity in the catalyst layer.
The insignificant rise of anode backpressure simplifies the transference of water to the
cathode from the anode and develops the management of water. Plentiful water increases
the hydration of the ionomer and membrane, leading to advanced ionic conductivity and
lower resistance. In contrast, excess water closes the porous structure of the catalyst layer,
leading to high mass-transfer resistance and deprived electrochemical reactivity [153].

4.1. Effect of Cell Operating Temperature

Figure 17a displays the anion exchange membrane fuel cells performance run at
different temperatures in the cells with the enhanced anode/cathode gases inlet dew points.
The outcome presents that the enhanced performance of the cell can be regularly developed
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by means of growing the temperature at which the cell operates. A similar pattern can be
seen when the temperature in the cell is between 60 and 70 °C due to the factors of process
temperature dependence of the anion exchange membrane fuel cell. The ion conductivity
of the membrane and the electrode reaction kinetics can be enhanced once the AEMFC
is operated at an extraordinary cell temperature [154,155]. Williams et al. [156] reported
that the performance of the cell is powerfully influenced via the operational temperature,
especially under dry operation. Likewise, Natarajan D. and T. Van Nguyen [157] concluded
that a growth in the operating temperature of a cell should be complemented via a rise in
the anode humidification level to preclude the damage to the performance.
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Figure 17. (a) Power density and polarization curves of anion exchange membrane fuel cells running
at 60, 65, and 70 ◦C with enhanced dew points of the anode/cathode supply gases at 60 ◦C /65 ◦C
(60/60/65), 62 ◦C /67 ◦C (65/62/67), and 65 ◦C /70 ◦C (70/65/70), respectively; (b) The tap of
temperature amid improved cell temperature and dew points (the symbol of 60/60/65 signifies that
cell temperature and anode and cathode dew points are 60, 60, and 65 ◦C, respectively) [158].

The advanced temperature of cell operating could contribute to enhanced water trans-
ference in the gas diffusion substrate, driven via evaporation and shear force, resulting in a
reduction in liquid water captured within the gas diffusion substrate and thus simplifying
the permeability of reactant gases that have been humidified and efficient water elimination
for the duration of cell operation [159]. Nevertheless, when the anion exchange membrane
fuel cell is conducted at 75 °C, its progress begins to deteriorate after the entire experiment
because of the incompetence of the membrane electrode assemblies in the anion exchange
membrane. When comparing the effectiveness of three anion exchange membrane fuel
cells at different temperatures, it can be detected that the gap in temperatures between the
improved cell temperature and the dew point is enlarged at the anode and dropped at the
cathode upon raising the temperature of the cell operating. These gaps of temperature at
the anode/cathode are 0 ◦C/5 ◦C, 3 ◦C/2 ◦C, and 5 ◦C/0 ◦C, while the cells were main-
tained at a temperature of 60, 65, and 70 ◦C, respectively, as demonstrated in Figure 17b.
This outcome shows that the necessity of inlet gas humidification at the anode and cathode
to attain the required performance is reliant on the temperature of the cell, mostly since
higher gas dew points carry more water content. Upon raising the dew point from 60 to
70 ◦C, the quantity of water vapor in the air will meaningfully rise from 150 to 234.8 g/m3.
Furthermore, for the anion exchange membrane fuel cell operating below great current
density, the rise in anode water production will partially permeate to the cathode and
participate in the oxidation-reduction reaction. So, the difference in temperature among en-
hanced dew points at the anode and cathode as well as cell temperature varied depending
on the temperature of the cell. This finding is appreciated by those who progress the anion
exchange membrane regarding the design of the humidity control scheme [158].
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The base-case anion exchange membrane fuel cell process was simulated for various
operational temperatures of 45, 60, 90, and 120 ◦C to study the effect of operating tempera-
ture on the cell’s stability and performance. Figure 18a shows the simulated preliminary
polarization and power density curves. The outcomes present a vital improvement in cell
performance once the temperature rises from 45 to 120 ◦C and are in accordance with avail-
able data in the literature reviews [160,161]; this includes the open circuit voltage values of
0.950–0.960 V and current densities at 0.80 V of 70–300 mA/cm2 that were reported for the
acidic high temperature-proton exchange membrane fuel cell operating at 100–120 ◦C [162].
A rise in the operative temperature from 45 to 120 ◦C develops the electrochemical reactions
of the anode and cathode, leading to a three-fold increase in the current density in the
activation (0.90 V) zone (Table 4). Additionally, the increase in temperature improves the
OH− conductivity and simplifies the transference of water over the membrane, dropping
losses of ohmic and water transport. Consequently, greater power densities and a limiting
current are attained. Table 4 presents the performance factors (current density at 0.90
and 0.60 V, peak power density, cell voltage at 0.60 A/cm2), which quantitatively exhibit
a clear benefit to the high temperature operating of the anion exchange membrane fuel
cell considered here. Figure 18b displays the expected variation in performance of an
anion exchange membrane fuel cell with a constant current density of 0.60 A/cm2 through
time for temperatures ranging from 45 to 120 ◦C. Remarkably, whenever the temperature
rises, the operational stability significantly improves, attaining an anion exchange mem-
brane fuel cell entire life cycle of 6000 h at 0.670 V when the temperature is maintained at
120 ◦C [158,163].
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Table 4. A quantitative comparison distinguished from simulated polarization curves and the
influence of operational temperature (Figure 18a) [160].

Operational
Temperature (◦C)

Current Density
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(A/cm2)

Current Density
at 0.70 V
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Peak Power
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Limiting Current
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Cell Voltage at
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45 0.093 1.42 0.89 1.54 0.759

60 0.159 1.89 1.29 2.71 0.798

90 0.225 3.06 2.36 7.04 0.828
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The cause of this non-intuitive outcome is possibly a fine “competition” amid removal
and diffusion, both associated with water content [164]. Whereas growing the temperature
improves the rate of degradation of the ionomeric materials, it concurrently advances the
diffusivity of water in the anion-exchange membrane, which simplifies the transport of
water from the anode to the cathode. In the particular example that has been addressed in
Figure 18b, though the temperature grew to 120 ◦C, the increase in the diffusivity of water
is meaningfully more prevailing than the thermally induced rise of the rate of degradation
of the ionomer [165,166].

Moreover, no additional products (because of thermal degradation) were detected
at the advanced temperatures. The average energy barrier from these three temperatures
concluding down to 80 ◦C outcomes in an expected half-life more significant than 4 years,
with only 10 percent degradation happening after 5300 h, were used [167]. The rate of
degradation of quaternary ammonium (QA) groups rises dramatically with the concentra-
tion of OH− and temperature, representing the position of adequate hydration of hydroxide
exchange membranes in alkaline fuel cells for attaining long half-life times [168]. After
ageing at extraordinary temperatures, the anion exchange membranes become insoluble,
representing the cross-linking reaction [169].

4.2. Effect of Relative Humidity in Inlet Gases

A greater fuel inlet humidification temperature includes an advanced quantity of
water, which can wet the membrane and drop transmission impedance, thus supporting
the fuel cell performance. Growing the humidification temperature advances the hydrogen-
oxygen reaction at the catalyst and overwhelms the performance removal affected by the
inadequate concentration of gas, though the extreme inlet humidification temperature can
produce internal water flooding [170,171]. The influence of moisture content on the fuel cell
has been examined by reducing the relative humidity of the supply gases to 70% at either
the cathode or anode. The logarithmic curve demonstrates this in Figure 19a, the variations
in relative humidity do not upset the activity in the section with a low current density.
Nevertheless, some performance damages are detected at advanced current densities, as
seen in Figure 19b. As probable, the utmost substantial influence of reduced relative
humidity in the input gas can be observed at the cathode when water is a reactant. Lower
humidity at the anode declines performance, while once current densities are extremely
high an insignificant performance rise is noted. The Nyquist graphs were compiled at a
current density of 16 mA/cm2, shown in Figure 19c, demonstrating that reduced humidity
causes the high-frequency semicircle to expand independently; the electrode is included
amid 100 Hz and 100 kHz, moving the right semicircle further to the right. The size of
the semicircle at the low-frequency range is unaffected by relative humidity. The frugal
influence of humidity on the high-frequency interrupt displays that the resistance of the
membrane is not meaningfully improved at this current density [172].

The water supply necessity in anion exchange membrane fuel cells is utilized to
endure the oxidation-reduction reaction in cathode electrodes and the hydration of anion
exchange membranes. The water deficiency in anion exchange membrane fuel cells could
directly affect the method of the membrane conductivity and electrochemical reaction
producing a reduction in the performance of the cell. Consequently, the performance of
cells is significantly dropped once the cathode inlet humidification is much less than the
augmented level, as shown in Figure 20. It is found in Figure 20c that the procedure of
the anion exchange membrane fuel cells utilizing the dew point of 70 ◦C (70/65/70) and
65 ◦C (70/65/65) at the cathode has an analogous performance at current densities lower
than 103 mA/cm2. The performance of a anion exchange membrane fuel cell utilizing
the dew point of 65 ◦C drops significantly at current densities greater than 103 mA/cm2

because of the excessive request for water in the oxygen reduction reaction below high-
current conditions. Dissimilarly, the anion exchange membrane fuel cell that utilizes
the dew point of 75 ◦C (70/65/75) has a lesser performance related to that utilizing the
dew point of 70 ◦C (70/65/70) [158]. The use of an excessive humidification supply can
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be attributed to the oxygen mass transportation constraint at the cathode side since the
microporous channels inside the gas diffusion layer are being closed by condensed liquid
water. Additionally, setting a greater cathode dew point will produce a greater quantity of
water vapor and a slighter molecule number of O2 in the gas stream at a similar rate of flow,
causing less O2 molecules to exist for the oxygen reduction reaction and thus lessening the
performance of cell [173]. Comparable outcomes can be observed once the cell is operated
at lesser temperatures (60/60/65)/(60/60/70) in Figure 20a and (65/62/67)/(65/62/72) in
Figure 20b [158,174].
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Figure 20. Polarization and power density curves of anion exchange membrane fuel cells operated at
cell temperature of (a) 60 ◦C, (b) 65 ◦C, and (c) 70 ◦C with various dew points of the anode/cathode
inlet gases (the mark of 60/55/65 means that the cell temperature and dew points of the anode and
cathode are 60 ◦C, 55 ◦C, and 65 ◦C, respectively) [158].

4.3. Effect of Flow Direction

Figure 21 exhibits the average water areal density and performance for cell 1 operating
under various flow configurations. In the counter-flow configuration, the hydrogen inlet is
the opposite of the air inlet (Figure 21a). This makes a more significant gradient in water
concentration through the membrane electrode assembly at the operational condition and
more supports the recirculation of water amid the anode and cathode sides, i.e., interior
humidification as defined by Büchi and Srinivasan [175]. The internal humidification
outcomes improved hydrated membrane electrode assembly and improved performance
(Figure 21b). Additionally, more water develops on the anode electrode, which is par-
ticularly apparent at a low velocity of 0.40 A/cm2, resulting in a significant difference
in water content between the two different arrangements, 5.50 mg/cm2 in the event of a
counter-flow arrangement and 1.70 mg.cm−2 for the other. As current density rises, the
variance reduces. The images of neutrons of each of the flow fields (Figure 21c) display that
in adding to a higher proportion of water in the overall composition with the counter-flow
procedure, as exposed by Kim et al. [176], there appear separate water distributions amid
the two configurations.
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cell can produce a deadly defect for the duration of the acceleration procedure once the 
cell is utilized as a power resource [179]. 

Figure 21. (a) Co-flow and counter-flow operations are illustrated in a flow diagram., (b) the density
and effectiveness of water in cell 1 under varying operating arrangements at 50 percent inlet relative
humidity, and (c) the corresponding-colored neutron images (c) [177].

The dynamic reply of the no humidification proton exchange membrane fuel cell was
observed as the current density raised suddenly from (1 to 1.40) A/cm2 at the operational
temperature of 80 ◦C and 0 percent relative humidity. As exposed in Figure 22a, in both
the counter- and co-flow cells, voltage undershoots were observed following the load
change. After the change of load, the undershoot refers to the variance amid the smallest
and enduring values. In the no humidified condition (0% RH), the voltage undershoot
happened mainly due to membrane hydration time delay [178]. The voltage immensely
reduced instantly after the increase in the current density, as the ionic resistance of the
membrane was still reasonably high related to the raised current. Then, membrane ionic
resistance regularly reduced with the rise in the water content of the membrane, as exposed
in Figure 22b, owing to the improved self-humidification because of the augmented water
generation. Following the undershoot, the voltage augmented suddenly and regularly
approached the steady-state value. Though, in the co-flow cell, the voltage undershoots led
to a short period of zero power density due to poor performance. As presented in Figure 23,
for all load change conditions, the zero-power periods were detected in the co-flow cell.
The counter-flow cell’s zero-power period was not noted because of the greater voltage
with the high-water content associated with the co-flow cell. In general, the zero-power
period afterwards the load change in the co-flow cell can produce a deadly defect for the
duration of the acceleration procedure once the cell is utilized as a power resource [179].
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4.4. Various Polytetrafluoro Ethylene Loadings in Gas Diffusion Layers (GDLs) and Layers of 
Microporous Structure 

Figure 24 shows that cell 4 has a lower polytetrafluoro ethylene loading in the mi-
croporous anode layer and cell 2 has various polytetrafluoro ethylene loadings in the 
cathode gas diffusion layers (GDL) and microporous layer (MPL). Both water content 
and cell performance vary when changing the wettability of gas diffusion or microporous 
layers. To be specific, a development in cell performance is referred to when growing the 
polytetrafluoro ethylene loading within the microporous anode layer from 5.0 percent 
(triangles or cell 4) to 23.0 percent (squares or cell 1), as exposed in Figure 24 [177]. 
Moreover, higher water content is found in cell 4 at 0.40 A/cm2, which can be expressed 
by its less hydrophobic anode microporous layer. Anode channel flooding may occur if 
there is more water in the anode, it can be very intense at 0.40 A/cm2 because of the 
equivalent low gas flow rate. Related to cell 1, cell 2 has a more hydrophobic cathode 
microporous layer; more water is being forced from the cathode to the anode. With 
growing current density, flooding of the anode channel can be enhanced due to the in-
creased gas flow rates and electro-osmotic drag and the water contents in both cells 2 and 
4 are found to drop quickly. Furthermore, cell 2 has more hydrophobic microporous 

Figure 22. Dynamic responses of (a) cell voltage and (b) membrane water content for the duration of
the stepwise rise in current density from (1.0 to 1.40) A/cm2 [179].

Sustainability 2022, 14, 14653 36 of 52 
 

  

 

Figure 22. Dynamic responses of (a) cell voltage and (b) membrane water content for the duration 
of the stepwise rise in current density from (1.0 to 1.40) A/cm2 [179]. 

 

 

Figure 23. Dynamic responses of cell voltage in (a) counter-flow and (b) co-flow cells for the dura-
tion of the stepwise rises in current density from (0.80 to 1.20) A/cm2, from (1 to 1.4) A/cm2, and 
from (1.20 to 1.6) A/cm2 [179]. 

4.4. Various Polytetrafluoro Ethylene Loadings in Gas Diffusion Layers (GDLs) and Layers of 
Microporous Structure 

Figure 24 shows that cell 4 has a lower polytetrafluoro ethylene loading in the mi-
croporous anode layer and cell 2 has various polytetrafluoro ethylene loadings in the 
cathode gas diffusion layers (GDL) and microporous layer (MPL). Both water content 
and cell performance vary when changing the wettability of gas diffusion or microporous 
layers. To be specific, a development in cell performance is referred to when growing the 
polytetrafluoro ethylene loading within the microporous anode layer from 5.0 percent 
(triangles or cell 4) to 23.0 percent (squares or cell 1), as exposed in Figure 24 [177]. 
Moreover, higher water content is found in cell 4 at 0.40 A/cm2, which can be expressed 
by its less hydrophobic anode microporous layer. Anode channel flooding may occur if 
there is more water in the anode, it can be very intense at 0.40 A/cm2 because of the 
equivalent low gas flow rate. Related to cell 1, cell 2 has a more hydrophobic cathode 
microporous layer; more water is being forced from the cathode to the anode. With 
growing current density, flooding of the anode channel can be enhanced due to the in-
creased gas flow rates and electro-osmotic drag and the water contents in both cells 2 and 
4 are found to drop quickly. Furthermore, cell 2 has more hydrophobic microporous 

Figure 23. Dynamic responses of cell voltage in (a) counter-flow and (b) co-flow cells for the duration
of the stepwise rises in current density from (0.80 to 1.20) A/cm2, from (1 to 1.4) A/cm2, and from
(1.20 to 1.6) A/cm2 [179].

4.4. Various Polytetrafluoro Ethylene Loadings in Gas Diffusion Layers (GDLs) and Layers
of Microporous Structure

Figure 24 shows that cell 4 has a lower polytetrafluoro ethylene loading in the microp-
orous anode layer and cell 2 has various polytetrafluoro ethylene loadings in the cathode
gas diffusion layers (GDL) and microporous layer (MPL). Both water content and cell per-
formance vary when changing the wettability of gas diffusion or microporous layers. To be
specific, a development in cell performance is referred to when growing the polytetrafluoro
ethylene loading within the microporous anode layer from 5.0 percent (triangles or cell 4)
to 23.0 percent (squares or cell 1), as exposed in Figure 24 [177]. Moreover, higher water
content is found in cell 4 at 0.40 A/cm2, which can be expressed by its less hydrophobic
anode microporous layer. Anode channel flooding may occur if there is more water in the
anode, it can be very intense at 0.40 A/cm2 because of the equivalent low gas flow rate.
Related to cell 1, cell 2 has a more hydrophobic cathode microporous layer; more water is
being forced from the cathode to the anode. With growing current density, flooding of the
anode channel can be enhanced due to the increased gas flow rates and electro-osmotic drag
and the water contents in both cells 2 and 4 are found to drop quickly. Furthermore, cell 2
has more hydrophobic microporous layers in both the anode and cathode. Thus, the water
transference barrier across the microporous layers is higher, leading to a more hydrated
membrane electrode assembly, as shown by the high-frequency resistance (HFR) exposed
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in Table 5, and hence a reduced ohmic loss. This might be one leading cause for the greater
performance of cell 2.
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Table 5. High frequency resistance of the tested fuel cells [177].

Current (A.cm−2) High-Frequency Resistance (Ω cm2)

Cell 1 (A: 5%, 23%; C:
20%, 10%)

Cell 2 (A: 5%, 23%; C:
5%, 23%)

Cell 3 (A: 5%, 23%; C:
20%, 10%)

Cell 4 (A: 5%, 5%; C:
20%, 10%)

50% inlet RH

0.40 0.0620 0.0460 0.0550 0.0440

0.80 0.0570 0.0400 0.0510 0.0580

1.20 0.0570 0.0410 0.0590 0.0560

1.60 0.0640 0.0430 0.0800 –

100% inlet RH

0.40 0.0420 – 0.0390 0.0410

0.80 0.0420 – 0.0380 0.0410

1.20 0.0420 0.0390 0.0390 –

1.60 0.0430 0.0390 0.0390 –

Cell 1 (A: 5%, 23%; C: 20%, 10%)

Co-flow, 50% inlet RH Co-flow, 100% inlet RH Counter-flow, 50%
inlet RH

0.40 0.0620 0.0420 0.0450

0.80 0.0570 0.0420 0.0450

1.20 0.0570 0.0420 0.0460

1.60 0.0640 0.0430 0.0500

The influence of the microporous layer is stable using the model analysis by Pasaogulla-
ri et al. [180] and Weber et al. [181], and the through-plane radiography by Mukun-
dan et al. [182]. Moreover, at 1.2 A.cm−2, cell 4 shows a quick reduction in cell performance,
though its averaged water content is less than that of cell 2. This can probably be clarified
utilizing similar facts as stated above: cell 4 is subject to anode flooding because of its less hy-
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drophobic microporous anode layer. The liquid water in the anode hinders the hydrogen source,
restraining the current density. As for cell 2, its microporous layers are more hydrophobic,
resulting in an improved hydrated membrane in a larger field of the fuel cell.

Figure 25 displays the assessed through-plane permeability of the microporous layer-
coated gas diffusion layers as a function of the polytetrafluoro ethylene loading for the
differently considered carbon loadings, namely 0.50, 1.0, 1.50, 2.0, and 2.50 mg/cm2 in
the microporous layer. All the curves express three common trends for all the carbon
loadings studied. One of these common trends is that after 20 percent polytetrafluoro
ethylene loading the permeability rises with growing polytetrafluoro ethylene loading in
the microporous layer. The literature has justified this by describing that the relatively
large polytetrafluoro ethylene particles cannot enter the relatively small pores within the
carbon agglomerate except in the larger pores amid these agglomerates. Growing the sizes
of the agglomerates raises the porosity of the carbon-PTFE mixture [183]. This has been
proven as definite by means of the pore size distribution (PSD) measurements, conducted
by Uchida et al. [184], which present the increasing of the pore size in polytetrafluoro
ethylene loading as the carbon-PTFE mixture rises. The second common trend is that the
permeability of the gas diffusion layer drops once the polytetrafluoro ethylene loading in
the microporous layer is improved from 10 to 20%. This can be clarified by stating that (i) the
rise in the polytetrafluoro ethylene loading raises the thickness of the microporous layer and
(ii) the polytetrafluoro ethylene loading is not adequately great to cause its “positive” porosity-
increasing influence to overwhelm its “negative” thickness-growing influence. The latest
common trend is that the gas permeability of the coated gas diffusion layer is at its minimum
with 20.0 wt. percent polytetrafluoro ethylene loading in the microporous layer [184].
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Figure 25. (a) The curves represent the gas permeability of the microporous layer-coated gas diffusion
layers as a function of polytetrafluoro ethylene loading for different carbon black loading and (b) the
above curves after exclude the 0.5 mg/cm2 carbon loading curve [185].

For a dual-layer gas diffusion layer, a fluorinated polymer as a binder and hydropho-
bic agent has been utilized to simplify the liquid water transportation to the gas flow
channel. On the other hand, numerous research groups used extra hydrophilic materials
for hydrophobic MPL to wick water from the catalyst layer [186]. There is an optimal
quantity of polytetrafluoro ethylene at which the through-plane permeability of the SGL
samples is extreme, that is 5.0 percent by weight. One might assume that adding a small
quantity of polytetrafluoro ethylene improves the through-plane permeability of the carbon
substrates [187]. The permeability of the microporous layer coated gas diffusion layers
was measured and found to be in the order of 10−13 m−2, thus suggesting that adding
the low-in-porosity microporous layer to the carbon substrates meaningfully drops the
through-plane permeability of the latter substrates by 1–2 orders of magnitude [188].



Sustainability 2022, 14, 14653 35 of 48

Interestingly, the polytetrafluoro ethylene loading is sensitive to the carbon loading in
the polytetrafluoro ethylene loading range from 0 to 10 percent. That is the permeability
in this range: (1) drops for the 0.5 mg/cm2 carbon loading, (2) stays almost the same for
1.0 mg/cm2 carbon loading, and (3) rises for the 1.50, 2.0, and 2.50 mg/cm2 carbon loadings.
The 0.50 mg/cm2 carbon loading is not adequately great to wholly cover the large pores on
the carbon substrate surface. Figure 26a displays that, with 0.50 mg/cm2, the skeleton of the
carbon substrate can be seen. This also explains the large gap amid the permeability values
of the gas diffusion layer coated with 0.50 mg/cm2 and those coated with greater carbon
loadings. So, the addition of some material of polytetrafluoro ethylene to the carbon black
decreases the size of the above large pores and thus drops the permeability. For relatively
large carbon loadings, i.e., 1.5, 2.0, and 2.5 mg/cm2, the carbon loading is appropriately
high to cover the large pores on the substrate’s surface and “absorb” the moderately low
additional quantity of polytetrafluoro ethylene.
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Figure 26. Typical surface SEM images for (a) carbon substrate sample (b) micro-porous layer-coated
gas diffusion layer with 0.5 mg/cm2 carbon loading and (c) micro-porous layer-coated gas diffusion
layer with 2.0 mg/cm2 carbon loading [185].

As clarified above, the additional particles of polytetrafluoro ethylene raise the micro-
porous layer’s porosity and permeability. The 1.0 mg/cm2 carbon loading is completed
once the above competing influencings of the 10 percent polytetrafluoro ethylene loading
are counterbalanced. However, the above explanation for the trends in the polytetrafluoro
ethylene loading range from 0 to 10 percent needs some enhancing evidence, so a further
complementary study is necessary [185].

4.5. High-Temperature Hydroxide Conductivity

Figure 27a displays the anion conductivity of the anion exchange membrane for the
duration of decarbonation. Following 1 h of stabilization at 60 ◦C, a direct current of
0.10 mA was applied, producing OH− via water electrolysis and HCO3

− to be purged from
the anion exchange membrane via the evolution of CO2. For the duration of the exchange
of the HCO3

− to OH−, as in Figure 27a blue, the conductivity quickly rises (OH− ions
have higher mobility). After 30–40 h, the anion exchange membrane is in its true OH−

form, yielding a stable conductivity plateau recognized as the proper OH− conductivity
(166 mS/cm, cf. 152 mS/cm reported by Zhegur-Khais et al. [189]). The transient and
sharp rises in the conductivities are firstly seen as the temperature is elevated first to
80 ◦C and then to 105 ◦C because of the temperature and humidity fluctuations after
the variations. The anion exchange membrane’s true OH− conductivity rises with the
temperature (as estimated by [190,191]): values of 190 and 201 mS/cm1 were attained at
80 ◦C (Figure 27a green) and 105 ◦C (Figure 27a red), respectively. Because of the high
testing temperature, the accurate OH− conductivity measured is the utmost value reported
for the anion exchange membranes. There is a regular linear reduction in the conductivity
up to a critical ion exchange capacity; below it, there is a sharp reduction in conductivity,
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resulting in an inflection point. At low ion exchange capacity, where water approval is also
relatively low, the reduction in conductivity becomes modest and the conductivity values
drop to zero. The trend described in the literature amid HCO3

− conductivity and ion
exchange capacity measured for a series of nondegraded membranes is various, presenting
a gradual exponential rise in the ion exchange capacity [192,193]. The ideal anion exchange
membrane must have high hydroxide conductivity and chemical stability. At relevant
fuel cell temperatures, the anion exchange membrane is unstable and the cationic sites
are subject to degradation in the alkaline environs present for the duration of the anion
exchange membrane fuel cell procedure [194].
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Figure 27. (a) “True” OH− conductivity (four-probe) of the radiation-grafted ETFEBTMA-based anion
exchange membrane, estimated at 60, 80, and 105 ◦C. Conditions: 0.1 mA direct current, N2 flow of
500 mL/min at relative humidity of 90% (b). Arrhenius plots utilizing the data extracted from (a) [195].

It could be concluded that the hydroxide conductivity of the PEEK/QA-P(ES1-co-ES2)-
20 membrane was appropriate, especially in the range of temperature of 50–90 ◦C [196]. A num-
ber of researchers have suggested that hydronium ions can be obviously integrated into the
hydrogen-bonding network of water, while hydroxide ions tend to have stable solvation shells
that reorder the solvent molecules and disturb the hydrogen-bond network [197].

The activation energy (Ea) of 4.5 kJ/mol (0.045 eV), estimated from the definite OH−

conductivities of the anion exchange membrane (Figure 27b), is amongst the lowermost
reported for anion exchange membranes and is even lesser than that of the Nafion® H+

conducting membrane [195,198]. A low Ea value is desirable, as it shows a lesser barrier for
the OH− conduction. Moreover, the greater mobility of the OH− ions and the augmented
hydration levels at the great temperature (formation of continuous hydrated ion-conducting
channels over the anion exchange membrane [199,200]) contribute to the low Ea values,
which are wholly consistent with the OH− transportation happening using a Grotthuss-type
mechanism [201,202].

The actual hydroxide conductivity [203,204] of the LDPE-BTMA AEM was determined
at 40 and 110 ◦C. As seen in Figure 28, at 40 ◦C, the true hydroxide conductivity reaches a
very high value of 130 mS/cm. This high conductivity is reliable with the values formerly
reported [205]. An estimated Arrhenius-type temperature dependency of the conductivity
was noted for these nominated membranes at the temperature range of 30–80 ◦C. QPAF-
DMBA (1.33 mequiv/g) showed the utmost conductivity (152 mS/cm at 80 ◦C) [206].
The hydroxide ion conductivity measurements confirmed the superior chemical stability of
the synthesized poly fluorene ionomers in high-pH solution at raised temperatures [207].
After 1:30 h of equilibration at 40 ◦C and 90% RH, 1.75 V was carried out across the
membrane to generate OH− at the cathode. A regular rise in membrane conductivity was
noted because of a rise in the hydroxide content within the membrane [208]. The hydroxide
conductivity at 25 and 80 ◦C was 95.2 and 198 mS/cm, respectively [193].
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variations in partial pressure of water are utilized to estimate the molar flows of water in 
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Figure 28. “True” hydroxide conductivity (four-probe) of the LDPE-BTMA AEM, determined at 40
and 110 ◦C. Conditions: 0.1 mA direct current, under nitrogen flow at RH of 95% [163].

At the high temperature of 110 ◦C, the anion exchange membrane reaches an out-
standing high hydroxide conductivity value of 290 mS/cm (Figure 28). However, at
this temperature, the reading tends to be a little noisy (analogous to those measured in
reports [204,205]), the anion exchange membrane displays evident stability at this tempera-
ture, as exposed by the steady, definite hydroxide conductivity measured for more than
24 h for the duration of the test time (Figure 28, in blue).

4.6. Transportation of Water with Inert Humidified Gas

For the experiments in inert humidified gas, in Figure 29a, the variance in water partial
pressure (water activity) amid the two sides of the membrane electrode assembly is the
only driving force for water transport across the membrane. The two sides are named A
and B in the following discussion. Figure 30a displays a typical flux measurement. Side
A has a greater inlet relative humidity, here constant at 86%, while side B is firstly set to
60%. After steady-state data have been attained for roughly 100 s, the temperature setpoint
of the humidifier on side B is reduced to reach a relative humidity of 51%. As realized, it
takes approximately 2000 s for the new humidity to stabilize because of the humidifier
cooling. At this point, a new steady-state condition is reached; in this case, there is a
relative humidity of 86% for the side A and relative humidity of 51% for the side B inlets.
The relative humidity variation amid sides A and B at the outlets is lesser than at the inlets,
which means that water readily disperses over the membrane. A mass balance of water
over the cell displays that the loss in A corresponds to the gain in B. This refers to no loss
or accumulation of water for the duration of these measurements, which could happen
because of gas leaks or condensation of water within the system, as both procedures drop
the overall quantity of water [209].
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Figure 30b, utilizing a constant partial pressure equal to the saturation pressure on the 
liquid waterside in Equation (13). When one side is present in liquid water, the flux rises 
roughly three times for the similar driving force. The usually greater water flux noted 
when utilizing liquid water displays that the transportation of water is phase-dependent, 
depending on the previous outcomes on Nafion® and Fumapem® FAA3 membranes 
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Figure 29. Visualization of achieved experiments to calculate the water flux across the membrane. 
(a) Flux of vaporous water in argon once the two sides have various inlet relative humidity, (b) 
Flux of water once one side is in interaction with liquid water and the other with vaporous water in 
argon. (c) Water flux when both sides have a similar inlet relative humidity and a current is carried 
out [209]. 

Figure 29. Visualization of achieved experiments to calculate the water flux across the membrane.
(a) Flux of vaporous water in argon once the two sides have various inlet relative humidity, (b) Flux
of water once one side is in interaction with liquid water and the other with vaporous water in argon.
(c) Water flux when both sides have a similar inlet relative humidity and a current is carried out [209].

Sustainability 2022, 14, 14653 43 of 52 
 

  
Figure 30. (a) Steady-state measurement of flux over the membrane attained under constant argon 
flow of 7.33 lnh-1 on both sides and a cell temperature of 50 °C. The humidification of the inlet gas 
was set to 86% at side A and diverse from 51‒60% at side B. Vertical dotted lines refer to the inter-
val when the relative humidity is varied. (b) The overall molar flux of water across the cell as a 
function of average pressure. The standard errors are assessed to 0.95 and 3.96 mmol/m2 s for the 
vaporous (grey) and liquid (blue) measurements, respectively. Trend lines are for visual aid only 
[209]. 

5. Conclusions 
Fuel cells that are presently under enormous study can be classified into several 

types as polymer exchange membrane fuel cells (i.e., proton exchange membrane fuel 
cells (PEMFCs), solid oxide fuel cells, alkaline fuel cells (AFCs), phosphoric acid, and 
molten carbonate fuel cells. Investigations have been performed to classify the fuel cells, 
membrane, and operating parameters. This work critically reviewed the operating factors 
containing the relative humidity of inlet gas flow direction, operating temperature, var-
ious PTFE loadings in GDLs and MPLs, high-temperature hydroxide conductivity, and 
water transport with inert humidified gas. The main observations can be summarized as 
follows: 
1. For AFCs, generally, the liquid electrolyte used is an aqueous KOH solution. How-

ever, the presence of CO2 in the air feed stream leads to the formation of carbonate 
precipitation via the formation of large metal carbonate crystals, which might close 
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could be attributed to the positive ionic sets and the moveable negatively charged 
anions within AEMs. 

2. PEMFCs, which ordinarily produce electricity over a chemical reaction amid hy-
drogen and oxygen or another oxidizing agent, have become more abundant in re-
cent years because of their essential benefits. The outstanding characteristics of 
PEMFCs include: high energy density and efficiency; low working noise, cost, 
working temperature, and sulfur oxides; zero emissions of nitrogen oxides and CO2; 
short startup time; zero corrosion; and long life. 

3. SOFCs are a power-producing technology that regularly varies the traditional cen-
tral system of the power supply into a decentralized power source system and di-
rectly installs power generation depending on the power consumption desires at the 
household position. The important benefit of this structure is its simple structure, 
which needs neither a separator nor gas storage. 

4. PAFCs do not have such a requirement as hydrogen and can be produced in situ 
from methanol (or similar liquid fuel). This permits phosphoric acid fuel cells to 
utilize available refueling and distribution systems. A phosphoric acid fuel cell 
usually houses phosphoric acid (H3PO4, PA) trapped in a matrix (normally of sili-

Figure 30. (a) Steady-state measurement of flux over the membrane attained under constant argon
flow of 7.33 lnh-1 on both sides and a cell temperature of 50 ◦C. The humidification of the inlet gas
was set to 86% at side A and diverse from 51–60% at side B. Vertical dotted lines refer to the interval
when the relative humidity is varied. (b) The overall molar flux of water across the cell as a function
of average pressure. The standard errors are assessed to 0.95 and 3.96 mmol/m2 s for the vaporous
(grey) and liquid (blue) measurements, respectively. Trend lines are for visual aid only [209].

The molar flux of water crossways through the membrane can be counted from
the local temperature T and relative humidity RH, recorded via the humidity sensors.
The variations in partial pressure of water are utilized to estimate the molar flows of water
in the gas stream, supposing that the system’s dry flow and total pressure are fixed as
stated by the equations below:

PH2O =

(
RH
100

)
Psat

H2O (T) (11)

NH2O = NDry

(
PH2O

P− PH2O

)
(12)
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Equation (11) explains the linear relationship amid relative humidity and the partial
pressure of water; PH2O, for a specified vapor saturation pressure, Psat

H2O (T). The value for
Psat (T) was estimated utilizing a modified Antoine equation with coefficients defined in [210].

Equation (12) describes the non-linear relationship amid the partial pressure of water,
PH2O, and the molar flow of water in the gas stream, NH2O. The dry molar flow, NDry, is
estimated from the volumetric flow rate over the ideal gas law. The profile of RH over the
cell is not recognized. Here, it is as a first calculation supposed to be linear. The average
pressure variance of water amid A and B is provided by:

∆PH2O, ave. =
(PH2O,A − PH2O,B)in. + (PH2O,A − PH2O,B)out.

2
(13)

Utilizing Equations (11)–(13) for numerous combinations of inlet relative humidities,
the molar fluxes versus average water pressure variance can be plotted as exposed in
Figure 30b. The linear trend displays that the flux is directly proportional to the partial
pressure variation. The major driving force for the flux is the variance in partial pressure of
water between the two sides. The linear trend proposes that the membrane water content
varies with relative humidity and does not affect the transport properties. The experiments
with liquid water on one side, Figure 29b, were also completed to the ones exposed in
Figure 30a. The flux when utilizing liquid water on one side is included in Figure 30b,
utilizing a constant partial pressure equal to the saturation pressure on the liquid waterside
in Equation (13). When one side is present in liquid water, the flux rises roughly three
times for the similar driving force. The usually greater water flux noted when utilizing
liquid water displays that the transportation of water is phase-dependent, depending on
the previous outcomes on Nafion® and Fumapem® FAA3 membranes [211].

5. Conclusions

Fuel cells that are presently under enormous study can be classified into several
types as polymer exchange membrane fuel cells (i.e., proton exchange membrane fuel
cells (PEMFCs), solid oxide fuel cells, alkaline fuel cells (AFCs), phosphoric acid, and
molten carbonate fuel cells. Investigations have been performed to classify the fuel cells,
membrane, and operating parameters. This work critically reviewed the operating factors
containing the relative humidity of inlet gas flow direction, operating temperature, various
PTFE loadings in GDLs and MPLs, high-temperature hydroxide conductivity, and water
transport with inert humidified gas. The main observations can be summarized as follows:

1. For AFCs, generally, the liquid electrolyte used is an aqueous KOH solution. However, the
presence of CO2 in the air feed stream leads to the formation of carbonate precipitation via
the formation of large metal carbonate crystals, which might close the pores of the GDL on
the electrode. Moreover, the inadequacy and instability could be attributed to the positive
ionic sets and the moveable negatively charged anions within AEMs.

2. PEMFCs, which ordinarily produce electricity over a chemical reaction amid hydrogen
and oxygen or another oxidizing agent, have become more abundant in recent years
because of their essential benefits. The outstanding characteristics of PEMFCs include:
high energy density and efficiency; low working noise, cost, working temperature,
and sulfur oxides; zero emissions of nitrogen oxides and CO2; short startup time; zero
corrosion; and long life.

3. SOFCs are a power-producing technology that regularly varies the traditional central
system of the power supply into a decentralized power source system and directly
installs power generation depending on the power consumption desires at the house-
hold position. The important benefit of this structure is its simple structure, which
needs neither a separator nor gas storage.

4. PAFCs do not have such a requirement as hydrogen and can be produced in situ from
methanol (or similar liquid fuel). This permits phosphoric acid fuel cells to utilize
available refueling and distribution systems. A phosphoric acid fuel cell usually
houses phosphoric acid (H3PO4, PA) trapped in a matrix (normally of silicon carbide,
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SiC) as the electrolyte. Platinum with various loadings on carbon-based GDLs forms
the electrodes, i.e., the anode and cathode.

5. MCFCs can be united with gas or steam turbines to attain combined heat and power,
developing energy use and conversion efficiency. The molten carbonate fuel cell
organizes a mixture of alkali carbonates as the electrolyte and works at intermediate
temperatures (550–650 ◦C) utilizing carbonaceous fuels, for example, the natural gas.

6. Perfluorosulfonic acid (PFSA) is normally utilized as a proton exchange membrane
material for PEM fuel cells. The major chain is Teflon-like and extremely hydrophobic.
The sulfonic acid group as an end group of the side chain is greatly hydrophilic;
therefore, it permits water adsorption for proton conduction.

7. The catalyst plays a critical role in dropping the reaction activation barrier. Hydrogen
fuel is oxidized in the anode, while the oxygen reduction reaction happens in the
cathode. Platinum or its alloy is the prevalent catalyst for the oxygen reduction and
hydrogen oxidation reactions. Consequently, the catalyst layer contributes an essential
part of the cost of the fuel cell.

8. When the anion exchange membrane fuel cell is operated at a high cell tempera-
ture, the membrane ion conductivity and reaction kinetics at the electrodes can be
developed. In contrast, the greater cell operating temperature could contribute to
better water transportation in the gas diffusion substrate, driven by shear force and
evaporation, resulting in less liquid water entrapped inside the gas diffusion substrate
and thus simplifying the permeability of humidified reactant gases and active water
removal for the duration of the cell procedure.

9. The rise of the humidification temperature advances the hydrogen-oxygen reaction
at the catalyst and overwhelms the performance degradation produced via inade-
quate gas concentration. Though, the extreme inlet humidification temperature is
prospective to cause internal water flooding.

10. The flow path in the channels does not meaningfully affect the fuel cell’s whole
performance since the reactant materials supplied to the CL are not affected by the
flow path for these operational conditions.

11. Especially, a development in the performance of the cell is referred to when raising
the polytetrafluoro ethylene loading in the anode microporous layer from 5 to 23%.

12. For the duration of the exchange of the HCO-3 to OH−, the electrolyte’s conductivity
quickly rises, and the mobility OH− ions are increased. After 30–40 h, the anion
exchange membrane is in its true OH− form, yielding a stable conductivity plateau
recognized as the proper OH− conductivity (166 mS/cm, cf. 152 mS/cm).

13. The variance in water partial pressure is the only driving force for the transportation of
water crossways in the membrane (water activity) amid the two sides of the membrane
exchange assembly.
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