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Abstract: In the wake of climate change, climate-smart agriculture has been proposed as an option
for mitigation and adaptation to the attendant harsh impacts among smallholder farmers in Africa.
The approach has been promoted for nearly two decades in Kenya, Nigeria, and Malawi, but with
low adoption among farmers. This study therefore sought to determine the pathways for sustainable
scaling of climate-smart agricultural technologies and practices in the three countries. Secondary
and primary data were obtained from desk review, field survey, key informant interviews, and focus
group discussions. Data was analyzed using descriptive statistics and multivariate probit regression.
The multivariate probit regression result showed eight negative correlated coefficients between the
climate-smart agriculture technologies and practices adopted, thus implying that the practices are
substitutes for each other. It was observed that gender had no significant influence on the adoption
of a set of practices (refuse retention, minimum tillage, green manure, and mulching) but influenced
significantly the adoption of early maturing varieties. Implicitly, therefore, apart from gender, the
adoption of climate-smart agriculture technologies and practices might often be due to other factors.

Keywords: gender roles; smallholder farmers; agricultural practices; adoption

1. Introduction

The adverse impacts of climate change are already manifesting in the form of in-
creasing temperatures, weather variability, shifting agro-ecosystem boundaries, invasive
crops, pests and diseases, and recurrent polarized weather events. Climate change has
made agricultural production and productivity unstable. Globally, in regions with low
agricultural productivity and with limited means for adapting to harsh climate realities,
climate change will result in further reduction in agricultural productivity [1,2]. Shifting
trends of key climate elements (temperature and rainfall) will most likely alter cropping
seasons and patterns, accentuate incidences of pest and diseases, and alter the range of
cultivable crops across landscapes, affect the pricing of agricultural produce, incomes,
and livelihoods [3]. Climate change and agriculture are interlinked since agriculture not
only is impacted by climate change but also has a profound effect on the climate. World-
wide, 19–29% of greenhouse gases (GHGs) are generated from agricultural activities, land
management, and forestry, with the percentage of emissions rising to 74% in developing
nations [4,5]. Notwithstanding, the agricultural sector has viable options for mitigation
to meet long-term sustainability objectives [6], this being the basis of having mitigation
among the three pillars of climate-smart agriculture (CSA). Climate-smart agriculture
(CSA) has been defined as “agriculture that sustainably increases productivity, resilience
(adaptation), reduces/removes GHGs (mitigation), and enhances achievement of national
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food security and development goals” [3]. The approach helps to guide actions aimed at
transforming and reorienting agricultural systems to effectually and ecologically promote
development and food security under the changing climate [3,7]. “Agriculture” in this
case refers to crop and livestock production, and fisheries and forest management. Studies
have shown that CSA technologies and practices can enhance agricultural productivity,
livelihoods, ecological systems, and environmental sustainability under a changing climate
in various locations. Examples include crop yield improvement through the adoption of
stress-adapted crop varieties, conservation agriculture, agroforestry, and farming systems
diversification, resulting in an increase in incomes through sales of surplus produce, and
enhanced food and nutrition security for farming households [8,9]. Although CSA tech-
niques have been implemented for nearly two decades in sub-Saharan countries like Kenya,
Malawi, and Nigeria and show great potential for enhancing the welfare of smallholder
farmers, adoption of the methods is still unsatisfactory [10], raising questions of the merit
of CSA. It is therefore imperative to understand how institutional, societal, and economic
factors affect the adoption of CSA in order to form basis for formulating remedial pack-
ages [11]. Understanding of these factors will not only facilitate adjustment of approaches
for promoting CSA but will also help to manage available resources that will otherwise be
lost without making the intended impact.

Basically, CSA links climate change and agriculture through a paradigm shift that
focuses on enhancing food security among resource-constrained smallholder farmers and
marginalized groups [12]. CSA is not a new production system; it is an approach of identi-
fying and matching agricultural systems and supporting institutions that are well-matched
to tackle location or site-specific impacts of climate change, and to sustain and improve the
capability of agriculture to ecologically support food security in a sustainable way [3]. The
purpose of the concept is to meet the following listed objectives: “sustainably increasing
food security by increasing agricultural productivity and incomes; building resilience and
adapting to climate change and developing opportunities for reducing greenhouse gas
emissions compared to expected trends [13].” Some of the agricultural production tech-
nologies and practices falling under CSA are: “stress-adapted crop varieties, improved
water management technologies (e.g., small-scale irrigation), agroforestry and conserva-
tion agriculture (CA), crop diversification, integrated soil fertility management (ISFM)
practices (e.g., mulching and rotations)” among others [13]. The approach involves tools
to identify climate-smart sustainable agricultural growth pathways for given locations
and situations [3]. Estimates suggest that if CSA is adopted by farmers, about 69 million
people would be less susceptible to hunger by 2050, while at the same time a signifi-
cant contribution would be made towards the reduction of greenhouse gas emissions
(GHGs) globally [13]. Therefore, CSA technologies and practices present opportunities for
addressing climate change and improving food security and livelihoods of farming house-
holds. However, adoption of CSA technologies and practices among smallholder farmers
seem to be influenced by an array of factors including gender [14]. This paper analyzes
context-specific gender-responsive CSA technologies and practice, identified governance,
socioeconomic, and cultural dynamics that impede adoption of CSA, and provides policy
recommendations for the scaling of context-specific gender-responsive CSA technologies
and practices in Kenya, Nigeria, and Malawi.

2. Materials and Methods
2.1. Description of Study Area

The study was conducted in Kenya in Eastern Africa, Malawi in Southern Africa, and
Nigeria in Western Africa (Figure 1). The selection of these countries was based on the con-
tribution of agriculture to the respective national economies. The three countries have some
similarity in terms of agro-ecological conditions with both wet and dry regions coupled
with the fact that they have all been experiencing effects of climate change. Additionally,
the three countries have national climate-smart programs that are being implemented,
such as the Kenya Climate Smart Agricultural Project (KCSAP), Malawi–Mozambique Cli-
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mate Smart Agricultural Project, and Climate Smart Nigeria Glow Initiative for Economic
Growth, among others.
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Kenya has seven agro-ecological zones (AEZs): agro-alpine, high-potential, medium-
potential, semi-arid, arid, very arid, and water bodies [15]. Malawi has four general
AEZs: lower shire valley; lakeshore, middle and upper shire; mid-elevation upland; and
highlands [16]. Nigeria has eight agro-ecological zones, namely, Lake Chad, Sahel savanna,
Sudan savanna, Northern Guinea savanna, mid-altitude, Southern Guinea savanna, derived
savanna, and humid forest [17]. Figure 1 shows the location of the three countries.

2.2. Research Design

This study utilized mixed methods for collecting and analyzing data. The rationale
for mixed methods is that neither quantitative nor qualitative methods are sufficient by
themselves to capture the trends and details of the situation. The design was chosen to
allow quantitative and qualitative methods to complement each other and to provide a
more complete understanding. In this study, qualitative data were obtained from the
key informant interviews and focus group discussions while the quantitative data were
obtained from a field survey using structured questionnaires.

Sampling and Sample Size

The sample population was obtained through a multistage sampling technique across
the three countries. At the first stage, three AEZs were randomly selected from each
country to make a total of nine AEZs across the three countries. In Kenya, three AEZs
were purposively selected: high-potential, medium-potential, and semi-arid zones, because
they are the most significant in agricultural cultivation and crop–livestock systems. In
Malawi, three AEZs—lower shire valley, lakeshore, middle and upper shire, and mid-
elevation upland—were selected for the study since most of the agricultural production
activities are carried out in these zones. Similarly, three AEZs—derived savanna, Northern
Guinea savanna, and mid-altitude were randomly selected in Nigeria due to the high level
of agricultural production. At the second stage, one farming community per AEZ was
purposely selected based on the recognition that the area had been reported as the highest
producer of the priority crop in the AEZ. At the third stage, 48 farmers categorized based
on gender generational roles, i.e., young females (8), young males (8), adult males (8),
adult female (8), elderly males (8), and elderly females (8) were selected. This gave a
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total of 144 farmers in each country and a total of 432 farmers from the three countries.
Information was on the activities associated with CSA, existing CSA technologies and
practices, climate-smart agricultural practices’ adoption, preference by different gender in
Kenya, and factors influencing climate-smart agriculture adoption. The data obtained were
based on a gender generational category: youths aged 18–35 years (males and females),
adults aged 36–55 years (males and females), and the elderly aged above 55 years (males
and females) across the agro-ecological zones in each country.

2.3. Analytical Technique

Data were analyzed using a combination of descriptive and inferential statistical
methods. Descriptive statistical tools were used to analyze data on farmers’ awareness,
perceptions, skill levels (knowledge gaps), and adoption rates of various CSA technonolo-
gies and practices. The descriptive statistics (means, proportions, standard errors, etc.)
were computed and presented in tables and graphs. Key results were summarized and are
presented in tables, diagrams, and charts.

Multivariate Probit Regression

Marginal rates of substitutions (MRS) based on coefficient estimates of the multivariate
probit model of CSA T&P choices, following [18,19], were utilized to determine the factors
that drive the adoption of CSA T&Ps and analyze the trade-offs that farmers make to
address land degradation, enhance sustainability, and build resilience to climate change. A
farmer was categorized as a CSA T&P adopter if she/he had used a CSA T&P for at least a
planting season and was still using it at the time the interview was conducted.

Consider the ith farmer (i = 1, . . . , n) facing a decision on whether or not to adopt
a CSA practice on plot p. Let U0 represent the benefits to the farmer from traditional
management practices and let U*

k represent the benefit of adopting the kth CSA practice,
where k denotes choice of CSA practice. The farmer decides to adopt the kth CSA practice
on plot p if:

Y*
ipk = U*

k−U0 > 0 (1)

However, the net benefit (Y*
ipk) that the farmer derives from the adoption of the kth

CSA practice (A = CSAP1, B = CSAP2, C = CSAP3, D = CSAP4, E = CSAP5, F = CSAP6) is
a latent variable determined by observed personal, household, plot and location character-
istics (Xi), and the error term (εi):

Y*
ipk = Xiβk + εi (k = (A,B,C,D,E,F) (2)

The unobserved preferences in Equation (2) translate into the observed binary outcome
equation for each choice as follows:

Y*ipk = {1 if Y*ipk > 0/0 otherwise (k = 1,2, . . . k) (3)

where Y*
ipk is the adoption of the kth CSA practice by the ith farmer on plot p.

Table 1 presents the description of both the dependent and independent variables.
The dependent variables include sixCSA T&Ps: early maturing varieties, refuse retention,
minimum tillage, green manure, crop rotation, and mulching. The independent variables
include: gender (adult male, adult female, elderly female, male youth, female youth),
age, educational level, household size, native, flood incidence, drought incidence, credit
access, membership of cooperative society, farm size, distance from home to farm, land
type, land ownership, extension contacts, off farm income ($), and household members
that contributed to income (#).
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Table 1. Description of both the dependent and independent variables.

Variable Description

Climate Smart Agricultural Practices’ Adoption

CSAP1 If plot manager adopts CSAP1= 1, otherwise

CSAP2 If plot manager adopts CSAP2 = 1, otherwise 0

CSAP3 If plot manager adopts CSAP3= 1, otherwise 0

CSAP4 If plot manager adopts CSAP4 = 1, otherwise 0

CSAP5 If plot manager adopts CSAP5 = 1, otherwise 0

CSAP6 If plot manager adopts CSAP6= 1, otherwise 0

Socioeconomic characteristics

Age Age of the Plot manager

Sex If plot manager is male = 1, otherwise = 0

Marital
Status If the plot manager is married = 0; Otherwise = 1

Years of Schooling Years of formal education of the plot manager

Household
size Number of household members

Off-farm
Income Plot manager’s total off-farm income in the last year (
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)

Asset ownership 1 if the plot manager owns a major asset – (such as land,
buildings, machinery)

Farmers’ Group membership If the plot manager is a member = 0; Otherwise = 1

Institutional characteristics

Extension
Contact

1 if an agricultural extension agent visited the plot
manager or if the plot manager visited extension service
office during last planting season, 0 otherwise

Access to credit 1 if the plot manager received credit, 0 otherwise

Plot characteristics

Farm Size (Ha) Size of the plot cultivated by the plot manager in hectares

Lowland If Plot is lowland = 1; Otherwise = 0

Land ownership status If plot manager owns the plot = 1; Otherwise = 0

Plot Trekking distance from home Number of minutes used in trekking to the plot

Land dispute 1 if plot manager ever experienced dispute, 0 otherwise

Fertilizer Use If plot manager used inorganic fertilizer on the Plot = 1;
Otherwise = 0

3. Results
3.1. Practices Associated with Climate-Smart Agriculture Kenya, Malawi, and Nigeria

Figure 2 reveals farmers’ perceptions of practices associated with CSA in the three
countries. Some of the common practices identified include: early planting, Kenya (12%),
Malawi (17%), Nigeria (29%); mulching/maximum soil cover, Kenya (17%), Malawi (19%),
Nigeria (5%); irrigation (gravity, treadle, or drip), Kenya (16%), Malawi (13%), Nigeria
(36%); use of composite manure, Kenya (12%), Malawi (14%), Nigeria (5%); using adaptable
crop varieties, Kenya (16%), Malawi (11%), Nigeria (4%); agroforestry, Kenya (10%), Malawi
(9%); crop diversity, Kenya (5%), Malawi (10%), Nigeria (5%); pit/basin planting, Kenya
(2%), Malawi (12%); home garden, Kenya (3%), Malawi (4%), Nigeria (3%); late planting
Kenya (4%), Malawi (1%), Nigeria (9%). However, irrigation farming was not perceived
by the farmers as being associated with CSA in Malawi. This potentially suggests low
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awareness among the farmers but also that perhaps irrigation farming is not well developed
in the country [20].
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3.2. Existing Climate-Smart Agricultural Technologies in Kenya, Malawi, and Nigeria

Figures 3–5 show the CSA technologies that are currently/frequently used in Kenya,
Malawi, and Nigeria. The results reveal that most farmers opt for the use of the cultivation
of early maturing and drought-tolerant varieties. The high number of farmers opting to
use the technology as the first option may suggest an accelerated effort in breeding of
the varieties, dissemination, and adoption by the farming community [21] and potentially
this could be as a result of the increase in temperature and rainfall variability. Further-
more, the proportion of farmers opting to use other mentioned technologies was low
across the countries. The trend may potentially suggest the following: low availability
and/or awareness of improved varieties, and therefore this may require improvement in
technology dissemination [22]; lack of materials for production of manure, poor quality
of the available materials in terms of nutrient content, large quantities required per unit
area, labor requirements for production and transportation to the farm and associated
costs, among others [23]. For rotations, the trend potentially reflects the complexity of the
technology in terms of the knowledge required for implementation, but also constraints in
land since rotations require a large land area that may not be available [24]. On the other
hand, adoption of minimized tillage operations could be impeded by lack of equipment,
labor, and the cost of managing weeds using herbicides [25].

On the other hand, the deliberate cultivation and plowing in of cover crops and inter-
cropping cover crops with main crops are among the least adopted practices, so the trend of
choices may depict lack of adequate knowledge and technical knowhow of implementation
of the technology [26]. Further, the availability and viability of seeds of appropriate cover
crops in some cases are a constraint to the implementation of the technology, as well as the
environmental and seed pretreatment requirements of some known cover crops such as
kudzu (Pueraria phaseoloides), and this may also contribute to the impediment [27].

Furthermore, for mulching to conserve soil water, much as the practice is largely
common, the lack of adequate materials and where available the attendant labor require-
ments stand in the way of implementation. There is the challenge of competing use of crop
residue/organic mulching material, particularly in crop–livestock systems, since they are
also used as livestock feed. Such is the dilemma for resource-poor smallholder farmers
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who may not be able to afford costly mulching alternatives, with availability and cost of
inorganic mulches constraining their use [28].
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The trends on the use of drip, treadle, or sprinkler irrigation potentially may suggest
low development status of irrigation farming in the countries and hence its limited use; but
also the cost associated with irrigation in terms of purchase of the equipment, installation,
operation, and management, which further limit the use of the technology [29,30].

In Kenya, 2% of the farmers mentioned the construction of terraces on sloppy/hilly
terrain as first choice, 1% as second choice, 7% as third choice, 6% as fourth choice, and
8% as fifth choice (Figure 3). In Malawi, 8% of the farmers mentioned the construction of
terraces on sloppy/hilly terrain as fifth choice (Figure 4). In Nigeria, 2% of the farmers
mentioned the construction of terraces on sloppy/hilly terrain as third choice, 4% as fourth
choice, and 2% as fifth choice (Figure 5). This pattern suggests, among other things, lack
of technical knowhow, high-labor requirements, and farmers not being willing to pay the
costs associated with construction and maintenance of terraces [31].

On the retention/incorporation of residues to the soil, the status resonates with doc-
umented reasons in the literature for the limited use of the practice. For instance, poor
cultural practices such as burning of crop residues after harvest are common in Malawi.
Recalcitrant crop residues that take time to decompose when incorporated in some cases
attract termites that end up dislodging the main crop in the cropping season, there is a high
labor requirement, and competing use in crop–livestock systems since they are utilized as
livestock feed [32].

The pattern on the choice of the use of integrated pest and/weed management and
the cultivation of appropriate trees (agroforestry) may likely suggest the intensity of the
knowledge accompanying the technology and therefore resultantly the deficiency of profi-
ciency in implementation among farmers [33]. Specifically, agroforestry is a practice that
requires ample land, capital, and labor; it takes a long time for benefits to emerge and
is knowledge-intensive [34]. The associated challenges implicitly exclude farmers who
lack one or more of the attendant requirements. Therefore, there is need to simplify and
contextualize technology information for easy understanding and use by the farmers.
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Relative to other technologies and practices, water harvesting and conservation is a
“new” concept that is gradually being established, and therefore this may explain the trend
in the choices [35,36]. Notwithstanding, it is labor- and knowledge-intensive, and as such
there is need for sustained effort to train farmers and equip them for implementation. On
the choice of efficient fertilizer application, the trend reflects the limited availability or the
lack of mineral fertilizer to use on fields since the commodity is expensive and with the
conflict in eastern Europe, the prices are increasing further [37].

3.3. Climate-Smart Agricultural Practices’ Adoption and Preference by Gender in Kenya

The study found that farmers of different age and gender groups expressed differences
in preference of CSA practices. Generally, females of different age groups preferred differ-
ent climate-smart agricultural technologies (CSA). The female youth preferred cultivation
of disease/pest-resistant varieties; preparation of farmyard manure/compost, and use of
sprinkler or drip irrigation in the dry areas. Adult females preferred cultivation of early
maturing and drought-tolerant crop varieties, incorporation of residue, and efficient use of
fertilizer. Elderly females preferred construction of terraces, crop rotation, and cultivation
of disease-resistant crops. Additionally, males of different age groups preferred different
CSA technologies. Male youths preferred integrated pest and weed management methods,
intercropping cover crops with the main crops, and efficient application of fertilizers. Adult
males preferred minimum tillage operations to conserve soil moisture, efficient applica-
tion of fertilizers, and construction of terraces in sloppy farms. Elderly males preferred
deliberate plowing of certain leguminous crops to enhance soil nutrients, agroforestry
that involves integration of trees and crops, and water harvesting and conservation by
construction of bands (Figure 6).
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In Kenya from the FGDs, it was learnt that CSA T&Ps adopted in the semi-arid and
medium-potential areas were almost similar, but gender and age group determined the
preference for particular CSA technology adoption. Youth and adult males and females
were energetic and able to invest in irrigation for high-value crops. Managing the irriga-
tion system was normally done at night and elderly farmers may not endure the chilly
conditions. Youths were also aggressive, and able to diversify into greenhouse farming for
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quick returns and able to take risks. Adult women were responsible for food security at the
household level and therefore keen on the varieties planted with bias to early maturing
varieties. Women were also keen in managing kitchen gardens using available wastewater
from the kitchen to provide nutritional quality at the household level. Adult men were
responsible for making long-term development decisions on the farm and were responsible
for agroforestry practices, and soil and water conservation. While men preferred trees
that can provide timber in future, the youths preferred fruit trees that can provide quick
money. Adult men also designed terraces and dug them. Elderly men and women had little
energy for digging but were comfortable with shallow weeders for conservation agriculture.
Different categories adopted different technologies. For example, women did not choose
soil conservation structures due to excavation of the ground but they were adopted by
adults between 35 and 60 years old because they are strong. People above 60 years hardly
engaged in heavy menial labor because of the strength and energy required.

The key informants noted that youths did not participate in farm activities because
of the land tenure system (land ownership). Land was owned by the parents who hardly
accepted long-term changes such as excavation of the soil for construction of structures for
soil and water conservation. Planting of high-yielding varieties was adopted by women
and supported by men as they were the ones who gave the money to buy the certified
seeds which are high-yielding. Farms have continued to become smaller, therefore men
supported the women so that they could be food-secure. It was observed that the youth
that engaged in agriculture did not support activities that did not bring high returns.
Hence, they preferred high-value horticultural crops such as onions, carrots, tomatoes,
and cabbages.

3.4. Climate-Smart Agricultural Practices’ Adoption and Preference by Gender in Malawi

The results of the current study indicate that different gender and age groups prefer
different CSA technologies in Malawi. Adult females preferred controlled flooding before
and during cultivation, preparation and use of farmyard manure, and intercropping cover
crops with main crops. Adult males preferred construction of terraces on sloping farmland,
deliberate plowing of certain crops, and retention or incorporation of refuse into the soil to
enhance the soil nutrients. Elderly females preferred mixed cropping and crop rotation,
intercropping of cover crops with the main crops, and deliberate plowing of crops into
the soil. Elderly males preferred construction of terraces on sloping farmland, retention
of refuse into the soil, and cultivation of early maturing crops. Female youth preferred
to minimize tillage operations to conserve soil moisture, cultivation of disease- and pest-
resistant crop varieties, and mulching of the crops. The male youth preferred use of drip or
sprinkler irrigation in drylands, use of controlled flooding before and during cultivation,
and integrated pest and disease management (Figure 7).

On the other hand, the FGDs revealed that preference of technologies differed from
location to location. For instance, in one location, men preferred the use of early maturing
varieties, use of crop residues for mulching (reduces farming costs), and adopted one maize
plant per planting station, 25 cm apart. Women preferred box ridges, water harvesting,
mulching, and one maize plant per planting station, 25 cm apart. Preference was affected
by weather conditions, labor availability, and geophysical condition of the piece of land
(topography, closeness to dam and/or water source. Older women’s preferences were
influenced by cultural background and what was practiced by ancestors, for instance, tilling
to reach different soil profiles, use of cultural/biological weed control (Ricinus communis L.
(castor oil plant)) for removal of Striga asiatica (witchweed), early planting, and adopting
one maize plant per planting station, 25 cm apart. Furthermore, slopes in this area affected
selection of CSA practice. Extension agents were promoting practices that were adopted by
men, women, youths, and the elderly who may still be involved in new practices, and all
household members were involved in CSA practices.
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In contrast, in another location, men preferred mulching and pitting (30 cm). They felt
they had the energy to do this and the practice was beneficial for crop growth; they also
prepared and used manure. On the other hand, women preferred mulching, composting
manure, and adopted one maize plant per planting station, 25 cm apart. They also preferred
making ridges, saying that ridges helped crops to grow faster, and zero tillage delayed
crop growth. The elderly women preferred ridge refilling, simple pitting of not more 10 cm
(requires less energy than full pitting), use of manure in pits, zero tillage. The young men
and women preferred pitting, weed management, and water conservation practices. Within
a household, younger men were tasked with making pits, the elderly were tasked with
manure application, and boys and girls tasked with collecting crop leftovers for mulching.
The elderly were usually in charge of farm operations, and directing how box ridging was
carried out.

3.5. Climate-Smart Agricultural Practices’ Adoption and Preference by Gender Categories in Nigeria

Our current study indicates that different age groups and genders have different
preferences for different CSAPs in Nigeria. The adult females preferred retention or
incorporation of refuse into the soil (25%), preparation and use of farmyard manure (18%),
and cultivation of disease- or pest-resistant varieties (17%). The adult males preferred
minimum tillage operations to conserve soil moisture (57%), mulching to conserve soil
moisture (33%), and intercropping of cover crops and main crops (31%). Elderly females
preferred growing an appropriate mixture of crops in rotation on the same land (33%),
cultivation of early maturing and drought-tolerant crops (14%), and cultivation of disease-
or pest-resistant varieties (14%). Elderly males preferred use of drip or sprinkler irrigation
in drylands (67%,) growing an appropriate mix of crops in rotation in the same land
(67%), retention or incorporation of leftovers in the soil (50%), and deliberate plowing
in of certain leguminous crops (50%). The female youths preferred cultivation of early
maturing or drought-tolerant varieties (16%), construction of terraces on sloping land
(14%), and intercropping cover crops with main crops (12%). The male youths preferred
mulching to conserve soil moisture (67%), deliberate plowing in of certain leguminous
crops (50%), and use of drip or sprinkler irrigation in dry areas (33%) (Figure 8). Some of the
reasons given for technology preference through FGDs included inter-cropping practices,
which were widely preferred because they harvested two different crops from the same
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piece of land. Additionally, if one crop was affected by environmental stress, e.g., pest or
drought, the farmer would receive something from the farm instead of losing all, and use
of organic manure because it costs almost nothing (financially) and maintains soil fertility
for a longer time.
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3.6. Climate-Smart Agricultural Practices’ Preference by Gender Categories in Kenya, Malawi,
and Nigeria

Due to the different agro-ecological zones across the three countries, different gender
and age groups preferred different CSAPs across the three countries. The most common
CSAPs among the elderly females were the cultivation of disease- or pest-resistant varieties
and growing an appropriate mix of crops in rotation in the same farm. Across the three
countries, adult females preferred preparation and use of farmyard manure, and retention
or incorporation of refuse into the soil. The female youths had only one preferred CSAT&Ps,
i.e., cultivation of disease- or pest-resistant varieties across the three countries. Elderly
males preferred retention or incorporation of refuse into the soil, deliberate plowing in of
certain leguminous crops, and agroforestry. The adult males preferred minimum tillage
operations to conserve soil moisture, and construction of terraces on sloped land. The young
males preferred use of a drip or sprinkler in dry areas, and integrated pest and disease
management (Figure 9). One thing to note is that cultivation of disease/pest-resistant crop
varieties was common among elderly and young females.

3.7. Multivariate Probit (MVP) Estimates of Factors Influencing Climate-Smart
Agriculture Adoption

In determining the factors influencing the adoption of CSA T&P across the three
countries under study, the choice of the explanatory variables used in the empirical model
were based on an empirical literature review of studies on the adoption of sustainable
agricultural practices [38–40]. The choice to adopt any of these six (early maturing varieties,
refuse retention, minimum tillage, green manure, crop rotation and mulching) CSA T&Ps
was based on those that were most adopted among the farmers. The MVP model results
are presented in Table 2. The Wald chi-square test statistics (χ2(120) = 705.26) show that
the hypothesis that all regression coefficients in each equation are jointly equal to zero is
rejected at 1% (prob. > χ2 = 0.00). This shows that the model fits, and the chosen explanatory
variables are relevant in explaining the model.
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The likelihood ratio test (χ2(15) = 59.925), which tests the hypothesis that correlation
exists between the error terms of the equations that were all zero, was rejected at 1%
(prob. > χ2 = 0.00), thereby implying that some level of interdependence exists between
some of the CSA practices considered. These results support the choice of the MVP model
as compared to estimating six different logit or probit models; this is evident from the
correlated error terms.

The error term correlation results are presented in Appendix A, Table A1. Of the fifteen
pair cases in the estimated correlation coefficients, eight are statistically significant, thus
implying that the choices to adopt CSA practices are mutually determined. The correlation
results show that negative correlation exists between the practices, thus implying that the
practices are substitutes for the farmers. Negative correlation exists between crop rotation
and the cultivation of early maturing varieties, green manure and the cultivation of early
maturing varieties, minimum tillage and refuse retention, crop rotation and refuse retention,
mulching and refuse retention, crop rotation and minimum tillage, mulching and green
manure, and mulching and crop rotation.

The MVP result has revealed that the factors affecting different practices are not
uniform. Based on our gender categorization, male elderly was dropped in the analysis due
to multicollinearity. It is interesting to note that being an adult male, an elderly female, or a
male youth positively influenced the adoption of early maturing varieties among farmers as
compared to being an elderly male. In contrast, being an adult male negatively influenced
the adoption of crop rotation. Gender had no significant influence on the adoption of the
remaining four practices (refuse retention, minimum tillage, green manure and mulching).
The implication of this is that despite the existence of gender disparities, the adoption of
CSA T&Ps was often because of other factors.

The age of the farmers had a negative influence on the adoption of minimum tillage.
This may not be surprising given that theoretically older farmers find it very difficult to
change their farming habits as compared to younger farmers, although there are diverse
opinions on the effect of age on CSA adoption in the literature [39,41]. The educational
level of the farmers also significantly influenced the adoption of green manure. The more
educated a farmer, the higher the ability to process information and the higher the likelihood
of adopting technologies that would be beneficial to their productivity as compared to
less educated farmers. This corroborates the finding of [42]. However, the assumption
that households with large household size will increase the adoption of technologies was
negated as the number of persons in the household reduced the likelihood of a farmer
adopting mulching. This contradicts the results of [43,44], which found that increase in the
household size increased the likelihood of adopting sustainable practices.
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Table 2. Factors affecting the adoption of climate-smart agriculture practices and technologies.

Variables
Early Maturing Var. Refuse Retention Minimum Tillage Green Manure Crop Rotation Mulching

Coeff. Z Coeff. Z Coeff. Z Coeff. Z Coeff. Z Coeff. Z

Gender (adult male) 0.910 **
(0.374) 2.44 −0.130

(0.312) −0.42 0.275
(0.330) 0.83 0.076

(0.336) 0.23 −0.599 *
(0.334) −1.79 −0.195

(0.316) −0.62

Gender (adult female) 0.575
(0.355) 1.62 0.258

(0.328) 0.78 0.419
(0.342) 1.23 0.254

(0.356) 0.71 −0.348
(0.335) −1.04 −0.209

(0.330) −0.63

Gender (elderly female) 0.510 *
(0.261) 1.95 −0.083

(0.254) −0.33 0.271
(0.262) 1.03 0.399

(0.276) 1.44 −0.353
(0.258) −1.37 −0.092

(0.258) −0.36

Gender (male youth) 1.022 *
(0.525) 1.95 0.302

(0.475) 0.63 −0.294
(0.498) −0.59 0.587

(0.530) 1.11 −0.332
(0.487 −0.68 −0.670

(0.485) −1.38

Gender (female youth) 0.865
(0.528) 1.64 0.421

(0.469) 0.90 0.346
(0.488) 0.71 0.154

(0.545) 0.28 −0.111
(0.491) −0.23 −0.679

(0.481) −1.41

Age 0.010
(0.013) 0.77 −0.004

(0.012) −0.34 −0.020 *
(0.012) −1.69 0.004

(0.013) 0.29 −0.005
(0.012) −0.39 −0.013

(0.012) −1.16

Educational level −0.031
(0.019) −1.60 0.012

(0.016) 0.77 −0.025
(0.016) −1.57 0.037 **

(0.018) 2.02 −0.010
(0.016) −0.63 0.016

(0.017) 0.93

Household size 0.034
(0.032) 1.06 0.004

(0.024) 0.16 −0.016
(0.024) −0.66 0.036

(0.029) 1.24 0.003
(0.025) 0.13 −0.124 ***

(0.031) −4.00

Native 0.000
(0.006) 0.02 0.015 ***

(0.006) 2.61 −0.002
(0.006) −0.28 −0.002

(0.005) −0.38 0.001
(0.005) 0.14 0.001

(0.005) 0.11

Flood incidence 0.299 *
(0.178) 1.68 0.421 ***

(0.172) 2.45 0.640 ***
(0.177) 3.62 −0.074

(0.179) −0.41 −0.125
(0.168) −0.75 0.508 **

(0.176) 2.88

Drought incidence 0.182
(0.169) 1.08 0.104

(0.147) 0.7 0.128
0.160 0.80 0.291 *

(0.163) 1.79 −0.042
(0.161) −0.26 −0.108

(0.153) −0.7

Credit access 0.117
(0.170) 0.69 −0.231

(0.153) −1.51 0.365 **
(0.155) 2.36 0.383 **

(0.171) 2.24 −0.242
(0.155) −1.56 −0.313 **

(0.151) −2.07

Membership of cooperative society −0.170
(0.175) −0.97 −0.027

(0.162) −0.16 −0.324 **
(0.162) −2.00 0.055

(0.182) 0.3 0.159
(0.171) 0.93 −0.547 ***

(0.172) −3.19

Farm size 0.048
(0.031) 1.55 −0.017

(0.030) −0.56 0.117 ***
(0.025) 4.68 0.009

(0.029) 0.31 −0.051
(0.033) −1.57 0.026

(0.028) 0.94

Distance from home to farm −0.006 *
(0.003) −1.76 0.000

(0.003) −0.08 0.000
(0.003) −0.04 0.004 *

(0.002) 1.80 0.002
(0.003) 0.58 0.006 *

(0.003) 1.87

Land type −0.497 **
(0.196) −2.53 0.151

(0.175) 0.86 0.124
(0.181) 0.68 0.466 **

(0.206) 2.26 0.984 ***
(0.203) 4.86 −0.393 **

(0.176) −2.23

Land ownership −0.004
(0.181) −0.02 0.000

(0.166) 0.00 −0.168
(0.167) −1.01 −0.485 ***

(0.170) −2.85 −0.061
(0.174) −0.35 −0.138

(0.169) −0.82

Extension contacts 0.702 ***
(0.202) 3.47 0.153

(0.197) 0.78 −0.218
(0.197) −1.11 0.640 ***

(0.225) 2.85 −0.077
(0.206) −0.37 0.311

(0.194) 1.60

Off farm income ($) 0.001
(0.001) 1.11 0.000

(0.001) −0.17 0.001 *
(0.001) 1.69 0.002 ***

(0.001) 2.82 0.001
(0.001) 1.41 −0.002 ***

(0.001) −2.79

Household members that contributed to income (#) −0.026
(0.059) −0.45 0.000

(0.000) 1.19 −0.001 ***
(0.000) −4.13 0.000

(0.000) 1.16 0.000
(0.000) 0.06 −0.001 ***

(0.000) −4.40

Constant −1.421
(0.985) −1.44 −1.632

(0.899) −1.81 −1.170
(0.919) −1.27 −3.300

(0.982) −3.36 0.038
(0.961) 0.04 1.170

(0.911) 1.28

Wald chi2(120) = 705.26, log pseudolikelihood = −1308.0561 prob. > chi2 = 0.000; likelihood ratio test of rho21 = rho31 = rho41 = rho51 = rho61 = rho32 = rho42 = rho52 = rho62 = rho43 =
rho53 = rho63 = rho54 = rho64 = rho65 = 0: chi2(15) = 59.925 prob. > chi2 = 0.000; robust standard error in parenthesis. ***, **, and * denote significance at 1%, 5%, and 10%.
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Similarly, farmers who are natives of the rural communities in which they stay are more
likely to adopt the retention of refuse, which is a very simple practice as compared to long-
term practices such as agroforestry, if they do not have secure land tenure. Furthermore, the
incidence of flood affecting farmers had a significant and positive influence on the adoption
of early maturing varieties, refuse retention, minimum tillage, and mulching. This is not
surprising as all these practices are targeted at reducing erosion, conserving soil moisture,
and reducing the period between planting and harvest.

The findings have further shown that the occurrence of drought influences the adop-
tion of green manure among farmers. The conscious incorporation of leguminous crops
into the soil by farmers was influenced by the occurrence of drought. Access to credit or
the participation in the decision to borrow had a significant influence on the willingness
to adopt CSA T&P. The findings revealed that access to credit increased the adoption of
minimum tillage and green manure while it reduced the likelihood of the adoption of
mulching. Farmers are better able to make positive decisions in their production when they
have access to funds for input purchase or for scaling up production. This is in line with
the findings of [45].

The results have shown that social capital (membership of a farmer association) posi-
tively influences the likelihood of adopting green manure and negatively influences the
adoption of minimum tillage and mulching. This finding may be of importance in the
selection of appropriate green manure species [46]. Membership of a farmer group is
particularly important, with benefits such as serving as an avenue to learn new practices,
accessing both formal and informal credits, and obtaining informal trainings [47].

An increase in the farm size of farmers positively influenced the adoption of minimum
tillage among farmers. This is consistent with the findings of [48], who reported that an
increase in farm size would positively increase the likelihood of adopting CSA. Furthermore,
the likelihood of using green manure and mulching increased with walking distance
to the cultivated plots. This contradicts the finding of [44]. They reported a contrary
finding in Kenya: that distance can be a significant barrier to the adoption of some labor-
intensive technologies.

Similarly, farmers that cultivated crops in the lowlands had a higher likelihood of
adopting green manure and crop rotation. Lowland use is an adaptation strategy that
farmers adopt by cultivating different crops on the same plot during different planting
seasons to increase fertility. Land ownership negatively influenced the adoption of green
manure. This is contrary to a priori expectation, as secure land is expected to serve as an
incentive for farmers to consider investing in the adoption of long-term practices. This is in
consonant with [49] the argument of Marshallian inefficiency with farmers making use of
fewer inputs or lower investments on rented owned plots compared to owned plots. The
importance of agricultural extension in diffusion and continued use of technologies among
farmers was observed. The results showed that frequency of contact with extension agents
positively influenced planting of early maturing varieties and mulching adoption. This is
consistent with earlier findings in the literature [49,50].

Additionally, farmers who engaged in off-farm activities had a higher likelihood of
adopting minimum tillage and green manure. This is not surprising, since green manuring
requires a considerable financial commitment from adopters. For instance, the adopters
of green manuring must be willing to allow an economically unproductive fallow period.
Therefore, farmers engaged in other income-generating activities have a higher likelihood
of adopting these practices, given that they have other income sources to supplement
household consumption [51].

4. Conclusions

Climate-smart agriculture (CSA) has been identified as playing a crucial role in tackling
the adverse effects of climate change. It focuses on sustainably increasing agricultural
productivity, resilience, and enhancing food security. Climate-smart agriculture presents
an opportunity to advance agriculture in Kenya, Nigeria, and Malawi. CSA technologies
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and practices are adopted across the different agro-ecological zones in eastern, western,
and southern Africa. However, for farmers to fully benefit from CSA, the practices have to
align with local conditions to allow adaptability, innovation, and social–cultural issues to
be incorporated. This study has consolidated the literature and information from Kenya,
Malawi, and Nigeria that presents a new case about the scarcity of information on adoption
of integrated climate-smart technologies across multiple African countries. The study has
shown that CSA adoption varies across agro-ecological zones for different crops cultivated.
Some CSA technologies and practices are commonly adopted across the three countries.
These include crop rotation, minimum/zero tillage, improved seed varieties, conservation
agriculture, use of farmyard manure, and agroforestry. The study has outlined some of the
most important drivers affecting the uptake of CSA practices. Some of the drivers of CSA
technologies and practices drivers identified across the three countries include access to
extension services, the age of the farmers (with the younger farmers being more willing to
adopt CSA T&Ps as compared to older farmers), land tenure and property rights, gender,
educational level of farmers, and social capital among others. It is recommended that
policies and strategies incorporate these factors in addition to addressing programmatic
issues that affect adoption. Though adoption and continuation of specific CSA practices
is less studied, this is probably due to their recent introduction. Hence, there is a need to
establish and maintain a data and information management system, build capacities on data
collection and information management, and promote data generation and dissemination
during planning, implementation, monitoring, and evaluation at both national and local
levels in individual countries. Integrating data from specific and different countries will
help in developing reliable country/regional inventory system on CSA practices as well as
enhance reporting and verification of these technologies. This study notes the importance
of increasing the awareness of common CSA practices in the three countries by gender
groups. Additionally, the study identifies the need for consolidated information database
for CSA that can be implemented in eastern, southern, and western Africa. Consolidating
information databases for CSA across the region will assist policymakers and various
stakeholders to design well-informed programs that are relevant and timely to meeting the
identified needs of various farmers across Africa.
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Appendix A

Table A1. Coefficients of climate-smart practice correlation results.

Coefficient Std. Err. Z

rho21 0.096 0.086 1.11
rho31 −0.077 0.089 −0.87
rho41 −0.237 ** 0.095 −2.49
rho51 −0.190 ** 0.092 −2.06
rho61 −0.076 0.087 −0.87
rho32 −0.170 ** 0.082 −2.06
rho42 0.106 0.091 1.16
rho52 −0.164 ** 0.079 −2.07
rho62 −0.178 ** 0.087 −2.06
rho43 0.134 0.094 1.42
rho53 −0.217 ** 0.081 −2.68
rho63 −0.003 0.081 −0.04
rho54 0.042 0.088 0.47
rho64 −0.285 *** 0.089 −3.19
rho65 −0.300 *** 0.081 −3.7

Note: early maturing var. = 1, refuse retention = 2, minimum tillage = 3, green manure = 4, crop rotation = 5,
mulching = 6. ** and *** denote significance at 5%, and 10%.
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