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Abstract: Compelling evidence in Sub-Saharan Africa (SSA) shows that Climate-Smart Agriculture
(CSA) has a positive impact on agricultural productivity. However, the uptake of CSA remains low,
which is related to anthropogenic, or human-related, decisions about CSA and agricultural land use.
This paper assesses households’ decisions to allocate agricultural land to CSA technologies across
space and over time. We use the state-contingent theory, mixed methods, and mixed data sources.
While agricultural land is increasing, forest land is decreasing across countries in SSA. The results
show that household decisions to use CSA and the extent of agricultural land allocation to CSA
remain low with a negative trend over time in SSA. Owned land and accessing land through rental
markets are positively associated with allocating land to CSA technologies, particularly where land
pressure is high. Regarding adaptation, experiencing rainfall shocks is significantly associated with
anthropogenic land allocation to CSA technologies. The country policy assessment further supports
the need to scale up CSA practices for adaptation, food security, and mitigation. Therefore, scaling
up CSA in SSA will require that agriculture-related policies promote land tenure security and land
markets while promoting climate-smart farming for food security, adaptation, and mitigation.

Keywords: climate change adaptation; climate-smart agriculture; land allocation; agricultural policy;
Sub-Saharan Africa

1. Introduction

In Sub-Saharan Africa (SSA), population growth and urbanization continue to put
pressure on land use and land productivity, especially in the agricultural sector [1]. SSA is
a region where the livelihoods of many people depend on agricultural activities, making
land the major household economic asset. The growing need for land in non-agriculture
sectors such as housing and urban infrastructure is exacerbating the small landholding size,
mostly in areas close to urban centers [2,3]. The high dependency on agricultural land and
continuous cultivation is also putting pressure on land productivity in rural areas. Climate
change is further affecting agricultural productivity in SSA, given that agricultural produc-
tion is mainly rainfed. Observation in [4] showed that only 4 to 6 percent of total cultivated
land in SSA is under irrigation. Therefore, the high potential for irrigation farming is yet
to be fully exploited in this region. In addition, increasing agricultural productivity has
mainly focused on intensification and clearing land. These also contribute to Greenhouse
Gas (GHG) emissions from land use and agricultural production decisions [5].
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According to the 2007 IPCC Fourth Assessment Report, the terrestrial ecosystem in
Africa has significantly changed, evidenced by the reduction in vegetation area [6]. The
report further indicates that the primary driver has been anthropogenic (human-related)
changes in land use, including land area expansion for crop and livestock production at the
cost of vegetation and forest cover. Livestock production alone contributes about 14.5 per-
cent of global GHG emissions and nearly half of the agriculture sector’s emissions, due
to enteric fermentation and land clearing (i.e., animal digestion, feed production, manure
management, and forest cover loss) [6]. Therefore, if SSA is to achieve the Sustainable De-
velopment Goals, especially Goal 2, which aims at ending hunger, achieving food security,
improving nutrition, and promoting sustainable agriculture, agricultural productivity will
have to increase in the face of climate change while reducing GHG emissions.

Realizing this need, agricultural policy interventions in SSA have been promoting
Climate-Smart Agriculture (CSA) technologies and practices, especially among smallholder
farmers. According to the Food and Agricultural Organization (FAO), “Climate Smart
Agriculture is an approach that helps to guide actions needed to transform and reorient
agricultural systems to effectively support the development and ensure food security in
a changing climate” [7]. Mainly, CSA looks at sustainably increasing agricultural pro-
ductivity and incomes, adapting and building resilience to climate change, and reducing
emissions of greenhouse gas. From the time agricultural policies started advancing the use
of CSA technologies, empirical evidence shows positive impacts on agricultural production
emanating from land use decisions, particularly among smallholder farmers in SSA [8].
However, the uptake of CSA practices in low-income regions such as SSA is still low, with a
scale and scope that is considered unsatisfactory across countries [9]. Observations in [9,10]
indicated that it is beneficial if farmers adopt a combination of different CSA technologies
and less optimal to focus on a single intervention at the farm or national levels. Thus, the
spatial variations in the scale and scope of using CSA, within and across countries, are
mainly influenced by the context within which farmers operate to adapt and adopt the
CSA technologies.

Despite the empirical evidence on the adoption of CSA technologies and their impact
on agricultural productivity, an empirical gap exists in context-specific studies that can assist
different stakeholders to prioritize appropriate and timely strategic CSA interventions [10].
Therefore, the objective of this paper is to assess the intertemporal and spatial anthropogenic
(human-related) changes in land use associated with CSA household decisions in SSA.
Specifically, the paper responds to four key questions. Firstly, what are the intertemporal
changes in land allocated to a basket of CSA technologies (explained in the next section) at
the household level; (2) what is the effect of the source of farmland (inherited and rented)
on the extent of land allocated to CSA, where rented land is associated with the additional
cost of using agricultural land; (3) how is the covariate risk from lagged rainfall variations
(a proxy for climate change) influencing land allocated to CSA practices and land use
changes over time; and (4) how are agriculture-related policy strategies promoting the
scaling of CSA practices in SSA?

Our understanding is that CSA can only have significant overall impacts on individu-
als and the economy if the associated practices are adopted at scale and over time. At the
same time, the lasting impacts of CSA, especially among resource-poor households, can also
be realized if public and private institutions strengthen policy design and implementation
and legal efforts that support the adoption and intensity of using these practices. Thus,
this study is relevant for policymakers to understand how CSA is orienting agricultural
systems to adapt and build resilience to climate change. To understand the context, the
study used data from Malawi, Uganda, and Kenya (Figure 1).
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Figure 1. Map of Africa showing Kenya, Uganda, and Malawi. Source: https://www.worldatlas.com
(accessed on 28 October 2022).

The selection of these countries in SSA is intended to enhance the case-specific empiri-
cal studies in this region. Kenya and Uganda are in the Eastern region, while Malawi is in
the Southern region of SSA, as shown in Figure 1. The diversity in population, urbaniza-
tion, land pressure, and use of CSA technologies across these countries is important for
context-specific analysis, while the joint review provides a broader analysis of SSA.

2. Climate-Smart Agriculture and SSA in Context

Climate-Smart Agriculture (CSA) integrates the economic, social, and environmental
dimensions of sustainable development. This implies that there is no “one size fits all” CSA
practice recommended universally and also that understanding the context and emphasiz-
ing adaptation are important factors for promoting adoption [9]. Policy imperatives for CSA
include the need to increase food yields, feed a growing population of nine billion by 2050,
mobilize investments for farmers, and reduce GHG emissions. Thus, various technologies
and practices have been promoted under CSA, including conservation agriculture that is
based on the three farming principles of (1) minimum soil disturbance, (2) organic soil cover,
and (3) diversified crop rotations [11]. Overall, CSA includes a variety of technologies
and practices, mainly agroforestry, conservation agriculture, crop diversification, adoption
of stress-tolerant crop varieties and livestock breeds, and improved water management
technologies such as small-scale irrigation [9,12,13]. Specifically, CSA includes the use
of organic manure, maize–legume intercropping, and minimum or zero tillage, among
other practices [11]. The amount of farmland allocated to one or a combination of CSA
technologies and practices determines the use and intensity of adoption among farm house-
holds. As land scarcity increases, more land under CSA technologies and practices should
improve production and reduce crop area expansion. This could then halt deforestation
if complemented with improved natural resources management [14]. This is important,
given that agriculture is a key economic activity in SSA.

In Malawi, 80 percent of the economically active population is employed in the agri-
cultural sector. In Uganda, the agricultural sector takes up 68 percent of total employment,
while 65 percent of exports in Kenya are agriculture-related [15–17]. The bulk of the popula-
tion that is engaged in this critical activity is the rural poor, who participate as smallholder

https://www.worldatlas.com
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farmers [18]. More than 80% of Uganda’s rural population is engaged in agriculture as
smallholder farmers [19], with landholdings averaging 2 hectares [20]. In Kenya, agri-
cultural production carried out on smallholder farms averaging 0.2–3 hectares accounts
for over 75% of agricultural output [20]. Additionally, smallholder farmers produce the
largest percentage of crops consumed domestically, approximately 80% of all food con-
sumed in Malawi [21]. This, therefore, suggests that the adaptation of smallholder farmers
to climate change can have profound positive effects on SSA’s agricultural sector at large.
Moreover, enhancing mitigation contributions from the agriculture sectors alone could
enable countries in Eastern and Southern Africa to achieve their ambitious targets to reduce
GHG emissions [22].

3. Theoretical Framework

Farm households make production decisions under uncertain climatic conditions, or
the state of nature. Households allocate factors of production before the state of nature
is known. However, acquired experience in climatic conditions and soil fertility on their
farms shapes their subjective assessment of production risk in each production season. A
farm household whose objective is to maximize production utility or minimize production
cost, therefore, makes state-contingent decisions. According to [23], a state-contingent
production function assumes that a farm household is faced with y distinct outputs from
allocating x distinct inputs with a probability πs of S, the state of nature, occurring. Under
different states of nature, the farmers’ input choice does not determine the output, but
different allocations lead to different amounts for costs and output. Thus, with climate
risk and subjective assessment of soil fertility, farmers’ input choice should minimize
production costs under different states of nature.

If we specify a production function as y = q(A, K), where A is land used for pro-
duction and K is all other inputs (including labour), the cost function can be specified as
Min C(r, y) = C[r, q(A, K)]. The r is the price of inputs, including land rentals. If we
assume two states of nature, with probability πl of low outcome and πh of high outcome,
the optimal cost function y∗ is specified in Equation (1).

y∗ = min[C{r, q(A, K)} : πlyl+πhyh = y (1)

This implies that the household allocation mix of land and other inputs should be
risk-substituting or risk-complementing under state-contingent decisions to minimize cost.
Therefore, with CSA technologies, farmers would be motivated to choose one or more
technologies that are risk-substituting or -complementing at a minimal cost. This implies
that a combination of these technologies can be adopted in one parcel of land or different
parcels of land owned by the household. For instance, a farmer can combine soil control
measures such as terraces or vetiver grass with organic manure and minimum tillage on one
piece of land or use different technologies in different areas [12], which can be consolidated
to obtain total household land under CSA.

Several factors, including household, community, and governance factors, influence
household decisions, for instance, land allocated to CSA [24]. A review of the literature
shows that household decisions are a function of household characteristics (gender, size,
location, access to community services, education, and experience, and household endow-
ments such as land and asset wealth) [24–26]. Additionally, climatic factors such as rainfall
patterns and governance factors such as policies and legislation can influence production
decisions over time [24–27]. If a household experiences a deviation in rainfall pattern such
as drought and flood in one year, their production decisions are likely to change in the
subsequent year to minimize loss or risk [13,23].

Figure 2 conceptualizes the discussed household decision to allocate land for CSA
technologies and the factors likely to affect that decision, as discussed. With this theoretical
framework and in line with our objectives, we hypothesize three statements:

H1: Increase in owned land increases land allocation to CSA technologies.
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H2: Rented land decreases household land allocation to CSA technologies.

H3: Experiencing a decrease in one-year rainfall amount increases land allocation to CSA
technologies in the subsequent year.

For hypotheses H1 and H2, the assumption is that households prefer to invest in
owned land that is mainly inherited land or land acquired over time through sales markets,
which hence is a fixed variable that does not change very often. On the contrary, the user
right that comes with rented land can limit CSA investments, particularly for long-term
investments [16,28]. The assumption of H3 is that households would respond to immediate
rainfall shocks by investing in CSA technologies as a response to climate risk [13].
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4. Materials and Methods
4.1. Data Sources

Two sources of data are used for this study: Living Standards Measurement Surveys
(LSMS) and FAOSTAT. LSMS data are periodically collected by the World Bank in develop-
ing countries. The panel data collect household and community characteristics, in addition
to agricultural production data on land and the use of CSA technologies. The data also
provide annual rainfall variables at the community level, which would be important for
assessing the covariate risk related to changes in rainfall distribution. For this study, we
use the recent three rounds and two rounds of the LSMS data collected in Malawi and
Uganda, respectively. The three rounds of data in Malawi were collected in 2013, 2016/17,
and 2019/20. In Uganda, the two rounds of LSMS data used were collected in 2014/15,
and 2019/20. These data are used to respond to objectives 1 to 3. FAOSTAT data report
country-level indicators over time. We use the FAOSTAT data from 1961 to 2018 to assess
country-level indicators, more specifically to respond to objective 1 for Kenya, where we
could not access the nationwide household survey data. For objectives 2 and 3, based on the
available data in Uganda and Malawi, this study considered the household land allocated
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to CSA practices. Specifically, we focused on the use of organic manure (livestock manure),
minimum tillage, small-scale irrigation, and soil control measures such as terraces.

For objective 4, we conducted a systematic literature review to identify factors and
the attributes for effective scaling of CSA through policy analysis in line with the FAO
climate-smart agriculture resource book, a benchmark for CSA policies and practices [29].
A Likert scale was used to assess these factors by assigning a score of 0 for the absence of
an attribute or a factor for effective CSA scaling; a score of 1 to indicate that an attribute
of a factor for effective CSA scaling is present but not elaborated upon; and a score of 2 to
indicate that an attribute of a factor for effective CSA is present and elaborate. We then
generated a weighted score for each of the factors for effective scaling of CSA. Additionally,
the paper used secondary data obtained from policy documents related to climate-smart
agriculture for adaptation or mitigation of climate change or to increase food security under
this objective. Country-level documents included national agricultural policies and/or
national adaptation plans and climate-smart agriculture policies in the three countries. We
summarise the country data and data sources in Table 1.

Table 1. Data and Data Source.

Country Data Type Period Source Objective

Malawi FAOSTAT 1961–2008 FAO https://www.fao.org/statistics/en/,
accessed on 5 October 2021 1

LSMS 2013, 2016/17, 2019/20
Word Bank—LSMS

https://www.worldbank.org/en/programs/lsms,
accessed on 5 October 2021

2 & 3

Secondary data Over time Literature review 4

Uganda FAOSTAT 1961–2008 FAO https://www.fao.org/statistics/en/,
accessed on 5 October 2021 1

LSMS 2014/15, 2019/20
Word Bank—LSMS

https://www.worldbank.org/en/programs/lsms,
accessed on 5 October 2021

2 & 3

Secondary data Over time Literature review 4

Kenya FAOSTAT 1961–2008 FAO https://www.fao.org/statistics/en/,
accessed on 5 October 2021 1

Secondary data Over time Literature review 4

4.2. Empirical Strategy

The study used mixed methods (qualitative and quantitative methods) to respond to
the four objectives as indicated below.

Objective 1: For this objective, we used non-parametric methods to graphically show
the trends in land allocation among farm households using the unbalanced LSMS data
across three panel rounds in Uganda and Malawi. In Kenya, we used the FAOSTAT data to
show the trends in land use change. The assessment also included the trends of national
agricultural land area under irrigation farming across the three countries and household
area under different CSA technologies in Malawi and Uganda. Apart from using the
FAOSTAT data, to further assess the trends in Kenya, we reviewed the available literature
and graphically presented the data on the use of CSAs [30,31].

Objective 2: To respond to this objective, we used parametric methods. Specifically,
we used panel data probit and Tobit models for the use and extent of land allocated to
CSA. The key explanatory variables in the model were dummies for renting-in land and
the size of owned household land. The rent-in dummy is for the household decision to
have additional land with user rights for the short to medium term. Owned land sources
include inherited and purchased land, for which the household has control rights [32].
Considering that renting-in the land is also a decision variable, the model will control for
the household, garden, and community variables in the analysis. This analysis tests H1 and
H2 presented above.

https://www.fao.org/statistics/en/
https://www.worldbank.org/en/programs/lsms
https://www.fao.org/statistics/en/
https://www.worldbank.org/en/programs/lsms
https://www.fao.org/statistics/en/
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Objective 3: Assessing this objective also used the panel probit and Tobit models,
with the amount of land allocated to CSA as the dependent variable and variations in
one-year-lagged rainfall amount as the key explanatory variable. Each round of LSMS
data provides annual rainfall data in the survey period and two previous seasons at the
community level or enumeration area to show the covariate risk based on geo-referenced
data sources [33]. For example, the recent three rounds of the LSMS data from Malawi have
annual rainfall data spanning 6 years. Therefore, we used the average rainfall data across
the current and previous survey years to generate the one-year-lagged rainfall deviations
for each survey period at the enumeration area.

This variable indicates covariate risk, considering that climate risks affect several
households at the same time. With data limitations, the yearly rainfall data were not
available in the Uganda LSMS, and the data had limited information on GPS coordinates
that could be used to merge other sources of rainfall data with this household LSMS
data. Thus, to assess the climatic shock in Uganda, we used a dummy for experiencing
irregular rains, drought, and floods at the household level. Considering that households
use subjective experience to make state-contingent decisions, the use of this variable is a
good proxy for assessing the covariate climatic risks that households face. In line with
the theoretical framework, the analysis controlled for household, community, and garden
characteristics to account for possible bias in the results without claiming full causality.
This analysis assessed H3 presented above.

For both objectives 2 and 3 and to respond to hypotheses H1 to H3, we used the
reduced form of the probit and Tobit models specified in Equation (2) [34]. In the equation,
Ajt is the total land area allocated to a basket of CSA technologies for household j and
at time t. The variable Ai is rent-in dummy and R is one-year-lagged rainfall amount or
dummy for experienced climate shock. As mentioned above, the model controls for farm
and household characteristics are given as Xjt with τ for time dummies and µj + ε jt as the
additive error term.

Ajt = α + DAi
jt + γRt−1 + γXjt + τ + µj + ε jt (2)

Based on the available data, this parametric analysis focused on Malawi and Uganda.
It was challenging to obtain nationwide household data that specify CSA household land
allocation in Kenya; hence, this analysis does not include Kenya. Although LSMS data were
available in Malawi and Uganda, the two countries promote different CSA technologies.
To perform a comparative analysis, the dependent variable captures total household land
under different CSA technologies. In general, the analysis focused on the following CSA
technologies: (1) soil erosion control variables such as terraces, control bunds (stones, earth,
or sandbags/gibbons), tree belts, water harvesting bunds, and drainage ditches, (2) use
of organic manure, (3) irrigation farming by diverting streams, hand and treadle pumps,
motor, or gravity feeding, and (4) land preparation techniques that include box ridges,
zero tillage, pit planting, ripping, and minimum tillage. Specifically, the Malawi data
recorded these technologies, while the data for Uganda categorized land preparation as
either burning or not. Additionally, in Uganda, less than 1 percent of the farm households
reported the area under irrigation; hence, the analysis for Uganda computed household
land allocated to soil control measures, organic manure, and no burning in land preparation.

Regarding the rainfall shock variable, the model for Malawi used a one-year-lagged
rainfall variable, while for Uganda, we used a farmer response dummy on experiencing
irregular rain, drought, or flood. Furthermore, the analysis in Malawi tested the upside
and downside deviation of one-year rainfall amount from the 6-year mean rainfall amount.
With three panel rounds that captured rainfall data at the enumeration area, we used
rainfall amounts recorded in 2012, 2013, 2015, 2016, 2018, and 2019 to obtain a 6-year mean.
Considering that the survey years are 2013, 2016, and 2019, the upside and downside
one-year-lagged rainfall deviations calculate the difference between the amount recorded
in 2012, 2015, and 2018 from the overall mean. If the recorded amount was above the mean,
that is an upside deviation, and if lower than the mean, then it is a downside deviation. For
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ease of interpreting the results, the downside deviations were recorded as positive numbers
by multiplying them with a negative one.

For the control variables, the analysis includes sex, age, and education of household
head; household size; the share of male labour to total household labour; Total Livestock
Units (TLU) per total household labour ratio; one-year-lagged TLU per total household
labour ratio; distance to urban centres or urban/rural dummy, household-size-to-worker
ratio, and capital asset index. The share of male labour, total livestock units, and capital
asset capture household endowment are important for making land decisions and use
of CSA technologies. To calculate the total labour for the household, we used the adult
equivalent labour in man-days; hence, more adult males should imply more household
labour. The household-to-worker ratio captures the effort available for agricultural activities
compared to the consumption need at the household level.

To estimate these models, we constructed a balanced panel from the available data in
Malawi and Uganda [34]. For Malawi, the total sample across the years was 1990, 2508, and
3178 households in the 2013, 2016, and 2019 panel years, respectively. From this sample,
we computed a three-year balanced panel of 1439 households. For Uganda, the sample size
was 3165, 3174, and 3077 households in the 2015, 2019, and 2020 panel years, respectively.
Focusing on CSA practices, the number of households who responded to the CSA-related
question in 2019 was low; hence, it was challenging to obtain representative balanced data
across the three survey rounds. The study, therefore, used the data from 2019 and 2020,
from which we computed a balanced panel of 407 households. The small sample was due
to missing responses on CSA and not households dropping out of the survey, which could
be a survey problem and not an enumerator data collection problem. To further enhance
the cross-country comparative analysis, these results were discussed in comparison with
the results of similar studies in Kenya.

Objective 4: To respond to this objective, we used qualitative descriptive analysis
to evaluate the CSA policies present in the country policy documents against the set
benchmark. We counted the number of policies targeting climate-smart crop and livestock
production and water use in the three countries to come up with the total score of policies
related to the CSA practices benchmarked by FAO [29]. Finally, we computed a weighted
score based on the number of practices included in each country’s policy vis a vis the total
number enumerated in the FAO sourcebook.

This assessment allowed a comparison of the inclusion of recommended CSA practices
in the national policy documents. Hence, country-level policies were assessed as adhering
to, modifying, or not adhering to CSA policies as outlined in the FAO document. Adhering
meant policies were adopted as stated in the sourcebook, modifying meant some additional
features were added or removed from the definition of the sourcebook without changing
the overall meaning, while not adhering meant that the policy was not found in the
country documents.

5. Results
5.1. Descriptive Statistics

This section presents the summary statistics across the three years of panel data for
Malawi and two years of panel data for Uganda used in assessing objectives 2 and 3. We
also present FAOSTAT data to understand land use patterns in Malawi, Uganda, and Kenya
in Figure 3. Table 2 shows that the average household landholding size is 0.5 ha in Malawi
and 0.8 ha in Uganda, and households reported to have rented land are 10 and 23 percent
in Malawi and Uganda, respectively. This reflects FAOSTAT data in Figure 3, which shows
that the agricultural land area in Uganda is twice the size of Malawi (11,962,000 ha for
Uganda and 5,738,000 ha for Malawi). Across the three study countries, Figure 3 further
shows that the proportion of agricultural land to total land is higher in Uganda, followed
by Malawi and Kenya. Interestingly, the proportion of forest area is higher in Malawi,
followed by Uganda and Kenya. This trend is consistent over the past 30 years, as forest
land has been decreasing in all three countries.
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Figure 3. Proportion of agriculture land and forest land to total land area in Malawi, Kenya, and
Uganda. Source: FAOSTAT data (1990–2018), accessed on 5 October 2021.

Table 2. Descriptive Statistics.

Variable Unit Malawi Uganda

Key variables

Area under CSA Mean (ha) 0.29 0.069
CSA use dummy (1 = Yes) Percent 49.2 10.69
Rent-in dummy (1 = Yes) Percent 10.33 23.21
Owned land (GPS measured—ha) Mean 0.498 0.766
One-year-lag rainfall (per 100 mm) Mean 8.70
One-year-lag upside rainfall deviation (dm) Mean 5.35
One-year-lag downside rainfall deviation (positive dm) Mean 4.82
Irregular rains (1 = Yes) Percent 14.25
Drought (1 = Yes) Percent 48.16
Floods (1 = Yes) Percent 9.58
Control Variables

Sex of household head (1 = Female) Percent 24.96 29.98
Age of household head Number 43 50
Education of household head Number 7 7
Share of male labour total labour Number 0.41 0.43
Household size Number 5.26 5.5
TLU per labour ratio Number 0.10 0.61
One-year-lag TLU per labour ratio Number 0.10 0.42
Distance to urban centre Km 24.96
Reside (1 = Rural) Percent 91.76
Household size per labour ratio Number 1.79 1.50
Capital asset index Number −0.01 −0.02
Number of observations Number

Regarding household land area under CSA technology, Malawi has a mean household
land allocation of 0.3 ha, while in Uganda, the average land area under CSA is 0.1 ha
per household. According to CSA country profiles produced by the organization Climate
Change, Agriculture, and Food Security (CCAFS), Malawi mainly promotes conservation
agriculture (mulching, minimum or zero tillage), integrated soil fertility management prac-
tices (agroforestry, incorporation of organic matter such as mulch, compost, crop residue,
and green manure), and use of inorganic fertilizer through the input subsidy program.

In contrast, the profile for Uganda indicates more emphasis on the management of
livestock manure (biogas production) and the use of CSA in the production of perennial
crops such as intercropping of coffee with banana and legumes with other crops. This could
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be the reason why the observed area under CSA is relatively lower in Uganda compared to
Malawi [16,17].

The descriptive statistics in Table 2 show that in Malawi, the mean one-year-lagged
rainfall amount is 870 mm (mm), while based on downside and upside rainfall variations,
the mean deviation is 5.35 decimetres for upside and 4.82 decimetres for downside de-
viations. This shows that the experienced reduction in rainfall amount was on average
53 mm and the increase was on average 48 mm across the years. For Uganda, we note that
14 percent of the sampled households experienced irregular rains, while 48 percent and
10 percent experienced drought or floods, respectively.

Regarding household characteristics, both Uganda and Malawi have at least 25 percent
female-headed households. The mean age of household heads is slightly lower in Malawi
compared to the mean age of 50 years for household heads in Uganda. The average
education level for household heads, the average share of male labour to total household
labour, and household size have no observable differences in the two countries. Uganda
data show higher household livestock ownership compared to the households in Malawi,
which concurs with the country profiles on CSA for Malawi and Uganda [16,17].

5.2. Empirical Results and Discussion

Objective 1: Assessment of intertemporal changes in the proportion of land allocated
to CSA technologies

We observe that area under irrigation has been increasing in Malawi and Kenya,
but little has changed in Uganda over time (Figure 4). Despite observable changes in
the area equipped with irrigation across the three countries, the literature indicates that
the percentage of irrigated land out of total agricultural land remains between 4 to 6 percent
in these countries [1]. The low area under irrigation particularly under small-scale irrigation,
therefore, calls for more policy action if irrigation farming is to promote adaptation to
climate change.
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Figure 4. Land Area equipped with Irrigation. Source: FAOSTAT data (1961–2018), (accessed on 5
October 2021).

Apart from promoting irrigation farming, the intertemporal changes in the household
land area allocated to a basket of CSA technologies also show observable changes presented
in Figures 5–8. Figures 5 and 6 show the total household area allocated to a basket of CSA
technologies in Malawi. Figures 7 and 8 present the household area that indicates different
CSA technologies and practices in Uganda. According to Figures 5 and 6, on average,
46 percent of the sampled households allocated land to CSA practices between the years
2013 and 2019. The mean area allocated was 0.27 ha across the years. In Uganda, the trend
of households using CSA shows a big drop in the 2019 panel year, where it was only at
4 percent compared to 14 and 13 percent in the 2015 and 2020 survey rounds. Overall,
Figure 6 shows that land allocated to CSA has been low in Uganda, averaging at 10 percent,
compared to Malawi, which has an average of 46 percent, as shown in Figure 5.
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Figure 5. Mean Household Land Area (ha) under CSA in Malawi. Source: Computed using balanced
LSMS data, (accessed on 5 October 2021).
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Figure 6. Mean Household Land Area (ha) under CSA in Uganda. Source: Computed using balanced
LSMS data, accessed on 5 October 2021.
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Source: Computed using balanced LSMS data, accessed on 5 October 2021.
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Compared to Malawi, where the main crop is maize, in Uganda, integrated soil
fertility management, agroforestry, crop diversification, and conservation agriculture (crop
rotation, mulching, use of green cover crops, and minimum tillage) practices are mainly
practiced in the production of tea, banana, rice, coffee, and cassava, among other crops [17].
The use of CSA on perennial crops could imply limited intertemporal land changes in
Uganda compared to Malawi or that other related factors affected data collection on land
allocated to CSA across the survey rounds. Furthermore, Uganda heavily promotes manure
management through the production of biogas as opposed to using manure for farming,
which is the reason why the land allocation is small in this country [17].

In general, the trend analysis in this study shows fluctuating trends in households
allocating land to a basket of CSA practices and the amount of land under CSA, with an
overall negative trend. Such a negative trend can be counter-productive in SSA, knowing
that agricultural policies and several projects in these countries are investing in CSA
technologies to promote food security and adaptation to climate change [16,17]. Such
fluctuating trends are shown further in Figures 7 and 8. From Malawi, the results indicate
that the most used technologies are soil control bunds, vetiver grass, and organic manure,
and the least used technologies relate to small-scale irrigation, as shown in Figure 7.

In Uganda, farmers are commonly not burning their crop residues in the field, which
could be related to mulching (Figure 8). Farmers are also using organic manure and
soil control bunds. The data show very low use of irrigation technologies by farmers in
Uganda. Considering the short assessment period in this paper, further analysis using
long-term data will be important to understand long-term trends in household decisions
to allocate land to a basket of CSA technologies, particularly in Uganda. Based on the
reviewed literature, Figure 9 shows that in Kenya, the most used CSA technologies are
crop management practices (improved crop varieties, legume crop rotation, cover crops,
changing planting dates, efficient use of inorganic fertilizers) and field/soil management
practices (terraces, planting trees on crop land, rainwater harvesting, farmyard manure,
and irrigation) [31,35]. Despite the data challenge across the countries, we now focus our
analysis on understanding the factors affecting household land allocation decisions as
indicated in objectives 2 and 3.
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Figure 9. Reported percentage use of CSA practices in Kenya. Source: Reviewed literature from
Kenya presented in this paper, (accessed on 21 March 2022).

Objectives 2 and 3: Effects of farm household land source and covariate risk from
lagged rainfall variations on the extent of land allocation to CSA practices and land use
change over time

Tables 3 and 4 present the estimated average margins from the panel probit and Tobit
models. In the tables, models 1 and 2 are parsimonious (with only key variables of interest),
while models 3 and 4 include the control variables in a stepwise process. In Appendix A,
we present the estimated coefficients for these margins in Tables A1 and A2. Under each
hypothesis, we discuss the country results and then provide a comparative discussion.
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Table 3. Estimated margins from Probit and Tobit Models for CSA dummy and Total area allocated to CSA in Malawi.

Estimated Margins in Malawi

Variable Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

Key Variables
Rent-in dummy (1 = Yes) 0.19 **** 0.19 **** 0.21 **** 0.22 **** 0.10 **** 0.10 **** 0.12 **** 0.12 ****

(0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.01) (0.01)
One-year-lag rainfall (per 100 mm) −0.01 *** −0.01 *** −0.01 *** −0.01 ****

(0.01) (0.00) (0.00) (0.00)
One-year-lag upside rainfall deviation (dm) 0.00 0.00 ** −0.00 0.00

(0.00) (0.00) (0.00) (0.00)
One-year-lag downside rainfall deviation (dm) 0.00 0.00 **** −0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Owned land (GPS measured—ha) 0.21 **** 0.21 **** 0.11 **** 0.11 ****

(0.02) (0.02) (0.00) (0.00)
Control Variables

Sex of household head (1 = Female) −0.02 −0.03 −0.03 ** −0.03 **
(0.02) (0.02) (0.01) (0.01)

Age of household head 0.00 0.00 0.00 **** 0.00 ****
(0.00) (0.00) (0.00) (0.00)

Education of household head −0.00 * −0.00 * −0.00 ** −0.00 **
(0.00) (0.00) (0.00) (0.00)

Share of male labour out of total labour −0.09 ** −0.09 ** −0.03 −0.03
(0.04) (0.04) (0.02) (0.02)

Household size 0.04 * 0.04 * 0.02 **** 0.02 ****
(0.02) (0.02) (0.01) (0.01)

TLU per Labour ratio 0.02 0.02 0.00 0.00
(0.01) (0.01) (0.00) (0.00)

One-year-lag TLU per labour ratio 0.00 **** 0.00 **** 0.00 **** 0.00 ****
(0.00) (0.00) (0.00) (0.00)

Distance to urban centre 0.00 0.00 0.01 **** 0.01 ****
(0.00) (0.00) (0.00) (0.00)
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Table 3. Cont.

Estimated Margins in Malawi

Variable Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

Household size per labour ratio −0.01 −0.01 −0.02 *** −0.01 ***
(0.01) (0.01) (0.01) (0.01)

Capital asset index −0.08 **** −0.08 **** −0.04 **** −0.04 ****
(0.01) (0.01) (0.01) (0.01)

Base Year (2013)
2016 year 0.10 **** 0.07 **** 0.09 **** 0.07 **** 0.05 **** 0.03 *** 0.04 **** 0.03 **

(0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
2019 year 0.05 *** 0.04 *** 0.07 **** 0.07 **** 0.00 0.00 0.03 *** 0.03 **

(0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Panel households 1439 1439 1439 1439 1439 1439 1439 1439
Left censored (_n) 2205 2205 2205 2205
Uncensored (_n) 2085 2085 2085 2085

Observations 4317 4317 4317 4317 4317 4317 4317 4317

Standard errors in parentheses = “* p < 0.1, ** p < 0.05, *** p < 0.01, **** p < 0.001”.

Table 4. Estimated margins from Probit and Tobit Models for CSA dummy and Total area allocated to CSA in Uganda.

Estimated Margins in Uganda

Variables Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

Key Variables
Rent-in dummy (1 = Yes) −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.02 −0.02

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
Irregular rains (1 = Yes) 0.00 0.00 −0.00 −0.00

(0.03) (0.03) (0.03) (0.03)
Drought (1 = Yes) −0.02 −0.01 −0.02 −0.02

(0.02) (0.02) (0.03) (0.03)
Floods (1 = Yes) 0.02 0.02 0.01 0.02

(0.03) (0.03) (0.04) (0.04)
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Table 4. Cont.

Estimated Margins in Uganda

Variables Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

Owned land (self-reported ha) 0.00 0.00 0.01 0.01
(0.00) (0.00) (0.01) (0.01)

Control Variables
Sex of household head (1 = Female) 0.00 0.00 −0.00 −0.00

(0.03) (0.03) (0.03) (0.03)
Age of household head 0.00 −0.00 −0.00 −0.00

(0.00) (0.00) (0.00) (0.00)
Education of household head −0.00 −0.00 −0.00 −0.00

(0.00) (0.00) (0.00) (0.00)
Share of male labour out of total labour −0.05 −0.05 −0.05 −0.05

(0.05) (0.05) (0.07) (0.07)
Total livestock unit to labour ratio −0.04 ** −0.04 ** −0.05 ** −0.05 **

(0.02) (0.02) (0.02) (0.02)
One-year-lag TLU to labour ratio 0.03 0.03 0.03 0.03

(0.02) (0.02) (0.03) (0.03)
Urban (1 = Rural) 0.10 ** 0.10 ** 0.12 ** 0.12 **

(0.05) (0.05) (0.06) (0.06)
Household-to-labour ratio −0.01 −0.01 −0.01 −0.01

(0.01) (0.01) (0.03) (0.03)
Capital asset index 0.04 *** 0.04 *** 0.05 *** 0.05 ***

(0.01) (0.01) (0.02) (0.02)
Base Year (2019)
2020 panel year 0.16 **** 0.16 **** 0.18 **** 0.18 **** 0.21 **** 0.21 **** 0.23 **** 0.22 ****

(0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Panel households 407 407 407 407 407 407 407 407
Left censored (_n) 727 727 727 727
Uncensored (_n) 87 87 87 87

Observations 814 814 814 814 814 814 814 814

Standard errors in parentheses = “** p < 0.05, *** p < 0.01, **** p < 0.001”.
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Hypothesis one (H1) stated that an increase in owned land increases land allocation to
CSA technologies. The results for Malawi presented in Table 3 concur with this hypothesis,
which implies that owning more farmland can encourage the use of CSA technologies at
the household level. According to the probit model (probit 4), an increase in owned land
increases land allocated to CSA technologies by 21 percentage points. Regarding the extent
of land allocation (Tobit 4), a one-hectare increase in owned land increases the household
land allocated to CSA technologies by 0.11 ha, which is significant at a 1 percent level. This
concurs with the study by [28] in Malawi, which observed that households are more likely
to use CSA practices on owned land compared to rented land. From Table 2, we observe
that land ownership has no significant effect on land allocated to CSA in Uganda. This
could be because in Uganda, the CSA profile shows that CSA-related practices mostly focus
on manure management and biogas production compared to using the manure on the
farm [17]. The observed insignificant effect in Uganda compared to the significant effect in
Malawi, therefore, implies that we can partly fail to reject H1 in SSA. This takes us to the
next hypothesis.

Hypothesis two (H2) stated that rented land decreases household land allocation to
CSA technologies. The results indicate a significant effect of the rent-in dummy on land
allocated to CSA technologies. However, the sign is positive for Malawi in Table 2. This
implies that renting-in land can also increase the amount of land allocated to CSA at the
household level in Malawi. From the probit model (probit 4), renting-in more land is
associated with increased allocation of land to a basket of CSA technologies by 22 percent
while increasing the extent by 0.12 ha, as indicated in the Tobit model (Tobit 4), which is
significant at 1 percent in Table 3.

Literature shows that landholding size continues to reduce with high land pressure
and limited capacity to expand agricultural land to virgin land in Malawi [2,36]. With land
pressure, land markets (sales and rental) are developing in Malawi as the main pathway
through which households are accessing agricultural land [3,37]. This implies that renting-
in land is one of the ways that households are accessing agricultural land and hence the
land that households are also allocating to CSA technologies. Using matched tenant and
landlord data in Malawi [28] showed that soil management investments by households
were higher on owner-operated land compared to rented land. However, the focus of the
analysis in the [28] study was not clear on households that mainly depend on rented land,
which is a growing pattern in Malawi. Thus, our results build on these studies to show
that households that are likely to rent-in more land are also likely to allocate that land
for CSA technologies as land pressure continues. In line with the first hypothesis, which
showed that owning more land is associated with high likelihood of allocating more land
to CSA technologies, renting-in land partly increases one’s farmland, hence increasing the
likelihood of allocating more land to CSA technologies.

The results for Uganda presented in Table 4 show that renting-in land is not signifi-
cantly associated with households allocating land to CSA technologies. Interestingly, the
sign for this variable shows that renting-in land would decrease land allocated to CSA
technologies as expected. Following the argument from the results for Malawi, investing in
CSA technologies and practices on rented land could be related to growing land pressure,
which can be considered not to be the current situation in Uganda. The trend observed
in Kenya by [30] shows an increase in land size by 32% through purchase or leasing for
farmers adopting CSA practices. Furthermore, [31] reported an increase in land size by
1 acre (0.4 ha) increased the probability of using a basket of CSA practices by 0.13 to 2.7%.
This could be related to the trend observed in Malawi, where population pressure is high.
Such trends can be counter-productive if agricultural land becomes scarce. If SSA is to
promote CSA, agricultural policies will have to seriously consider access to agricultural
land at the household level and promote investing on rented land, in addition to focusing
on the adoption and adaptation of CSA technologies. On the adaptation question, we now
assess hypothesis three.



Sustainability 2022, 14, 14729 18 of 29

Hypothesis H3 stated that a decrease in one-year rainfall amount increases land
allocation to CSA technologies. The probit and Tobit model results in Tables 3 and 4
used one-year-lagged rainfall amounts and rainfall deviations in Malawi and households
experienced with climate shocks in Uganda. In Table 3, the probit and Tobit model 3 show
the effect of one-year-lagged rainfall amount, while probit and Tobit model 4 shows the
effect of one-year-lagged upside and downside rainfall deviations in Malawi. In Table 4,
the probit and Tobit model 3 show the effect of experiencing irregular rains, while probit
and Tobit model 4 show the effect of experiencing drought or floods.

The results for Malawi indicate that an increase in one-year-lagged rainfall amount is
associated with a decrease in land allocated to CSA in the subsequent year. From Table 3,
if one-year-lagged rainfall increases by 100 mm, households are likely to reduce the land
allocated to CSA by 1 percentage point, as shown in probit 3 results, while reducing
the area under CSA by 0.01 ha, as assessed in Tobit 3 model results. Intuitively, this
implies that a decrease in one-year-lagged rainfall amount should increase land allocated
to CSA technologies. Assessing the upside and downside deviation variables, probit
model 3 presents a positive and significant effect of both downside rainfall deviation (more
associated with drought) and upside rainfall deviation (mores associated with floods)
on land allocated to CSA technologies. The observed magnitude effect is too small for
economic impact, as evidenced by there being no significant effect in the Tobit model.

These rainfall results imply that households that experience climate shocks are likely to
allocate land to CSA technologies in the subsequent year but not likely to increase the extent
of land allocation in Malawi. In Uganda, the results show no significant effect, but the
observed signs are negative for drought and positive for floods. With the observed effects,
we partly reject hypothesis H4 and conclude that observed effects can be context-specific,
as explained further below.

The CSA profile for Uganda indicates that 25 percent of cropped land is under root
crops, while 17 percent is under banana production, cereals (maize, sorghum, millet, rice)
take up 32 percent, and livestock is key in the country [17]. This diversity in crop production
and the focus on perennial crops and livestock production in Uganda is different from
Malawi, where almost 80 percent of the land is under annual maize production. This could
be linked to the results presented in Table 4, where we observe a significant effect of owning
livestock in Uganda but not in Malawi. Using the total livestock units to household labour
ratio, we note that more livestock compared to household labour is associated with reduced
agricultural land area allocated to CSA technologies, as expected. The understanding is
that an increase in livestock should increase the availability of manure. However, manure
application can be labour-intensive; hence, households with low labour are constrained in
using manure in the field compared to using the manure for other uses such as producing
biogas if the system is established. Therefore, future analysis can focus on climate-smart
technologies under livestock manure management (biogas production) as an adaptation
measure and changes in land allocated to climate-smart technologies under perennial
crops. Apart from assessing the household context, the study also assessed the country
policy context and scaling up of CSA technologies, as specified in objective 4 and as
discussed below.

Objective 4: Institutional and policy strategies to promote the scaling of CSA practices
Table 5 summarizes the CSA technologies or practices and shows the possible impact

on food security (FS), adaptation (AD), and mitigation (MI), in line with the FAO climate-
smart agriculture resource book [29]. Based on this categorization, Tables 6–8 summarize
the CSA-related objectives of agriculture policy and National Adaptation Plans in Uganda,
Kenya, and Malawi. From the tables, the numbers in brackets with slashes represent the
order number of CSA practices by sector (integers), management objectives within the
sectors (one decimal place), and practices within management objectives (two decimal
places). Figure 10 further summarizes the CSA objectives and shows the overall expected
impact areas of CSA policies in the three countries.
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Table 5. Climate-smart agriculture practices and their potential highest impact on food security
(blue), adaptation (green), and mitigation (orange).

Sector Management Objective Practices Highest Impact

Crop [1] Conventional breeding (e.g., dual-purpose crops, high-yielding
crops) [1.1.1]Improved crop

varieties [1.1] Modern biotechnology and genetic engineering (e.g.,
genetically modified stress-tolerant crops) [1.1.2]

Conservation agriculture [1.2.1]

Integrated pest and weed management [1.2.2]

Landscape pollination management [1.2.3]

Improved crop
management [1.2]

Organic agriculture [1.2.4]

Crop residue
management [1.3] No-till/minimum tillage; cover cropping; mulching [1.3.1]

Soil [2] Nutrient management
[2.1]

Composting; appropriate fertilizer and manure use; precision
farming [2.1.1]

Soil management [2.2] Crop rotations, fallowing (green manures), intercropping with
leguminous plants, conservation tillage [2.2.1]

Water [3] Supplemental irrigation/water harvesting [3.1.1]

Irrigation techniques to maximize water use (amount, timing,
technology) [3.1.2]

Water use efficiency and
management [3.1]

Modification of cropping calendar [3.1.3]

Livestock [4] Improving feed quality: diet supplementation; low-cost fodder
conservation technologies [4.1.1]Improved feed

management [4.1]
Improved grass species [4.1.2]

Altering integration
within the system [4.2]

Alteration of animal species and breeds; the crop–livestock and
crop–pasture ratios [4.2.1]

Livestock management
[4.3] Improved breeds and species (e.g., heat-tolerant breeds) [4.3.1]

Infrastructure adaptation measures (e.g., housing, shade) [4.3.2]

Animal disease and health [4.3.3]

Adjust stocking densities to feed availability [4.4.1]Grazing management
[4.4] Rotational grazing [4.4.2]

Anaerobic digesters for biogas and fertilizer [4.5.1]
Manure management

[4.5] Composting; improved manure handling and storage (e.g.,
covering manure heaps); application techniques [4.5.2]

Total number of practices FS: 14, AD: 20, MI: 7

According to Table 6, adaptation to climate change was the main target of CSA policies
in Uganda, with 15 practices, accounting for 65% of adaptation practices. Food security was
the second-most-targeted, with 10 practices accounting for 55% of food security practices,
while only 5 mitigation practices were targeted, accounting for 57% of mitigation practices.
Observations in [38] identified adaptation practices as the best option to reduce the negative
impact of climate change on agriculture. The need to design efficient adaptation measures
is even more critical, because agriculture is the main source of livelihood for about 80% of
the rural population [19].
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Table 6. Target practices and expected area of impact of climate-smart agriculture policies for Uganda.

Sector Description of Country-Level Policies CSA Practice Target Expected Impact

Crop
Promote highly adaptive and productive crop

varieties and cultivars in drought-prone, flood-prone,
and rainfed crop farming systems

[1.1.1]
[1.1.2]

FS, AD
FS, AD

Crop Promote conservation agriculture and ecologically
compatible cropping systems [1.1.3] AD

Water Promote water harvesting and irrigation farming [3.1.1] FS, AD

Crop
Promote agricultural diversification and improved

postharvest handling, storage, value addition,
and marketing

[1.2.1] AD

Livestock Promote highly adaptive and productive
livestock breeds [4.3.1] AD, MI

Livestock

Promote technologies for improved livestock
feeds/feeding and sustainable management of

rangelands and pastures through integrated
rangeland management

[4.1.1]
[4.1.2]
[4.4.1]

FS, AD, MI
FS, AD, MI
FS, AD, MI

Livestock Promote sustainable animal health
management systems [4.3.3] FS, AD

Livestock
Encourage and promotion of dry season livestock
feeding through pasture preservation and other

feeding practices
[4.1.1] FS, AD, MI

Livestock
Provide vaccination services for animal vector disease

control, stock vaccines, and essential drugs for all
notifiable diseases

[4.3.3] FS, AD

Crop Strengthen capacity for pest, weed, disease, and
vermin control at all levels [1.2.2] AD

Water
Support development and sustainable use,

management, and maintenance of water and land
resources for agriculture

[3.1.1]
[3.1.2]

FS, AD
FS, AD

Total score FS: 11 (7/14), AD: 15 (13/20), MI: 5 (4/7)
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Table 7. Target practices and expected area of impact of climate-smart agriculture policies for Kenya.

Sector Description of Country-Level Policies CSA Practice Target Expected Impact

Crop and Livestock

Promote crop varieties, livestock and fish
breeds, and tree species that are adapted
to varied weather conditions and tolerant
to associated emerging pests and diseases

[1.1.1]
[1.1.2]
[4.3.1]

FS, AD
FS, AD
AD, MI

All Promote sustainable management and
utilization of natural resources

[1.2.1]
[2.1.1]
[3.1.1]
[3.1.2]
[4.4.1]
[4.4.2]

AD
FS

FS, AD
FS, AD

FS, AD, MI
AD, MI

Water

Promote water harvesting and storage,
irrigation infrastructure

development, and
efficient water use

[3.1.1]
[3.1.2]

FS, AD
FS, AD

Crop and Livestock

Promote and support conservation and
propagation of germplasm of

species with
adaptive capacity

[1.1.1]
[1.1.2]
[4.2.1]

FS, AD
FS, AD

AD

Livestock
Reduce the rate of emissions from

livestock (manure and enteric
fermentation)

[4.5.1]
[4.5.2]

FS, AD, MI
FS, MI

Total score FS: 12 (8/14), AD: 14 (10/20), MI: 5 (5/7)

Table 8. Target practices and expected area of impact of climate-smart agriculture policies for Malawi.

Sector Description of
Country-Level Policies CSA Practice Target Expected Impact

Crop and Livestock

Facilitate access to
high-quality farm inputs,
including inorganic and

organic fertilizer, improved
seed and livestock breeds, and

fish fingerlings

[1.1.1]
[1.1.2]
[1.2.4]
[4.2.1]

FS, AD
FS, AD

AD
AD

All

Promote investments in
climate-smart agriculture and

sustainable land and water
management

[1.2.1]
[2.1.1]
[3.1.1]
[3.1.2]
[4.4.1]
[4.4.2]

AD
FS

FS, AD
FS, AD

FS, AD, MI
AD, MI

Crop and Livestock

Provide incentives to farmers
to diversify their crop,
livestock, and fisheries

production and utilization

[1.1.1]
[1.1.2]
[4.3.1]

FS, AD
FS, AD
AD, MI

Water
Promote efficient and

sustainable use of water in all
irrigation schemes

[3.1.1]
[3.1.2]

FS, AD
FS, AD

Total score FS: 11 (8/14), AD: 14 (6/20), MI: 3 (3/7)

In Kenya, adaptation (14 measures) was the main target of CSA policies, although
only 50% of adaptation practices were targeted, as presented in Table 7. This is motivated
by the large proportion of the rural population depending on agriculture as a source of
livelihood [16]. On the other hand, there were fewer practices targeting food security (12
practices), but more diversity of FS practices was mentioned (57%). More than 71% of
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mitigation practices were targeted in the Kenya CSA policies (Table 7). According to the
Kenya Climate Smart Agriculture Strategy 2017–2026 [39], the high emphasis on mitigation
measures for Kenya could have been motivated by the high contribution of the agricultural
sector to greenhouse gas emissions in the country, estimated at 67% of total GHG emissions.

Climate-smart agriculture policies for Malawi also targeted more adaptation practices
(14) than food security (11) and mitigation (3) practices, as shown in Table 8. Like in Kenya
and Uganda, this could be motivated by the fact that most of the rural population rely
on agriculture as a source of livelihood [16]. However, policies in Malawi targeted more
distinct food security (57%) and mitigation (43%) practices than adaptation (30%) practices,
as shown in Table 8. The pre-eminence of food security in Malawi’s CSA policies seems
to be motivated by the government goal to achieve increased productivity for crops and
livestock as well as agricultural GDP in the country. Malawi continues to implement the
nationwide agricultural input subsidy program that targets smallholder farmers with a
minimum amount of hybrid maize or legume seed and livestock plus one 50 Kg bag of both
basal and top-dressing fertiliser. The observation that such use of inorganic fertiliser can
have a negative impact on soil health [12,40] could be the reason why policies in Malawi
are promoting mitigation for increased sustainable production to achieve food security [41].

According to Figure 10, the overall assessment indicates that Kenya had the highest
weighted score for policies targeting mitigation of climate change (0.71), while Uganda
scored highest for adaptation to climate change (0.65). Kenya and Malawi both had the
highest score (0.57) for food security.

6. Conclusions

We assessed the intertemporal and spatial changes in anthropogenic (human-related)
decisions to allocate land to a basket of CSA technologies in SSA. We also analysed the
influence of the policy context in promoting the scaling of CSA practices. Our data were
from Malawi, Kenya, and Uganda. We used both the quantitative national household-level
data and qualitative policy-related data to respond to our objectives. Overall trends of
land use in the study area show that in the past decade, agriculture and forest land have
been increasing and decreasing, respectively. At the same time, the area under irrigation
has been increasing, although at a low rate with regards to the total area under irrigation
against the total agricultural area across the countries. At the household level, the average
number of households allocating land and the extent of land allocation to a basket of CSA
technologies has been fluctuating, but with an overall negative trend in the recent past. Our
results show that the increase in owned land is positively associated with allocating more
land to CSA. However, for rented-in land, increasing land is also associated with increased
use of CSA technologies where land scarcity is high, but where land rental markets are not
active, rented land indicated a negative association, although this was not significant.

Regarding adaptation, a one-year-lagged rainfall amount is associated with a decrease
in land allocated to CSA in the subsequent year. A shock, such as a downside or upside
rainfall deviation (associated with drought or flood), is likely to increase the number of
households using CSA technologies but not the extent of agricultural land allocated to
CSA. However, these results are context-specific. The differences in the policy emphasis
on either adaptation, mitigation, or food security further show how different countries
are promoting CSA technologies. Our analysis shows that in Kenya, CSA-related policies
emphasize mitigation and food security, while in Uganda, the emphasis is on adaptation,
and in Malawi, the emphasis is on food security.

Therefore, apart from promoting utilization of the different CSA technologies, agri-
cultural policies in Sub-Saharan Africa (SSA) should also focus on access to land and the
extent to which land allocation decisions are influencing the household decisions to allocate
agricultural land to CSA technologies and practices across space and over time. This should
promote resource-efficient production, especially among smallholder farmers. In addition
to assessing access to land, future studies can assess differentiated impacts of land owner-
ship and CSA adoption decision. For instance, this can include various characteristics such
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as gender, experience, education, crops, and ecological zones. Regarding adaptation, future
studies can also look at temperature variations in addition to rainfall variations.
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Appendix A

Table A1. Estimated coefficients from Probit and Tobit Models for CSA dummy and Total area allocated to CSA in Malawi.

Estimated Coefficients in Malawi

Variables Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

Key Variables
Rent-in dummy 0.63 **** 0.63 **** 0.71 **** 0.73 **** 0.30 **** 0.29 **** 0.33 **** 0.33 ****

(0.09) (0.09) (0.09) (0.09) (0.04) (0.04) (0.04) (0.04)
One-year-lag Rainfall (per 100 mm) −0.05 *** −0.05 *** −0.03 *** −0.04 ****

(0.02) (0.02) (0.01) (0.01)
Upside rainfall deviation (dm) 0.00 0.01 ** −0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Downside rainfall deviation (dm) 0.00 0.02 **** −0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Owned land (GPS measured—ha) 0.71 **** 0.72 **** 0.30 **** 0.30 ****

(0.09) (0.09) (0.01) (0.01)
Control Variables −0.08 −0.10 −0.07 ** −0.08 **

Sex of household head (0.07) (0.07) (0.04) (0.04)
0.00 0.00 0.00 **** 0.00 ****

Age of household head (0.00) (0.00) (0.00) (0.00)
−0.01 * −0.01 * −0.01 ** −0.01 **

Education of household head (0.01) (0.01) (0.00) (0.00)
−0.29 ** −0.30 ** −0.10 −0.10

Share of male labour out of total labour (0.14) (0.14) (0.07) (0.07)
0.13 * 0.12 * 0.06 **** 0.07 ****

Household size (0.07) (0.07) (0.02) (0.02)
0.07 0.06 0.00 0.00

TLU per labour ratio (0.05) (0.05) (0.00) (0.00)
0.01 **** 0.01 **** 0.01 **** 0.01 ****

One-year-lag TLU per labour ratio (0.00) (0.00) (0.00) (0.00)
0.01 0.01 0.03 **** 0.02 ****

Distance to urban centre (0.01) (0.01) (0.01) (0.01)
−0.03 −0.03 −0.04 *** −0.04 ***

Household size per labour ratio (0.03) (0.03) (0.02) (0.02)
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Table A1. Cont.

Estimated Coefficients in Malawi

Variables Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

−0.27 **** −0.28 **** −0.12 **** −0.12 ****
Capital asset index (0.04) (0.04) (0.02) (0.02)

(0.04) (0.04) (0.02) (0.02)
Base Year (2013)
2016 panel year 0.32 **** 0.23 **** 0.30 **** 0.22 **** 0.14 **** 0.08 *** 0.13 **** 0.08 **

(0.06) (0.06) (0.06) (0.06) (0.03) (0.03) (0.03) (0.03)
2019 panel year 0.16 *** 0.15 *** 0.25 **** 0.23 **** 0.01 0.01 0.08 *** 0.07 **

(0.05) (0.05) (0.06) (0.06) (0.03) (0.03) (0.03) (0.03)
Constant 0.16 −0.26 **** −0.22 −0.71 **** 0.09 −0.10 *** −0.26 ** −0.56 ****

(0.15) (0.06) (0.21) (0.17) (0.08) (0.03) (0.10) (0.08)
lnsig2u −0.25 ** −0.24 ** −0.99 **** −1.02 ****

(0.10) (0.10) (0.15) (0.16)
sigma_u 0.54 **** 0.54 **** 0.32 **** 0.33 ****

(0.02) (0.02) (0.02) (0.02)
sigma_e 0.62 **** 0.62 **** 0.60 **** 0.60 ****

(0.01) (0.01) (0.01) (0.01)

Panel households 1439 1439 1439 1439 1439 1439 1439 1439
Left censored (_n) 2193 2193 2193 2193
Uncensored (_n) 2124 2124 2124 2124

Observations 4317 4317 4317 4317 4317 4317 4317 4317

Robust standard errors in parentheses **** p < 0.001, *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A2. Estimated coefficients from Probit and Tobit Models for CSA dummy and Total area allocated to CSA in Uganda.

Estimated Coefficients in Uganda

Variables Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

Key Variables
Rent-in dummy (1 = Yes) −0.07 −0.07 −0.09 −0.09 −0.08 −0.09 −0.11 −0.12

(0.15) (0.15) (0.15) (0.15) (0.20) (0.20) (0.19) (0.20)
Irregular rains (1 = Yes) 0.01 0.02 −0.01 −0.00

(0.18) (0.18) (0.22) (0.22)
Drought (1 = Yes) −0.10 −0.06 −0.14 −0.10

(0.14) (0.14) (0.17) (0.17)
Floods (1 = Yes) 0.10 0.16 0.06 0.14

(0.20) (0.20) (0.26) (0.25)
Owned land (Self-reported ha) 0.02 0.02 0.04 0.04

(0.03) (0.03) (0.05) (0.04)
Control Variables

Sex of household head (1 = Female) 0.01 0.01 −0.01 −0.02
(0.16) (0.17) (0.21) (0.21)

Age of household head 0.00 −0.00 −0.00 −0.00
(0.00) (0.00) (0.01) (0.01)

Education of household head −0.02 −0.02 −0.02 −0.02
(0.02) (0.02) (0.02) (0.02)

Share of male to total labour −0.32 −0.33 −0.33 −0.34
(0.33) (0.34) (0.43) (0.43)

Total livestock unit to labour ratio −0.27 ** −0.27 ** −0.35 ** −0.35 **
(0.12) (0.12) (0.16) (0.16)

One-year-lag TLU to labour ratio 0.17 0.18 0.20 0.20
(0.15) (0.15) (0.21) (0.21)

Urban (1 = Rural) 0.63 ** 0.64 ** 0.77 * 0.79 **
(0.30) (0.29) (0.40) (0.40)

Household-to-labour ratio −0.09 −0.09 −0.06 −0.06
(0.10) (0.09) (0.17) (0.17)

Capital asset index 0.25 *** 0.25 *** 0.33 *** 0.33 ***
(0.09) (0.10) (0.11) (0.11)

Base Year (2019)
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Table A2. Cont.

Estimated Coefficients in Uganda

Variables Parsimonious Models Models with Control Variables Parsimonious Models Models with Control Variables
Probit1 Probit2 Probit3 Probit4 Tobit1 Tobit2 Tobit3 Tobit4

2020 panel year 1.10 **** 1.08 **** 1.25 **** 1.24 **** 1.33 **** 1.31 **** 1.46 **** 1.43 ****
(0.19) (0.19) (0.24) (0.24) (0.22) (0.22) (0.24) (0.24)

Constant −1.97 **** −1.93 **** −2.19 **** −2.14 **** −2.51 **** −2.44 **** −2.72 **** −2.65 ****
(0.24) (0.25) (0.56) (0.55) (0.30) (0.31) (0.73) (0.73)

lnsig2u −4.18 −3.71 −11.34 −13.90
(12.87) (8.31) (17,807.10) (232,114.49)

sigma_u 0.49 * 0.50 * 0.33 0.34
(0.27) (0.27) (0.39) (0.37)

sigma_e 1.22 **** 1.22 **** 1.22 **** 1.22 ****
(0.16) (0.16) (0.15) (0.15)

Number of hhid_2019 407 407 407 407 407 407 407 407
Left censored (_n) 727 727 727 727
Uncensored (_n) 87 87 87 87

Observations 814 814 814 814 814 814 814 814

Robust standard errors in parentheses **** p < 0.001, *** p < 0.01, ** p < 0.05, * p < 0.1.
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