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Abstract: The introduction of 4D printing has revolutionized the concept of additive manufacturing;
it is a promising technology that can bring immense advantages over classical production and
manufacturing techniques, such as achieving programmed time-varying structures and consequently
reducing production time and costs. The rise of 4D technology is considered an evolution of 3D
printing due to the introduction of the fourth dimension: time. This is possible thanks to intelligent
materials that can morph into programmed shapes in response to environmental stimuli, such as
temperature, humidity, water, and light. When appropriately combined, these properties open the
door to numerous applications in the engineering industry. This paper aims to provide information on
the shape-memory effect (SME). To this scope, exploiting an already verified methodology available
in the literature, a programmed flexural deformation were analyzed, experimentally changing the
geometric parameters constituting the specimens. Experimental data were then processed to derive
equations linking curvature to various independent parameters (such as temperature and time)
through a quadratic and linear combination of the variables. This study contributes to a better
understanding of current 4D-printing concepts through a mathematical characterization of the SME
and its dependencies. In the study of the SME, such a complete methodological approach (analytical,
experimental, and numerical) is a first step towards the design of more complex, bio-inspired
components that could bring, in the coming years, development of passive sensors characterized by a
combination of geometric properties that exploit a wider SME operating range to detect any variation
of a physical quantity.

Keywords: 4D printing; shape-memory polymers; bioplastics; composite material; geometric
parameters; sensors; sustainability

1. Introduction

Recent advances in 3D-printed sensors have opened new markets in various applica-
tions. These sensors can measure properties such as pressure, humidity, temperature, force,
and displacement. Advanced 3D materials are enabling the industry to rapidly design and
produce reliable, accurate, and cost-effective sensors to meet the needs of the food and phar-
maceutical industry, environmental monitoring and biomedical applications, renewable
energy, and robotics [1]. Primarily, sensors can be classified as active and passive sensors.
Active sensors require an energy source to detect changes in the physical environment.
Passive sensors receive energy from the outside or are stimulated by interactions with their
surroundings [1]. Additive manufacturing was initially developed for rapid prototyping;
nonetheless, the development and the investigation of these technologies and advanced
materials (as smart materials) has enabled a rapid transition to 3D-printed sensing material
systems [2,3]. Numerous active and passive sensors have been fabricated through additive
manufacturing and are used in various industrial applications, e.g., in consumer electronics,
automotive, IT, and telecommunications [4–7].
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Active sensors: A wide range of active sensors have been realized; for example, in
Saari et al., 2016 [8], fiber encapsulation additive manufacturing (FEAM) and thermo-
plastic elastomer additive manufacturing (TEAM) were combined to create a capacitive
force sensor. The sensor consists of a 3D-printed rigid structure with wires embedded
in a spiral pattern that emulates a flat-plate capacitor and thermoplastic helix, achieving
a near-linear response of (emulated) capacitance change compared to the applied load.
In Hong et al., 2019 [9,10], a pressure sensor was proposed, based on a fiber Bragg grat-
ing (FBG), manufactured using the FDMTM technique, i.e., through this technique, the
structure of an FBG sensor was realized successfully by incorporating it into PLA with-
out sacrificing sensing performance compared to commercial sensors. Another relevant
example is described by Kwok et al., 2017 [11], who proposed the fabrication, characteri-
zation, stress testing, and application of a low-cost thermoplastic conductive composite
that has been transformed into filament for 3D printing. They then prototyped a plastic
thermometer to highlight the potential for sensing applications using this new filament. In
Maurizi et al., 2019, FDMTM 3D-printed embedded strain sensors were proven to perform
dynamic measurements under cyclic loading conditions [12]. These listed are only a few
examples of active sensors that can be realized by additive manufacturing; however, as
can be seen, they require components outside 3D production and sometimes even complex
combination procedures. Some examples of passive sensors are therefore listed below.

Passive sensors: Unlike active sensors, passive sensors made by additive manufactur-
ing do not use commercially available electronic cores and do not involve any power supply,
thus making them highly innovative and more complex to design. For instance, given
the complex requirements of gas monitoring under harsh conditions, Zhou et al., 2020 [13]
presented a study on body-centered periodical mullite-based ammonia sensors fabricated
by 3D printing for highly reliable ammonia detection; through ceramic lattice structures
with a deposition of polyaniline mixed with Ag nanoparticles, the sensors achieved excel-
lent mechanical performance, ensuring stable operation under stress. Kisic et al., 2020 [14]
conducted an additive manufacturing study to realize a low-cost force sensor. The pro-
posed sensor consists of an inductor, an elastic spacer, and a smooth ferrite plate. Both the
inductor and spacer were additively manufactured, while commercially available ferrite
material was used as the magnetic part of the sensor. The operating principle of the sensor
is based on inductance variations, and the proposed sensor was designed, fabricated, and
finally characterized over a force range of 0 to 2 N. A final exciting result that is reported
is proposed in Dharmarwardana et al., 2018 [15]; they carried out in-depth analyses of
organic crystals such as naphthalene crystals associated with homopolymer organic fila-
ments that can be combined with 3D printing to make temperature sensors by exploiting
the thermochromic properties of the crystals.

A 4D-printing technology overview: The proposed examples show the difficulty and
complexity of combining appropriate materials with printing techniques to create reactive
components such as active and passive sensors. This article proposes using 4D printing to
make simple passive sensors, as 4D printing adds the time dimension to the 3D-printing
process by exploiting the shape-memory effect (SME), which allows the programmed
deformation of manufactured components. This will provide vitality to the design of shape-
memory materials (e.g., PLA), using an external stimulus (such as heat and humidity)
to trigger the object’s transformation into another programmed structure. In detail, 4D
printing is a combination of four primary variables: the type of technology used for printing
(e.g., fused deposition modeling or stereolithography), the chosen material, the stimulus
applied, and the programming parameters (such as the one-way or two-way SME). The
right combination of these four parameters makes it possible to obtain 4D components with
entirely different properties which can be used in various sectors and for different types of
applications [15–24]. Different papers inspired this research; for example, in the work of
Yu et al., 2020 [25] and van Manen et al., 2017 [15], thermal stress-induced deformations
were analyzed for PLA components and carbon fibers composite PLA parts obtained from
3D printers to evaluate the variation of the SME. Based on this analysis, the authors then
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proposed self-assembling structures for various applications. Bodaghi et al., 2019 [26]
proposed the design and analysis of complex structures with self-morphing characteristics
using 4D-printing technology, exploiting an FEA tool to replicate their thermo-mechanical
behaviors. This literature highlights that 4D printing is an accessible technology with
high potential in manufacturing various engineering components, such as safety devices,
programmable structures, actuators, and sensors.

Research Objectives and Structure of the Paper

The present work is a natural continuation of the work presented in
Cesarano et al., 2022 [27], which aimed to find a suitable experimental method to study the
SME associated with viscoelastic behavior by analyzing the response of the smart material
to a homogeneous thermal increase stimulus through various time–temperature combina-
tions and different programming parameters. The smart material was the PLA, and the
additive manufacturing technology was the FDMTM . Consequently, this study aims to
exploit the one-way SME phenomenon to achieve controllable and programmable bending
deformation modifying temperature (selected stimulus), time, and geometric parameters.
In detail, after the introduction (Section 1) and a brief overview of the materials and method
adopted (Section 2), the results and discussion (Section 3) show the flexural curvatures
obtained from programmed 4D-printing processes as the programming parameters change.
These numerical results are then combined to analyze the curvature dependency, which
is the result of the SME, in relation to all the considered parameters. This preliminary
study has also been conducted to lay a mathematical/analytical foundation to describe the
shape-memory effect (of the PLA in this case) on which this technology is based. Indeed,
experimental demonstrations and concepts of various kinds that give insight into the hid-
den potential of 4D printing are widely present in the literature; however, there are no data
collections through a large number of experiments, which can lead precisely to inherent
mathematical considerations, as in this research. A final important objective of the study is
to highlight the possible applicability of SMPs that will be materials for engineered compo-
nents that exploit SME specifically. As shown in previous research [17,25], this technology
could be applied to the realization of self-assembling structures and thus conceptually to
actuators. However, a more immediate field of application, not at all currently associated
with 4D printing, is the sensor industry, which would match well with the properties of
biopolymers such as PLA [28,29].

2. Materials and Methods

In this work, test specimens made of PLA were fabricated using an FDMTM Prusa
MK3S 3D printer. Using a gravitational convection oven (Fisherbrand), the test specimens
were then subjected to a homogeneous thermal stimulus to trigger the SME. More in
detail, bi-layer plates with a rectilinear fill pattern were used as test specimens, with fibers
arranged at 0◦ for one layer (along the most extended specimen dimension) and 90◦ for the
other layer to achieve flexural deformation (reference specimen) [17,25]. The test specimens,
with a reference size of 50 × 10 × 0.4 mm and a fill density of 100%, were placed into
the oven only after it reached the target set temperatures (i.e., 60 ◦C, 70 ◦C, and 80 ◦C,
respectively) and they were kept at that set temperature for a few minutes (i.e., 3 min, 5 min,
and 10 min). This method was extensively validated and chosen to avoid high deformations
caused by too-long exposure times. In fact, from preliminary tests, it was observed that
high deformations were visible when specimens were exposed to a thermal increase from
room temperature to the target temperature, due to their viscoelastic behavior. The selected
method has allowed a wider range of results to be compared too [27]. For more details on
the printing and testing parameters, the reader is referred to Cesarano et al., 2022 [27]. In
total, 180 specimens suitable for the various experimental combinations were produced
and analyzed to carry out this study. To validate the experimental results, each experiment
was repeated three times, varying the selected geometric parameters under each time–
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temperature combination. The following Equation (1) was used to calculate the flexural
curvature (κ) and to measure and catalogue the obtained curvatures during the experiments:

κ =
(

2sin
[
tan−1(δ/x)

])
/
√

x2 + δ2 (1)

where δ is the maximum deflection obtained from the bending acting on the component, and
x is the abscissa to which the maximum deflection corresponds. Lastly, taking advantage
of this, curve- and surface-fitting tools were used to analyze and combine all the results
obtained (Figure 1).

Figure 1. Outline of the experimental and analysis process (One-way SME + curve fitting).

3. Results and Discussion

The focus of the present research is on the analysis of the curvature variation with
variation in the geometrical and printing parameters of the test specimens. The parameters
concerned are the fill angle, the fill density, the thickness of each layer, and the total
thickness of the specimen.

3.1. Fill-Angle Variation

The first geometrical parameter analyzed was the fill angle; therefore, the samples
used had constant thickness (in total 0.4 mm) and density, and consisted of two layers with
a density of 100% and a thickness of 0.2 mm per layer. Figure 2 shows the three types of
layers used for this analysis; in detail, three specimens (a, b, and c) are shown with the
following fill angles for the first and second layer: 0–45◦, 0–60◦, and 0–90◦.

Figure 2. Fill-angle variation. (a) 0–45◦; (b) 0–60◦; (c) 0–90◦.

Subsequently, the printed samples were subjected to the target temperatures (60 ◦C,
70 ◦C, and 80 ◦C) for a predetermined exposure time (3 and 5 min). Figure 3 shows the vari-
ous samples subjected to different temperatures (first column = 60 ◦C;
second column = 70 ◦C; third column = 80 ◦C) at exposure times of 3 (Figure 3a) and
5 min (Figure 3b). In both cases, up to a temperature of 70 ◦C, the deformation of the
various specimens could be considered with good approximation to be exclusively flexu-
ral. At 80 ◦C, torsional deformation started to become more evident, as expected [17,25].
Probably, at 80 ◦C the complete release of the residual stresses took place and consequently
the difference in ultimate deformation between the various specimens was more evident.
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For example, the specimen with fibers arranged at 0◦ and 60◦ was the one that underwent
greater torsional deformation, to the detriment of flexural deformation; in the specimen
with fibers arranged at 0◦ and 90◦, there was no torsional deformation, as already seen;
finally, the one with fibers at 0◦ and 45◦ could be considered a combination of the two
(Figure 3, top row). As studied in the literature [25], the torsional effect can be amplified by
considering a constraint layer with fibers arranged at 90◦ and an actuation layer with fibers
arranged at 45◦. Table 1 shows the curvature values calculated with the geometric equation
presented in the previous paragraph (Equation (1)).

Figure 3. Fill-angle variation (0–45◦ top, 0–60◦ center, 0–90◦ bottom row of the illustration). (a) 3 min;
(b) 5 min.

Table 1. Curvature–fill-angle (FA) variation depending on the exposure time and temperature.

Temperature T = 60 ◦C T = 70 ◦C T = 80 ◦C
Curvature (FA; Time) Values

κ (0–45◦; t = 3 min) 0.0024 0.0301 0.0434
κ (0–60◦; t = 3 min) 0.0024 0.0256 0.0410
κ (0–90◦; t = 3 min) 0.0029 0.0249 0.0471
κ (0–45◦; t = 5 min) 0.0233 0.0319 0.0570
κ (0–60◦; t = 5 min) 0.0214 0.0364 0.0486
κ (0–90◦; t = 5 min) 0.0098 0.0311 0.0587

Hence, as can be seen from Figure 3 and Table 1, the curvature results show that twisted
specimens exhibited a lower final bending curvature than the standard 0–90◦ specimen for
high temperatures, while for temperatures close to the glass transition temperature, the
0–45◦ and 0–60◦ specimens exhibited higher curvature. This result may give a qualitative
understanding that by exploiting different fill angles, a higher sensitivity of SME activation
can be obtained. The variation of the fill angle was useful to show once again the presence
of the shape-memory effect, depending on the initial programming of the specimen.

Due to the presence of torsional deformations, the validity of the geometric formula (1)
derived from the bi-material strip theory [27] for calculating flexural curvature was com-
promised. Therefore, given the risk of noncomparability, it was decided not to investigate
it further, limiting the number of experiments and not performing them for the 10 min
exposure time (Figure 4).

3.2. Thickness Variation

The second parameter studied was the specimen thickness. Specimens with a filling
density of 100%, with fibers arranged at 0◦ and 90◦, with three different thicknesses, i.e.,
0.2 mm, 0.4 mm, and 0.6 mm, were considered, with the two layers having the same thick-
ness. As in the previous case, the same experimental method was used (each experiment
was repeated three times); Figure 5 shows the various samples subjected to different tem-
peratures (first column = 60 ◦C; second column = 70 ◦C; third column = 80 ◦C) at exposure
times of 3 (Figure 5a), 5 (Figure 5b), and 10 min (Figure 5c).



Sustainability 2022, 14, 14788 6 of 15

Figure 4. Curvature–temperature plot for fill-angle variation (0–45◦ blue; 0–60◦ green; 0–90◦ red) for
(a) 3 and (b) 5 min.

Figure 5. Experiment: thickness variation (0.2 mm—top, 0.4 mm—center, and 0.6 mm—bottom).
(a) 3 min; (b) 5 min; (c) 10 min.

In Figure 5, there is a high increase in curvature as the thickness decreases; however,
it can also be seen that the specimens with a total thickness of 0.2 mm (first row) for high
time–temperature values (e.g., 10 min at 80 ◦C) show irregularities in the final shape. This
finding suggested the possibility of a critical thickness condition, such that the combination
of stresses due to SME and viscoelastic behavior caused local failure. As a result, the
programmed deformation is not obtained but instead a component to be discarded. Table 2
reports the average curvature values obtained in all experiments, and the associated
standard deviation (SD) values. The curvature–temperature diagrams for each exposure
time analyzed are shown in Figure 6.

Table 2. Curvatures (mean values) and standard deviation—thickness (TK) variation depending on
the exposure time and temperature.

Temperature T = 60 ◦C T = 70 ◦C T = 80 ◦C
Curvature (TK.; Time) ± SD Values

κ (0.2; t = 3 min) ± σ 0.0093 ± 0.0018 0.0761 ± 0.0004 0.0913 ± 0.0008
κ (0.4; t = 3 min) ± σ 0.0029 ± 0.0004 0.0248 ± 0.0012 0.0470 ± 0.0013
κ (0.6; t = 3 min) ± σ 0.0006 ± 0.0003 0.0146 ± 0.0019 0.0251 ± 0.0016
κ (0.2; t = 5 min) ± σ 0.0264 ± 0.0006 0.0803 ± 0.0007 0.0976 ± 0.0024
κ (0.4; t = 5 min) ± σ 0.0097 ± 0.0013 0.0311 ± 0.0032 0.0587 ± 0.0034
κ (0.6; t = 5 min) ± σ 0.0046 ± 0.0013 0.0178 ± 0.0005 0.0344 ± 0.0027

κ (0.2; t = 10 min) ± σ 0.0672 ± 0.0011 0.0882 ± 0.0050 0.0919 ± 0.0011
κ (0.4; t = 10 min) ± σ 0.0165 ± 0.0032 0.0413 ± 0.0056 0.0813 ± 0.0011
κ (0.6; t = 10 min) ± σ 0.0120 ± 0.0006 0.0223 ± 0.0005 0.0561 ± 0.0011
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Figure 6. Curvature–temperature plot for thickness variation (0.6 mm blue; 0.4 mm green; 0.2 mm
red) for (a) 3, (b) 5, and (c) 10 min.

The plots displayed (Figure 6) were obtained by curve fitting using a second-degree
polynomial approximation. This approximation was chosen for several reasons.

First, this best fit works for all curvature–temperature points for any exposure time;
moreover, given its simplicity, it returns a 95% goodness-of-fit rate. The equation that then
approximates any combination of curvature, temperature, and time is as follows:

κ(T) = p1T2 + p2T + p3 (2)

where p1, p2, and p3 are fitting constants, T is the temperature in degrees Celsius, and κ is
the curvature. Due to the simplicity of the equation, however, for each exposure time and
thickness value, there are different fitting constants; consequently, in the following sections,
one of the other examined two variables (thickness and time) is introduced into the fitting
process, and thus into the equation, to continuously assess their variability, resulting in 3D
plots. The following section describes a similar analysis corresponding to the fill-density
variation.

3.3. Fill-Density Variation

The third and last parameter analyzed was the filling density. Two-layer specimens
with fibers arranged at 0◦ and 90◦ were used, with a thickness of 0.2 mm for each layer
(reference specimen). The variation of this parameter was studied by subjecting speci-
mens with different fill densities to the same experiments, keeping them with identical
dimensions between the two layers that make up the specimen. The fill densities were 60%,
80%, and 100%, as shown in Figure 7. A generic sample with 60% fill density is shown in
Figure 8. The analysis is practically identical to the previous one; however, as can be seen
from Figure 9, none of the specimens analyzed deformed irregularly, as in the case of the
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0.2 mm-thick specimen; at the same time, a very pronounced curvature was obtained for a
fill density of 60%.

Figure 7. Fill density = 60% (left), 80% (center), 100% (right).

Figure 8. Generic sample (fill-density variation).

Figure 9. Experiment: FillDensity variation (60%—top, 80%—center, 100%—bottom). (a) 3 min;
(b) 5 min; (c) 10 min.

This is a promising result for optimizing the activation range in relation to time and
temperature because for temperatures close to the glass transition temperature (55 ◦C)
and for low exposure times, greater curvatures are achieved than the thickness variation.
Hence, Figure 9 shows the various samples subjected to different temperatures (first
column = 60 ◦C; second column = 70 ◦C; third column = 80 ◦C) at exposure times of 3
(Figure 9a), 5 (Figure 9b), and 10 min (Figure 9c). As with the previous analysis, Table 3
also reports the results, containing the curvature obtained by the arithmetic mean of
the three experiments’ repetitions, and the associated standard deviation (SD) values.
The curvature–temperature plots for each analyzed exposure time are shown below and
reported in Figure 10.
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Table 3. Curvatures (mean values) and standard deviation—fill-density (FD) variation depending on
the exposure time and temperature.

Temperature T = 60 ◦C T = 70 ◦C T = 80 ◦C
Curvature (FD.; Time) ± SD Values

κ (60%; t = 3 min) ± σ 0.0166 ± 0.0017 0.0831 ± 0.0008 0.0897 ± 0.0020
κ (80%; t = 3 min) ± σ 0.0057 ± 0.0009 0.0480 ± 0.0009 0.0661 ± 0.0028

κ (100%; t = 3 min) ± σ 0.0029 ± 0.0004 0.0281 ± 0.0034 0.0471 ± 0.0013
κ (60%; t = 5 min) ± σ 0.0481 ± 0.0019 0.0907 ± 0.0003 0.0916 ± 0.0007
κ (80%; t = 5 min) ± σ 0.0125 ± 0.0012 0.0545 ± 0.0015 0.0721 ± 0.0007

κ (100%; t = 5 min) ± σ 0.0097 ± 0.0013 0.0311 ± 0.0032 0.0587 ± 0.0034
κ (60%; t = 10 min) ± σ 0.0802 ± 0.0011 0.0892 ± 0.0011 0.0914 ± 0.0006
κ (80%; t = 10 min) ± σ 0.0440 ± 0.0016 0.0673 ± 0.0006 0.0891 ± 0.0005
κ (100%; t = 10 min) ± σ 0.0165 ± 0.0032 0.0413 ± 0.0056 0.0813 ± 0.0011

Figure 10. Curvature–temperature plot of fill-density variation (0.6 mm blue; 0.4 mm green; 0.2 mm
red) for (a) 3, (b) 5, and (c) 10 min.

The plots in Figure 10 were obtained by curve fitting using a second-degree polynomial
approximation with a goodness-of-fit rate of 95%. It is evident from the plots that the
reduction in fill density allows for very pronounced curvature, even for a short exposure
time of 3 min at a temperature of 60 ◦C (close to the glass transition temperature).

In addition, it is important to emphasize that the specimens exhibit pure flexural
deformations without irregularities, unlike the specimens with small thicknesses. The
equation that approximates any combination of curvature, as a function of temperature
and time, as density changes has the same structure as Equation (2). Again, as in the
previous case, due to the simplicity of the equation, for each exposure time and fill-density
value, there are several fitting constants; consequently, in the following section, one of the
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other two variables (fill density and time) is introduced into the fitting process and in the
equation to highlight the variability in 3D plots.

3.4. Surface Fitting

The many numerical results make it possible to deepen the analysis of the data
through a more complete fitting process considering more independent variables. Due to
the complexity at the mathematical level, the step forward that has been taken is to include
the geometric variable within the analysis, thus obtaining an equation that also considers
thickness in one case, and fill density in another.

3.4.1. Thickness Variation (Surface Fitting)

By taking advantage of MATLAB’s curve-fitting toolbox and appropriately group-
ing all the values of the independent variables and the obtained experimental results, it
was possible to create curvature surfaces in space for each selected exposure time and
approximate all the results via a second-degree polynomial function (for consistency with
previous results). Below is an overall plot incorporating the three curvature surfaces (one
per each exposure time) obtained for temperature and thickness variations (Figure 11).
These surfaces are the graphical translation of the following numerical equation derived
from the fitting process:

κ(T, h) = p00 + p10T + p01h + p20T2 + p11Th + p02h2 (3)

where h indicates the thickness, T the air temperature in degrees Celsius, pij the fitting
constants in 2D, and κ the curvature. It is worth mentioning that, as each curvature surface
refers to a different exposure time, it has different 2D fitting constants. In Table 4, the fitting
constants of interest are grouped.

Figure 11. Curvature surface plot depending on the temperature (x-axis), the thickness (y-axis), and
the exposure time (3 min (green), 5 min (red), and 10 min (blue). The colored histogram shows the
numerical value of the curvature ranging from 0 to 0.1.
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Table 4. Fitting constants per each exposure time (thickness variation).

Constants
Time p00 p10 p01 p20 p11 p02

t = 3 min −0.7 0.02 0.16 −9 × 10−5 −0.007 0.28
t = 5 min −0.4 0.01 0.03 −4 × 10−5 −0.005 0.25

t = 10 min 0.2 −0.004 −0.5 3.5 × 10−5 0.002 0.25

All the considerations made in the previous paragraphs can be seen in the 3D graph.
In addition, an analysis of the fitting constants obtained reveals a consistent change in the
material’s behavior when moving from 5 to 10 min of exposure time. The fitting constants
present the same sign for the 3 and 5 min exposure times, and the opposite sign for the
10 min exposure time (except for the last term). The analogous analysis corresponding to
the change in fill density is described below.

3.4.2. Fill-Density Variation (Surface Fitting)

As is the case with thickness variation, the overall graph incorporating the three cur-
vature surfaces (one per exposure time) obtained as temperature and fill-density variation
is shown in Figure 12. Again, the corresponding equation is a polynomial equation of the
second degree, as shown below:

κ(T, ρ) = p00 + p10T + p01ρ + p20T2 + p11Tρ + p02ρ2 (4)

where ρ indicates the fill density. In such a case, it should be noted that the three curvature
surfaces reflect Equation (4), but depending on a different exposure time, they have different
fitting constants.

Figure 12. Curvature surface plot depending on the temperature (x-axis), the fill density (y-axis), and
the exposure time (3 min (green), 5 min (red), and 10 min (blue). The colored histogram shows the
numerical value of the curvature ranging from 0 to 0.1.

In Table 5, the fitting constants of interest are grouped.
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Table 5. Fitting constants per each exposure time (fill-density variation).

Constants
Time p00 p10 p01 p20 p11 p02

t = 3 min −0.95 0.027 −0.026 −1.5 × 10−4 −0.004 0.12
t = 5 min −0.35 0.016 −0.5 −1 × 10−4 −0.001 0.21

t = 10 min 0.44 −0.005 −0.56 0.1 × 10−4 0.007 −0.0034

Compared to the case of thickness variation, the increase in curvature along the fill-
density axis is very evident graphically, suggesting that this is the best parameter to vary
to optimize the SME activation range. Furthermore, the analysis of the fitting constants
obtained reveals a consistent change in the material’s behavior when going from 5 to 10 min
of exposure, just as in the previous case; in fact, the fitting constants present the same sign
for exposure times of 3 and 5 min, and the opposite sign for the 10 min exposure time
(except for the third term). This suggests that the fitting constants numerically depend
on the exposure time. Notwithstanding, this mathematical pattern may suggest that the
combination of the independent variables possesses a non-polynomial time-related term.
The last case similar to the previous ones follows, where the geometric parameters are kept
constant and time as an independent variable is introduced into the equation.

3.4.3. Passive Sensor (Time Variation)

This last case analysis was obtained by testing specimens with fibers arranged at 0◦

and 90◦, with a total thickness of 0.4 mm and a fill density of 60%. The fitting process
for this specimen was investigated in detail as, from the experimental results, it was
the one that allowed the most significant optimization in terms of the SME activation
range without incurring irregular deformations that could compromise the structure. By
assuming constant geometric parameters, the curvature was fitted considering temperature
and time as independent variables. Thus, only one surface resulted from the fitting process,
as shown below in Figure 13. The curvature value for an exposure time of 3 min at 60 ◦C
resulted in being approximately two times that of all other analyzed cases. Moreover, a
decrease in the κ value for an exposure time of 10 min at 80 ◦C was even more evident.
The curvature reduction was probably due to a geometric constraint, since the maximum
deflection cannot increase given the flap contact. However, it is also safe to assume that
there exists a static equilibrium between all the entities involved, as no specimen out of
all those analyzed showed a second generable curvature, regardless of time. As before,
the reference equation is a second-degree polynomial, where, however, the independent
variables are temperature and time (t):

κ(T, t) = p00 + p10T + p01t + p20T2 + p11Tt + p02t2 (5)

In addition, the following Table 6 shows the numerical values of the fitting constants
involved.

Table 6. Fitting constants (time variation).

Constants p00 p10 p01 p20 p11 p02

Value −1.17 0.030 0.042 −0.0001 −0.0004 −0.0006

Compared with the previous cases, these multiplicative numerical constants have less
significance. However, based on the found fitting constants, the quadratic contribution
is smaller than the linear one. This may suggest that the nonlinear terms could be expo-
nential or logarithmic. To fully understand the phenomenon mathematically, one would
probably have to increase the amount of data available and combine all the independent
variables (temperature, time, thickness, fill density, and gravity) into a single characteristic
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numerical equation (not necessarily polynomial). This would allow for the separation of
the contribution of SME and viscoelastic effects.

Figure 13. Curvature surface plot depending on the temperature (x-axis) and the exposure time
variation (y-axis). The colored histogram shows the numerical value of the curvature ranging from 0
to 0.1.

4. Conclusions and Outlooks

Numerous results and considerations regarding material behavior and the shape-
memory effect were obtained through the conducted experiments and analyses on
180 specimens performed in this research. However, by using curve- and surface-fitting
tools for data analysis, the complexity of the problem was even more evident, given a
large number of independent variables involved and the lack of mathematical knowledge
related to SME. However, for the possible applications and feasible devices, such as passive
sensors, the methodology of applied research proved to be the correct way to pursue the
studies. It was ascertained that samples with a filling density of 60%, and a total thick-
ness of 0.4 mm, responded readily to the activation of the shape-memory phenomenon,
showing high flexural curvatures for short exposure times and for temperatures close to
that of the glass transition (55 ◦C). Thereby, through this research, the potential of this new
4D-printing technology and the possible results that can be achieved with more in-depth
future work is understood. To extend this research, it would be fascinating to interpolate
all the experimental results obtained, looking for a link between the independent variables.
Then, a characteristic constant of the SME could be derived, which links all the variables,
and which could depend on the amount of PLA used to produce the component itself.
All this could lead to an understanding about the amount of residual stress generated
during the printing process. Continuing in this direction, through more excellent computer
support, the development of a complete prediction of deformations (via FEA), and the
implementation of the possibility of cyclic recovery of one’s form, one could easily asso-
ciate this technology with various fields of engineering application. The goal, given the
high potential, could be the development of bio-based passive sensors that do not require
external (electronic) components and reduce material waste and environmental impact due
to the minimization of the number of components and the biodegradability of the PLA.
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