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Abstract: The ability of farmers to acquire inputs through purchase from available markets empowers
them with the autonomy and capacity to diversify inputs, consequently enhancing the resilience
of their cropping activities to various shocks. This paper investigates whether climate shocks,
particularly rainfall shocks, influence commercial input purchase decisions by smallholder farmers in
contrasting geographic regions in Malawi, with a particular emphasis on fertilizer, agrochemicals,
seed, and labor. The empirical approach integrates historical weather information, climate shock
perceptions with a longitudinal household survey data set to model commercial input purchasing
decisions using appropriate latent variable models. The findings suggest that exposure to recent
rainfall shocks, especially droughts, stimulates commercial input purchasing across regions, especially
in drier central and southern regions of Malawi. This result holds true for general input purchase
decisions and for specific inputs such as agrochemicals, fertilizer, seed, and labor. Although drought
shocks considerably increase the probability of acquiring inputs through purchase, they occasionally
diminish the intensity of purchases. Both objective and subjective measures of lagged rainfall shocks
are revealed as significant determinants of commercial input purchases across regions in Malawi.
In addition to regional heterogeneity findings, further analysis shows that the relatively wealthier,
male-headed families and those with access to information are more likely to invest in purchased
inputs in response to drought shocks. Scaling up policies that remove demand- and supply-side
barriers to smallholder farmers’ access to commercial inputs from available markets is necessary for
adaptation to rainfall shocks.

Keywords: investment in commercial inputs; climate risk; adaptation; smallholder farmers;
heterogeneity; Malawi

1. Introduction

Agriculture in Sub-Sahara Africa (SSA) is primarily rain-fed, causing it to be highly
vulnerable to climate change, especially weather shocks. An estimated 95% of farmland
across SSA is rain-fed, of which over 80% of all the farmland is managed by smallholder
farmers, causing smallholder farming to be highly sensitive to extreme weather events
such as drought and floods [1]. Weather shocks such as drought and floods significantly
reduce crop production and yields and, in extreme cases, risk total crop failure with severe
implications on incomes and food security [2–4]. The direct implication is that failure
by smallholder farming systems to adapt to the changing climate can significantly hurt
agro-based economies’ current and future social and economic prospects. This idea is
particularly true in Malawi, where exposure to extreme weather events such as drought
and floods has led to significant crop losses, occasional displacement of people, loss of life,
infrastructure damage, poverty traps, and obstruction of development [4–6].
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Building the resilience of smallholder agriculture to weather shocks is paramount
to curb the negative impacts of climate shocks. One way to improve farming systems’
resilience is by altering agricultural input use. Failure by smallholder farmers to adapt to
the changing climate through altering agricultural input use and farming practices could
worsen agricultural outcomes. However, investing in modern input use and production
technologies that allow for and promote diversity is found to provide a better strategy for
strengthening agricultural production in the face of increased production risk from climate
change [7–9]. In the context of SSA and particularly in a country such as Malawi with
weak and/or inefficient formal markets for labor, inputs/outputs, insurance, and credit,
adopting a portfolio of inputs and farming strategies that offer protection against weather
risk is important for smallholder farmers [10–12]. Access to purchased inputs can offer
the farmer the potential to adapt to the changing climate. This is because, ceteris paribus,
input purchasing offers the smallholder farmer autonomy to change the input mix in ways
that improve the resilience of their cropping activities to climate change. Through input
purchases, farmers can: (i) diversify crops and/or crops varieties (improved, local, drought-
tolerant varieties), (ii) diversify fertilizer use through organic and inorganic fertilizer
purchases, (iii) diversify crop and crop harvest protection methods by complementing
natural methods with agrochemical use, and (iv) respond to labor shortages through
hiring off-farm labor. Given that smallholder farmers historically are known to rely on
traditional farming inputs such as organic fertilizers (manure, compost), local (traditional)
seed varieties, natural crop protection methods, and the use of family labor, input purchases
are highly important as a conduit of adding new and/or modern inputs to the farming
input portfolio. Hence, access for smallholder farmers to purchased inputs is vital for
building small-scale farming systems that are resilient to climate change.

However, the use of modern inputs and other climate-resilient technologies in SSA
is low compared to other regions, although recent evidence shows a steady increase over
time [13]. Various reasons have been explored in the literature to explain the low use rates
for modern inputs and technologies in SSA. For instance, the low use of modern fertilizers
is attributed to: (i) lack of capital to purchase fertilizers [14,15], (ii) low profitability of
fertilizers on highly degraded African soils, (iii) lack of agricultural insurance causing it
to be too risky to invest in fertilizers [16], and (iv) input and output market inefficiencies
causing high fertilizer investments to be less profitable. Besides, studies have also shown
that high seed prices, unavailability of seeds in local markets, lack of adequate access
to information, and unavailability of some seed attributes in improved varieties are key
reasons for the low use of modern varieties [15,17,18]. Similar factors are acknowledged in
the literature as key impediments to the adoption of modern technologies in agriculture,
including climate-resilient inputs [19,20].

This work argues that climate variables, temperature and rainfall, variability in cli-
mate factors, and persistent exposure to climate shocks (flood or drought) alter the need
for adopting high-input agriculture. This view makes a plausible assumption given that
theories of farmer behavior under risk (e.g., the state-contingent theory by Chambers and
Quiggin [21]) reveal weather expectations and past climate shock exposures to be key
determinants of farming behavior. In addition, given the overwhelming evidence that cli-
mate risk factors significantly reduce crop yield in developing regions (see Kurukulasuriya
and Rosenthal [22] for a review), it is also highly probable that climate risk factors alter
input demand [23]. Thus, understanding the effects of climate risk on commercial input
purchasing is important for adaptation policy. Our specific objectives in this paper are
as follows:

(a) To determine how long-term climate and lags in rainfall shocks affect the sourcing
of off-farm agricultural inputs (fertilizer, agrochemicals, seed, and labor) through
purchase by smallholder farmers in Malawi.

(b) To examine the role of regional and socioeconomic heterogeneity in shaping the
impacts of climate risk on the sourcing and use of commercially purchased inputs.
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We build on previous studies that evaluate the influence of climate risk on the choice
and use of agricultural inputs and climate-resilient technologies such as modern agricultural
inputs (e.g., Mendelsohn and Wang [23]), the use of drought-tolerant maize technologies
(e.g., Holden and Quiggin [24] and Katengeza, Holden, and Lunduka [11]), the use of
integrated soil fertility management (ISFM) technologies (e.g., Katengeza et al. [25]), and
the sources or types of purchased seeds (e.g., Nordhagen and Pascual [12]) and evaluate
the influence of climate risk factors in shaping the use of commercially purchased inputs in
heterogeneous settings in Malawi. Our study adds to this literature by generating evidence
specifically on the influence of climate risk in shaping commercial input purchasing for key
inputs (fertilizers, agrochemicals, seeds, and labor) in Malawi. We further improve on the
previous related literature by focusing on the potential influence of spatial heterogeneity
(regional differences), socioeconomic inequality, and access to agriculture information in
shaping commercial input purchasing responses to climate risk factors. We also test the im-
pact of rainfall shocks using both (i) objective measures of rainfall shocks and (ii) subjective
measures of rainfall shocks (i.e., farmer perceptions data on shock exposure in the recent
past). Most importantly, we derive implications for climate change adaptation through
market development in Malawi. We rely on multiple rounds of the novel, longitudinal
nationally representative Livelihood Standards Measurement Survey-Integrated Surveys
on Agriculture (LSMS–ISA) datasets collected from smallholder farming households in
Malawi in 2011, 2015, and 2019, combined with historical monthly weather data. Our
empirical approach adopts suitable latent variable approaches [26] to analyze the influence
of climate risk on commercial input purchasing in Malawi’s smallholder farming.

The rest of this paper is organized as follows. Section 2 briefly documents the impacts
of climate change on agricultural development in Malawi, while Section 3 outlines the
study’s theoretical framework. Then, Section 4 presents the study’s methodology and
Sections 5 and 6 present the main findings and discussions, respectively. Lastly, Section 7
concludes the paper and provides policy implications.

2. Climate Change and Agriculture Development in Malawi: A Snapshot

Malawi is characterized by two distinct seasons: the rainy season, which runs from
November to April, and the dry season, which runs from May to October. The rainy season
is the dominant season for crop production. Temperature and rainfall are variable with
seasons and topography. The lowest average temperatures are experienced in the dry
season, specifically in the month of July (from 12–15 ◦C) in the highland areas (northern
region), while the warmest temperatures (25–26 ◦C) are experienced in the lowlands
(southern region) during the rainy season usually in October. Annual rainfall ranges from
as low as 500 mm in the lowlands to more than 1500 mm in the highlands. Rainfall is highly
variable and its variability is highly linked to the El Niño Southern Oscillations (ENSO)
or El Niño/La Niña teleconnections [6,27,28]. The El Niño and La Niña teleconnections
are strongly linked to probable drought and flood events, respectively [6]. We summarize
historical climate variables (temperature and rainfall) for Malawi (national) and for the
main geographical regions (northern, central, and southern regions) based on observed
historical data produced by the Climatic Research Unit (CRU) of the University of East
Anglia in Figure 1. Figure 1 shows the historical average annual rainfall trends for Malawi
from 1901–2019. Rainfall variability over the years is evident, with an increasing rainfall
trend from 1901 to 1960 and a decreasing trend afterward. The average mean temperature
shows an increasing trend from 1901 to the present, with the southern regions having the
highest average temperatures compared to the northern region (lowest) and central regions
(in the middle) (Figure 1).
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other food crops) has been significantly low in drought years such as in 1991/92, 2001/02, 
2004/5, and 2015/16 [5,6,31]. In Figure 2, we plot the agricultural productivity trends for 
selected main food crops in Malawi and demonstrate an association between a fall in 
yields and the occurrence of selected drought events in the recent past (1991/92, 2004/5, 
and 2015/16). The most recent drought event experienced in 2015/16 was characterized by 
a delayed onset of the agricultural season, leading to severe crop failure mostly in the 
central and southern regions [32].  

Figure 1. Average annual climate (rainfall and mean temperature) of Malawi (national) and by
three main regions (northern, central, and southern) 1901–2020; Data source: CCKP.

Several unique characteristics make Malawi highly vulnerable to climate variability
and change. Some of these include high dependence on rain-fed agriculture and Maize
as a staple crop, high population growth, high poverty rates, malnutrition, and disease
pandemics (e.g., HIV/AIDS) [28–30]. Extreme climate events such as drought, floods, and
elevated temperatures negatively impact agricultural production, water resources, fisheries,
ecosystems, and human health [6,28]. Of importance to this study are the direct effects
of extreme weather events on agricultural production. Extreme weather events such as
droughts and floods and significant seasonality changes negatively affect Malawi’s agri-
cultural production. Drought and flood events have increased in frequency and intensity
in the past two to three decades. For example, agricultural production (for Maize and
other food crops) has been significantly low in drought years such as in 1991/92, 2001/02,
2004/5, and 2015/16 [5,6,31]. In Figure 2, we plot the agricultural productivity trends for
selected main food crops in Malawi and demonstrate an association between a fall in yields
and the occurrence of selected drought events in the recent past (1991/92, 2004/5, and
2015/16). The most recent drought event experienced in 2015/16 was characterized by a
delayed onset of the agricultural season, leading to severe crop failure mostly in the central
and southern regions [32].
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Figure 2. Average crop yields for selected food crops in Malawi from 1961–2019; the three vertical
red lines indicate selected main drought years experienced in Malawi in the recent past (1992, 2005,
and 2015/16), Data source: FAOSTAT. https://www.fao.org/faostat/en/#data/QCL, accessed on 7
September 2022.

The overall implication is that climate change is a reality in Malawi and it has had
several negative impacts on agricultural production, water resources, ecosystems, food
security, and on the Malawian citizenry’s overall well-being, particularly the rural popula-
tion. The consequences of climate change on rural livelihoods are dire because agriculture
remains one of the country’s most important economic activities. For instance, the agricul-
tural sector contributes nearly 33% of the Gross Domestic Production (GDP) and nearly
80% of the employment [33]. Therefore, it is important to understand how climate risk
influences smallholder farmers’ decisions to invest in commercially purchased inputs as a
potential adaptation mechanism in contrasting regions and other socioeconomic settings
in Malawi.

3. Theoretical Framework: Use of Purchased Inputs under Increased
Climate Erraticism
3.1. Why Invest in Commercial Input Purchases with Increasing Climate Erraticism

Farmers in Malawi can source agricultural inputs from both informal and formal
channels. Formal input sources in Malawi include public and private agricultural markets
(e.g., the Agricultural Development and Marketing Corporation (ADMARC), other private
or public markets), and government support programs (e.g., Farm Input Subsidy Program
(FISP)). Informal input sources mainly include farmers’ social networks and other sources
not supervised by any organization. In both formal and informal sources of agricultural
inputs, farmers access inputs through some form of trade (e.g., purchasing) or barter.
Access to inputs in the formal market is mainly through cash (or credit) purchases, while
from informal sources, purchases are in cash, barter, or kind. Having access to purchased
inputs is highly important in the context of elevated climate risk. It offers the farmer
the autonomy and ability to change their input mix to improve the resilience of their
agricultural activities. Although government programs such as FISP have become an

https://www.fao.org/faostat/en/#data/QCL
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important supplementary source of agricultural inputs, available evidence reports that
such programs target a selection of farmers based on their underlying objectives [34]. In
addition, some of the agricultural support programs, such as FIPS in Malawi, are reported
to have been marked with irregularities in voucher distribution [34,35]. Hence, not all
farmers in need have access to them. Besides, farmers with access to FISP may not access all
inputs of their choice and their demand, leaving other sources of inputs, such as commercial
input purchasing, equally important to complement inputs from other sources.

Increased climate variability may render conventional farming inputs less favorable,
which calls for modern inputs that can enhance resilience. For instance, climate variability
and change are associated with increased pests and diseases [36], which may increase
the need for agrochemicals. For instance, in some parts of Malawi, rainfall variability in
the form of dry spells and floods has been associated, respectively, with increased fall
armyworm and Striga infestation in Maize fields [37]. Additionally, using traditional
crop varieties with increased climate risk renders crop yields more vulnerable [38], which
calls for the diversification of local with improved varieties. For instance, in Malawi,
drought-tolerant maize varieties have been proven to enhance the resilience of maize yields
to climate stress [39,40]. The implication is that access to purchased seeds may allow
farmers to diversify the conventional seed varieties with more resilient varieties available
on the market. In addition, input purchasing offers the farmer the chance to access organic
and chemical fertilizers, which are beneficial under a changing climate. On-farm organic
fertilizer sources may become less reliable with increased climate variability (e.g., through
the loss of livestock due to diseases and pests), which demands farmers complement
traditional (on-farm) sources with off-farm sources. Besides, access to chemical fertilizer
allows the farmer to implement micro-dosing techniques that are proven to offer sufficient
nutrition in highly degraded soil in a sustainable fashion [41,42]. Fertilizer purchasing
can aid the farmer in supplementing fertilizer requirements to enhance the resilience of
farming activities under a changing climate. Likewise, adapting to climate change may
require supplementing family labor with off-farm labor. Supplementing family labor can
be beneficial when the household faces labor shortages or when new skills are required to
implement innovations or technologies effectively. For instance, climate-smart practices
such as Conservation Agriculture (CA) may increase labor demand at the household
level [43], increasing the need to hire laborers off-farm.

Commercial input purchases are important for two reasons: (a) response to input
shortages and (b) as a conduit for adding new or modern inputs to the farming input
portfolio. Overall, input purchases increase access to inputs and diversity, enhancing
resilience to climate change. Besides, when farmers improve their participation in markets,
it also supports the prospects of reviving agricultural markets, which are usually deemed
dysfunctional (weak) and not fit for purpose [44], with overall positive implications for
broader society. However, it is important to acknowledge that commercial input purchas-
ing, although an essential source of inputs, has some limitations. Input markets in SSA,
including Malawi, are imperfect [34,44], and hence access to inputs by farmers is marred
with pervasive transaction costs. These high transaction costs and the lack of purchas-
ing power by farmers limit the access to purchased inputs. However, market players’
innovative practices in selling inputs work against these challenges. For example, seed
companies have been selling inputs (seed) in varied bag sizes [14,45] and the literature (e.g.,
Duflo et al. [46] and Holden and Lunduka [47]) confirms that the timing of input supply by
input providers influences demand. These are a few examples of innovative approaches
by input providers in the developing world that raise prospects for farmers to purchase
inputs despite their credit and other access constraints.

3.2. Analyzing the Use of Purchased Inputs under Elevated Climate Risk

Following previous studies that have analyzed the adoption and impact of selected
agriculture technologies under production risks (e.g., drought-tolerant maize technolo-
gies [11,24,39] and integrated soil fertility management technologies [25] to mention just a
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few), we can study farmers’ responses to climate risk through commercial input purchasing
using the state-contingent theory of Chambers and Quiggin [21]. The state-contingent
model assumes q distinct outputs, v distinct inputs, and n possible states of nature. The
smallholder farming household allocates input v ∈ <V

+ and chooses state-contingent out-
put q ∈ <N∗Q

+ ex ante (before the state of nature is revealed). <+ implies that v and q are
positive real numbers. The output is then produced after the state of nature is revealed (ex
post) with inputs fixed. If the smallholder farming household chooses output q and the
state of nature n is realized, then the observed output will be qn.

The state of technology (K) can be summarized as K = [(v, q) : v → (can produce) q].
If we designate the price of inputs and outputs as pv and pq, respectively, then we
can express the technology (K) either as a demand function of the form: v(pv, q) =
argmin [pvv : (v, q) ∈ K], or as a cost function of the form: CF(pv, q) = min[pvv : (v, q) ∈ K].
If we assume a simple case of only two states of nature, one of which is unfavorable (vs.
a favorable state), the smallholder farmer’s interest will be to maximize output (q). The
smallholder farmer’s problem is to make a decision under uncertainty where state one (1)
is unfavorable only if the output q1 < q2. In such a setting, it is possible to distinguish
between inputs that are risk-substituting and those that are risk-complementary [11,21,24].
Input vj is risk complementary [risk substituting] if a shift from a state-contingent output
vector q to a riskier output vector q′ leads to an increase [decrease] in demand for input vj
that is: vj(pv, q)

〈
vj(pv, q′) [vj(pv, q)

〉
vj(pv, q′)].

The definition of risk-substituting inputs implies that an exogenous increase in risk
(e.g., climate risk) will lead to an increase in the share of risk-substituting inputs in the
input mix for a given expected output. Therefore, based on this theoretical framework,
we hypothesize that exogenous exposure to climate risk (rainfall shocks) will increase the
likelihood of adopting purchased inputs (risk-substituting inputs). Otherwise, conven-
tional on-farm sourced inputs will be considered risk-complementary, given that they will
be optimal only under normal rainfall conditions (i.e., without shocks). Given that the
choice of climate change adaptation strategies by farmers is usually a function of household
resource endowments such as land and non-land assets (household asset wealth) [20,48,49],
access to vital agricultural information, and gender differences that can shape agricultural
decisions and outcomes [50,51], we explore heterogeneity in the impacts of rainfall shocks
in poorer and richer households in terms of their resource endowments, in female- and
male-headed households and in groups of farmers with and without access to information.
We hypothesize that better asset-endowed, informed, and male-headed households are
more likely to use purchased inputs to help them deal with shocks, unlike their poorer, un-
informed, and female-headed counterparts. The expectation of finding different responses
to shocks by male- and female-led households is derived from fundamental differences
reported in the literature between male and female farmers in both endowment (ownership
and control of resources) and structural factors (e.g., preferences, returns to their efforts, and
effects of norms and culture on men and women) that shape their agricultural decisions and
outcomes [50,51]. Additionally, the literature points to the existence of gender disparities in
climate change vulnerability emanating from historical gender-related inequalities in both
endowment and structural factors [52], which also supports why this study hypothesizes
differential impacts of shocks in male and female-led households.

In addition, we note that the farmer’s decision to choose inputs will be affected
by both production and consumption characteristics [53,54]. Thus, for the risk-averse
farmer to meet competing production and consumption needs, they are more likely to
adopt a mixed portfolio of inputs. Hence, in our modeling of farmer input purchase
decisions, we also consider other household-level characteristics that could be vital in
aiding/constraining the uptake of commercially purchased inputs. In addition, we also
consider other household characteristics partly to address selection and to reveal the
associations between socioeconomic inequality and input purchasing decisions.
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4. Methodology
4.1. Data, Sources
4.1.1. Survey Data

The study uses data from multiple rounds of Malawi’s rich and nationally repre-
sentative Integrated Household Survey (IHS). We precisely work with the three latest
rounds collected for the 2011 (IHS3), 2016 (IHS4), and 2018 (IHS5) agricultural seasons that
captured elaborated information on commercial input purchasing decisions. The survey
data are available through the Living Standards Measurement Study–Integrated Surveys
on Agriculture (LSMS–ISA) program of the World Bank in collaboration with the govern-
ment of Malawi. The LSMS–ISA data collect comprehensive information on agricultural
activities, household perceptions of shock exposure in the recent past, various farm and
household socioeconomic conditions, and georeferenced data, which we use to extract
spatial climate data and derive objective measures of climate shocks. The distribution of
enumeration areas (villages) included in the three rounds of the Malawi survey data is
shown in Figure 3. The surveys cover the entire country and the collected samples are
representative of the three main geographic regions in Malawi (northern, central, and
southern regions) and can be used to answer this study’s research questions. Households
are the primary units of observation analyzed in this study. The IHS3, IHS4, and IHS5
cover 12,271, 12,447, and 11,434 households, of which the majority (more than 80%) are
rural agricultural households involved in agricultural production activities. Our analysis is
based on these rural households with complete and usable information on input acquisition
and mainly agricultural input purchasing activities (fertilizers, agrochemicals, seeds, and
labor). The combined sample we analyze comprises 25,631 rural households shared as 16,
35, and 49% between the northern, central, and southern regions.
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4.1.2. Rainfall and Temperature Data

In addition to the LSMS–ISA household data, we extract historical monthly weather
data from WorldClim [55] for 39 years using georeferenced data (longitude and latitude)
available with the LSMS–ISA household data. We use the extracted rainfall and temperature
data to define our objective measures of climate risk variables, including lagged droughts
and flood shocks. All climate risk variables used in the analysis are defined for Malawi’s
main crop growing season, spanning from November to April. In Figure 4, we plot the
distribution of rainfall and maximum temperature in the analyzed sample and three main
regions in Malawi. In addition to the long-term averages for climate, we define rainfall
shocks. We define lagged rainfall shock variables as normalized deviations in a single
season’s rainfall from the seasonal rainfall variable over a reference period (39-year average).
We define a rainfall shock (RainshockEt) at time t in a particular season (growing season)
as follows: RainshockEt =

{
REt−R̂E
σRE

}
, where: REt is the observed amount of rainfall for the

season and R̂E, σRE are, respectively, the long-term average seasonal rainfall and standard
deviation. Consequently, the resultant rainfall shock (Z-score) will consist of positive and
negative Z-scores. The negative (positive) Z-scores show the extent to which rainfall in a
particular season was below (above) the long-term average. We define drought and flood
shocks as negative and positive Z-scores, respectively.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 33 
 

 

4.1.2. Rainfall and Temperature Data 
In addition to the LSMS‒ISA household data, we extract historical monthly weather 

data from WorldClim [55] for 39 years using georeferenced data (longitude and latitude) 
available with the LSMS‒ISA household data. We use the extracted rainfall and tempera-
ture data to define our objective measures of climate risk variables, including lagged 
droughts and flood shocks. All climate risk variables used in the analysis are defined for 
Malawi’s main crop growing season, spanning from November to April. In Figure 4, we 
plot the distribution of rainfall and maximum temperature in the analyzed sample and 
three main regions in Malawi. In addition to the long-term averages for climate, we define 
rainfall shocks. We define lagged rainfall shock variables as normalized deviations in a 
single season’s rainfall from the seasonal rainfall variable over a reference period (39-year 
average). We define a rainfall shock (𝑅𝑎𝑖𝑛𝑠ℎ𝑜𝑐𝑘ா௧) at time t in a particular season (growing 

season) as follows: RainshockEt= ൜
REt-RE෢

σRE
ൠ, where:  𝑅ா௧ is the observed amount of rainfall 

for the season and 𝑅ா
෢, 𝜎ோಶ

 are, respectively, the long-term average seasonal rainfall and 
standard deviation. Consequently, the resultant rainfall shock (Z-score) will consist of 
positive and negative Z-scores. The negative (positive) Z-scores show the extent to which 
rainfall in a particular season was below (above) the long-term average. We define 
drought and flood shocks as negative and positive Z-scores, respectively.  

 
Figure 4. Distribution of historical climate variables (rainfall and maximum temperature) and rain-
fall shock variables by lag (Z-scores) in our sample based on WorldClim data. National refers to 
plots based on the pooled sample and then the rest of the plots are based on the three regional 
subgroup samples. 

We plot the distribution of rainfall shock measures in the past two seasons (1-year 
and 2-year lags) in the pooled sample and by region in Figure 4. 

4.2. Model Specification and Empirical Estimation 
4.2.1. Model Specification 

Smallholder farmers make input purchase decisions in a two-step process: first, they 
decide whether to purchase a particular input or not and, second, to what extent (quantity 

Figure 4. Distribution of historical climate variables (rainfall and maximum temperature) and
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subgroup samples.

We plot the distribution of rainfall shock measures in the past two seasons (1-year and
2-year lags) in the pooled sample and by region in Figure 4.

4.2. Model Specification and Empirical Estimation
4.2.1. Model Specification

Smallholder farmers make input purchase decisions in a two-step process: first, they
decide whether to purchase a particular input or not and, second, to what extent (quantity
or value of the purchase). We model input purchasing decisions using suitable limited
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dependent variable models [26]. The models assume that the choice between alternatives
(purchasing and non-purchasing) depends on identifiable characteristics. The decision-
maker (the farmer) is also believed to maximize the expected utility from the decision
(choices) they make subject to constraints [56]. In the context of climate shocks, farmers
are expected to choose input purchases that maximize the anticipated utility of returns
under different states of nature (with and without shocks) [24]. Given the inseparable
nature of production and consumption decisions, input purchase functions are based on
consumption and production characteristics. We, therefore, model input purchasing as
given in the equation below:

Cik = θ0 + θ1Climatep + θ2Hi + θ3YDi + εi (1)

where Cik = is the dependent variable, which represents different values for purchase
(1 = yes: 0 otherwise) and intensity of purchase (quantity or value purchased/ha) for
specific input k (fertilizer, agrochemicals, labor, or seed); Climate = vector of climate
risk variables; Hi = vector of household socioeconomic variables (elaborated below);
YD = survey year dummies and regional variables; and εi = random error term. The
climate risk vector includes rainfall shocks (drought and flood) and long-term climate
variables (rainfall and temperature) for the crop growing season. These are our primary
variables of interest. We focus on specific drought and flood shocks, which measure the
exposure and intensity of exposure to negative and positive normalized rainfall deviations,
respectively. In the vector (Hi) we include other control variables commonly included in
technology adoption studies [19,20], including farm size (ha), number of plots cultivated
by the household, family labor (days), household wealth index (we use a collection of
household assets, housing dwelling characteristics, and household access to basic services
(e.g., clean water, energy, and sanitation) available in the Malawi LSMS–ISA data to com-
pute a household wealth index using Principal Components Analysis [57]), agricultural
implement access index (we summarize information on a household’s ownership of various
agricultural equipment and tools available in the Malawi LSMS–ISA data using PCA to
derive an index that we term as agricultural implements access index), dummy variables for
access to fertilizer and seed coupons, distance to the nearest Agricultural Development and
Marketing Corporation (ADMARC) center (km), household size, household dependency
ratio (the household dependency ratio is a ratio (expressed as a percentage) of economi-
cally active household members (≥15 years and less than 65) to household dependency
(<15 years and >65 years)), and characteristics of the household head (gender, age, educa-
tion). In addition, we also control for district-level dummies and survey year dummies. We
present descriptive statistics of these variables in the Supplementary Materials (Table S1).

4.2.2. Estimation Strategy

We estimate parameters in Equation (1) using Cragg’s Double-Hurdle (DH) mod-
els [58], which allows us to specify separate hurdles for the probability of input purchase
(Hurdle 1) and the intensity of purchase for purchasers (Hurdle 2). An alternative would
have been to use the Tobit Model [59] for input purchase decisions. However, the Tobit
model is statistically restrictive, as it assumes that the same set of variables equally de-
termines both the probability of non-zero input purchase and the intensity of purchase,
which might not always be the case. The double-hurdle (DH) model, proposed initially
by Cragg [58], overcomes the restrictive assumptions of the Tobit model and assumes
that individual farmers make two decisions concerning the choice and extent of an input
purchase. We hence apply the DH models to study input purchase decisions in this study.
Within the DH model, the first Hurdle (the probability of input purchase for a specific input)
is estimated using a probit estimator and the second Hurdle (intensity of purchase decision)
is estimated using a truncated normal regression model that accounts for those who do
not purchase a particular input [26,58]. We follow the recommendations in Burke [60] and
estimate the first and second hurdles of the Craggit model simultaneously to improve
efficiency in the estimation. We estimate parameters in Equation (1) first for a general
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model of investment and the extent of investment in purchased inputs followed by models
of specific inputs purchased (fertilizer, agrochemicals, labor, and seed).

In addition to the main results, we also aim to perform a heterogeneity analysis. We
primarily explore how differences in regional settings may potentially influence the rela-
tionships between climate risk exposure and the need for commercially purchased inputs.
Second, we explore how differential resource endowments (land and non-land assets),
access to information, and the gender of household leaders influence household responses
to shocks through input purchasing. To assess for possible regional heterogeneities in
the influence of climate risk on input purchasing, we estimate separate models for the
three main regions in Malawi (northern, central, and southern regions). We do this by
splitting our samples into the three regions (northern, central, and southern regions) and
estimating (Equation (1)) for specific inputs in the respective sub-samples. We specify
separate equations for each geographic region (R = 1, 2, or 3) as follows:

CR
ik = β0 + β1Climatep + β2Hi + β3YDi + εi (2)

where parameters are as described earlier and the superscript R takes different values
for specific regions studied (R = 1, 2, and 3 for northern, central, and southern regions,
respectively). Furthermore, to explore heterogeneity in the impact of shocks on input
purchasing between the poor and the rich (based on asset endowments), we do the fol-
lowing: (i) first, estimate a composite score of household wealth endowments based on
their total landholding, agricultural assets owned, and ownership of durable household
assets as previously explained, (ii) make two quintiles of household wealth endowments
that distinguish better-endowed households (quintile 2), and poorly endowed households
(quintile 1), and (iii) estimate Equation (1) in sub-samples of poorer and richer households
as in Equation (3):

CQ
ik = β0 + β1Climatep + β2Hi + β3YDi + εi (3)

where parameters are as described earlier and the superscript Q takes different values for
different quintiles of asset wealth (1 = poorer and 2 = richer households). Similarly, we
explore possible gender and access to information heterogeneities in results by estimating
Equation (1) in sub-samples of gender (male and female-led households) and information
access (yes or no access), respectively. We proxy access to agricultural information by a
dummy variable measuring access to agricultural extension services from various sources
(government and private sources) and on various topics including input access and use.
To gain additional insights from the analysis of possible gender differences, we explore
heterogeneity analysis by marital status and wealth endowment categories of male and
female household heads. By doing so, we can further illuminate some unobserved covari-
ates related to household heads’ marital statuses that the gender coefficient might capture.
For instance, female-led households are usually led by single women (e.g., widowed or
divorced) who are poor and have disadvantaged positions in traditional society [50,61,62].
In estimating our models, we correct standard errors by specifying clustering at the pri-
mary sampling unit (village) to correct any potential intra-cluster correlation of climate risk
variables. We report marginal effects to help with the economic interpretation of results.
For the first hurdle (probit model), we report marginal effects ( E[Y|X]) , and conditional
marginal effects (E[Y|X], i f Y > 0) for the second hurdle (truncated regression model).
In addition to the results presented in tables, we also plot average partial effects on the
relationships between our dependent variables and key explanatory variables (climate
variables and shocks) to provide visuals of the key relationships found.

We also perform sensitivity analysis to assess the robustness of our main results. We
mainly perform robustness analysis by estimating parsimonious models of input purchas-
ing with only key variables of interest (climate risk variables) first and then assess how
adding control variables (vector Hi) alter our conclusions. In all our estimations, the addi-
tion of additional controls to parsimonious specifications does not alter our conclusions. We
are confident that our estimates are robust to the addition of additional control variables. In
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addition to the analysis, we define subjective measures of household rainfall shock exposure
using perception data available in the LSMS–ISA household data. The Malawi LSMS–ISA
data captures household perceptions of shock experienced in the recent past, which can
be used to define drought, floods, and other shock experiences. We test the influence of
rainfall shocks using these data to assess whether commercial input purchases respond to
these shocks. We reproduce the main tables shown in the manuscript by replacing objective
measures of drought and flood shocks defined by the historical climate data with subjective
measures of drought and flood shocks defined by household perceptions. We report the
results in the Supplementary Materials, which confirm rainfall shocks (perceptions) as
significant determinants for commercial input purchases across regions.

4.2.3. Study Limitations

Our study is not without limitations. We rely on secondary (self-reported) data of
farmer input purchasing decisions that could be associated with recall bias and other
related errors. Additionally, we work on the assumption that rainfall deviation from a
long-term average in specific clusters across regions is purely random, which might be a
strong assumption in some cases. Despite the noted limitations, our paper adds important
insights to the literature on the possible influence of climate risk factors in driving demand
for key off-farm and productivity improving inputs in heterogeneous settings.

5. Results
5.1. Descriptive Statistics

We present descriptive statistics of our key outcome and explanatory variables of
interest using a combination of tables and figures in the pooled (national) sample and
by the three main regions studied. For brevity, we comment only on our key outcome
variables. Table 1 presents descriptive statistics for input purchasing variables by region
and survey years. In general, we can tell that about 59% of farmers purchased inputs
(either agrochemicals, seed, or fertilizer) in the national sample and that input purchasing
has increased over time (from 43 to 71% from IHS3 to IHS5). Similarly, about 49% of
farmers used purchased inputs in the northern region, with purchasing rates increasing
from IHS3 to IHS5 by 23% (from 32 to 55%). The central region has slightly higher rates of
input purchasing, with about 61% of farmers indicating to have used purchased inputs. In
addition, rates of input purchasing have increased from 44% to 75% from IHS3 to IHS5 in
the central region. The southern region has almost the same rates for input purchasing as
the central region, with about 60% of farmers indicating to have used purchased inputs
and a 29% increase in that rate from IHS3 to IHS5. Although the northern region has
comparably lower rates of purchasing inputs, they have the highest average for the amount
spent on input purchasing (Table 1 and Figure 5). We also show the distributions of input
purchasing intensity in general and the three regions in Figure 5.
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We also report purchasing rates and intensity of purchase for specific inputs. For
fertilizer, we see that in the national sample, about 39% of farmers purchased inorganic
fertilizer and that over time rates show an increasing trend from 33% (IHS3) to 45% (IHS5).
Comparing fertilizer input purchasing rates by region show that the average rates of using
purchased fertilizer are highest in the central region (49%) and lowest in the southern region
(29%). The northern region has about 43% of farmers reporting to have used purchased
inorganic fertilizers (Table 1). Assessing trends over time, we also see that the rate of using
purchased fertilizer has increased from IHS3 to IHS5 by 12, 6, 9, and 17% in the national,
northern, central, and southern region samples, respectively. In terms of the intensity of
fertilizer purchasing, the northern region has comparably higher intensities of fertilizer
purchasing than other regions (Table 1 and Figure 5).

Regarding agrochemical purchasing, we see low rates of agrochemical use in national
samples and in given regions. On average, about 4% of studied farmers purchased agro-
chemicals in the national sample. The rate of purchasing agrochemicals in the national
sample increased slightly from IHS3 to IHS5 from 2 to 6%. In the northern region, on
average, 4% of farmers purchased agrochemicals and the purchase rate increased by 3%
from IHS3 (2%) to IHS5 (5%). Likewise, on average, 3% of farmers purchased agrochemicals
in the central region and from IHS3 to IHS5, the rate of using purchased agrochemicals rose
from 4 to 7%. Likewise, about 4% of farmers in the southern region purchased agrochemi-
cals. The farmers purchasing agrochemicals in the southern region rose from 3% in IHS3 to
5% in IHS5 (Table 1). We show the distribution of agrochemical purchase intensities in the
national sample and the three main regions of Malawi in Figure 6. In purchasing intensity,
we again see that the northern region has a comparably higher intensity of purchasing
agrochemicals than other regions (Figure 5 and Table 1).
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Table 1. Descriptive statistics of outcome variables by survey round.

National Northern Region Central Region Southern Region

Full IHS3 IHS4 IHS5 Full IHS3 IHS4 IHS5 Full IHS3 IHS4 IHS5 Full IHS3 IHS4 IHS5

Variables Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

Outcome variables (input purchasing)

Input purchase (in general)
Purchased any inputs (1 = yes) 0.587 0.427 0.644 0.714 0.490 0.317 0.623 0.548 0.609 0.443 0.659 0.750 0.604 0.452 0.641 0.740
Value of purchased inputs (USD/ha) 73.993 86.384 65.994 73.175 120.220 140.831 107.997 121.688 78.324 102.529 67.308 71.995 58.495 61.996 51.163 62.861
Inorganic Fertilizer
Purchased inorganic fertilizer (1 = yes) 0.379 0.331 0.362 0.454 0.425 0.380 0.459 0.439 0.485 0.456 0.456 0.549 0.288 0.224 0.262 0.391
Value of purchased fertilizer (USD/ha) 100.542 128.357 92.289 90.674 137.393 175.159 124.842 127.716 89.765 119.295 80.095 77.683 96.592 119.757 88.408 90.763
Agrochemicals (herbicide or pesticide)
Purchased agrochemicals (herbicides or
pesticide) (1 = yes) 0.036 0.023 0.026 0.060 0.035 0.025 0.030 0.053 0.034 0.014 0.018 0.074 0.037 0.028 0.031 0.053

Value of purchased
agrochemicals (USD/ha) 10.726 9.137 9.662 11.901 14.451 16.978 14.156 13.907 11.130 11.391 8.946 11.734 9.405 7.058 8.413 11.447

Seed (in at least one of the crops grown)
Purchased seed (1 = yes) 0.472 0.404 0.490 0.533 0.363 0.302 0.436 0.354 0.446 0.369 0.447 0.534 0.527 0.465 0.539 0.587
Value of purchased seeds (USD/ha) 17.750 18.750 16.994 17.833 22.796 18.548 22.721 25.603 18.110 20.129 16.374 18.467 16.471 18.068 15.784 15.974
Quantity of seeds purchased (kg/ha) 21.256 19.612 20.831 22.779 17.525 13.087 18.398 19.055 19.724 18.657 18.980 21.008 22.958 21.157 22.594 24.634
Labor (hired paid labor)
Hired labor (1 = yes) 0.173 0.158 0.168 0.196 0.171 0.126 0.174 0.225 0.186 0.189 0.188 0.182 0.164 0.146 0.152 0.197
Hire labor (days) 22.833 19.798 24.184 24.436 23.223 14.546 25.572 27.141 20.179 19.521 22.138 18.819 24.872 21.581 25.448 27.207

Number of observations 25,631 9207 8551 7873 4123 1502 1415 1206 9001 3245 2969 2787 12,507 4460 4167 3880

Notes: Source: authors own elaboration based on Malawi LSMS–ISA data. We converted the value of purchased inputs from local currency (MWK) to USD to enable comparison of the
intensity of purchase across surveys years. We use average exchange rates for specific survey years available on Google (https://www.exchangerates.org.uk/, accessed on 7 September
2022). For example, we use specific exchange rates for the different survey years IHS3 (https://www.exchangerates.org.uk/USD-MWK-spot-exchange-rates-history-2010.html), IHS4
(https://www.exchangerates.org.uk/USD-MWK-spot-exchange-rates-history-2016.html), and IHS5 (https://www.exchangerates.org.uk/USD-MWK-spot-exchange-rates-history-
2019.html), accessed on 7 September 2022.

https://www.exchangerates.org.uk/
https://www.exchangerates.org.uk/USD-MWK-spot-exchange-rates-history-2010.html
https://www.exchangerates.org.uk/USD-MWK-spot-exchange-rates-history-2016.html
https://www.exchangerates.org.uk/USD-MWK-spot-exchange-rates-history-2019.html
https://www.exchangerates.org.uk/USD-MWK-spot-exchange-rates-history-2019.html
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The descriptive statistics for the use of purchased seeds are also given in Table 1 and
Figure 5. Seed purchasing is found to be a common practice in the national sample and
all regions. On average, 47, 36, 45, and 53% of farmers in the national sample, northern,
central, and southern regions, used commercially purchased seeds. Assessing trends over
time (between his3 ahisIHS5) using purchased seeds in national, northern, central, and
southern regions increased by 13, 5, 16, and 12%, respectively (Table 1). We report average
seed purchasing intensities in their quantities and the value of seeds purchased in Table 1.
We also show the distribution of seed purchasing intensities in the national sample and by
region in Figure 6. We observe comparable seed purchasing intensities in all three regions
with slightly higher intensities in the southern region (in quantities of seeds purchased/ha)
compared to other regions on average (Figure 5).

Regarding the use of hired labor, we see that, on average, between 17 and 19% of the
farmers in the national sample and three regions use hired labor. Assessing the trends over
time shows us that the northern region had the largest surge in the use of hired labor, from
12 to 23% between IHS3 and IHS5. The national sample and the southern region also show
a slight increase in the use of hired labor from 16–20% and 15–20%, respectively. On the
contrary, hired labor slightly fell from 19% in IHS3 to 18% in IHS5 in the central region
(Table 1). We also present the average number of days of hired labor use in the national
sample and by region in Table 1. In addition, we also show the distribution of the number
of hired labor (log-transformed) days in the national sample and by region in Figure 5. We
see fairly similar patterns in the distribution of hired labor use intensities in the national
sample and the studied regions.

When we compare input purchasing variables (purchase and intensity of purchase) by
household wealth endowment quintiles, access to information, and the gender of household
heads, we learn that input purchase rates and intensities are higher amongst richer, informed,
and male headed-households compared to their counterparts (poorer, not informed, and
female-headed households) (the results are summarized in the Supplementary Materials, in
Figures S1–S31 and Tables S1 and S2).

5.2. Impact of Climate Risk on Input Purchasing Decisions in Different Regions in Malawi

This section presents results showing the influence of rainfall shocks on input pur-
chasing decisions. We start by reporting results from a general model of input purchasing
and then move on to models of specific inputs purchased, including inorganic fertilizer,
agrochemicals, seed, and hired labor. We present one table of results for each model
in Tables 2–6. In addition to the tables, we plot the marginal effects of key explanatory
variables that visualize the relationship between climate risk variables and input purchase
decisions from general input purchase to labor hire (Figures 6–10).

5.2.1. Investment in Commercial Inputs (in a General Model)

Table 2 reports results from a general model that considers whether a farmer purchased
any input (fertilizer, agrochemicals, or seed). From the results, a 1-year lag drought shock
enhances input purchasing in the national sample, the central region, and the southern
regions (Table 2). A 2-year lag drought shock enhances the likelihood of purchasing inputs
in the national sample and the central region but reduces the intensity of input purchase in
the northern region (Table 2). Regarding flood shocks, we see that a one-year lag of flood
shock reduces the likelihood of purchasing inputs but enhances the intensity of purchase
for purchasers in the national sample and all regions (Table 2). Additionally, we learn that
long-term average seasonal rainfall enhances input purchasing decisions in the national
sample and across all regions and that the long-term average growing season temperatures
reduce input purchasing decisions in the national sample and across regions (Table 2).



Sustainability 2022, 14, 14904 16 of 31

Table 2. The influence of rainfall shocks on input purchasing (general) across regions in Malawi.

National Northern Central Southern

VARIABLES Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

Climate risk variables

Growing season drought
shock (1-year lag)

0.059 ***
(0.0221)

0.078
(0.0645)

0.033
(0.0411)

−0.018
(0.1200)

0.041
(0.0403)

0.200 *
(0.1213)

0.120 **
(0.0612)

0.662 ***
(0.2118)

Growing season drought
shock (2-year lag)

0.102 ***
(0.0216)

0.011
(0.0630)

−0.018
(0.0598)

−0.539 **
(0.2167)

0.226 **
(0.0902)

0.630 **
(0.2798)

0.047
(0.0487)

−0.164
(0.1379)

Growing season flood shock
(1-year lag)

−0.155 ***
(0.0253)

0.278 ***
(0.0630)

−0.020
(0.0428)

0.494 ***
(0.1093)

−0.286 ***
(0.0435)

−0.052
(0.1376)

−0.280 ***
(0.0526)

0.266 **
(0.1308)

Long-term season average
rainfall (mm)

0.000 **
(0.0001)

0.002 ***
(0.0004)

0.000
(0.0002)

0.001 **
(0.0006)

0.000
(0.0003)

0.002 **
(0.0007)

0.001 **
(0.0002)

0.001 **
(0.0007)

Long-term season average
temperature (deg)

−0.014 ***
(0.0050)

−0.180 ***
(0.0134)

0.004
(0.0141)

−0.090 ***
(0.0346)

−0.030 ***
(0.0080)

−0.182 ***
(0.0226)

−0.009
(0.0064)

−0.187 ***
(0.0187)

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes

Sigma constant 1.139 ***
(0.0078)

1.094 ***
(0.0216)

1.119 ***
(0.0126)

1.153 ***
(0.0112)

Survey year dummies Yes Yes Yes Yes Yes Yes Yes Yes
District fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 25,631 15,058 4123 2019 9001 5484 12,502 7555

Notes: Cluster robust standard errors with clustering specified at the primary sampling unit are in parenthesis.
Hurdle 1 is a probit regression for the probability of input purchase while Hurdle 2 is the model for intensity
of purchase for purchasers (log value of purchased inputs (USD/ha), * p < 0.10, ** p < 0.05, *** p < 0.01. Input
purchasing is defined in general (fertilizer, agrochemicals, or seed).
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Figure 6. Plotting marginal effects of changes in 1-year lag drought shocks (pos_dshock_overall1),
2-year lag drought shock (pos_dshock_overall2), 1-year lag flood shock (floodshock_overall1), and
historical mean rainfall (Rain_histmean (mm)) on the probability (top panel), and intensity of input
purchase (bottom panel) by region.
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From the general model of input purchasing, we learn the general effects of climate
risk variables on input purchasing. However, given that input purchasing practices for
specific inputs vary across regions and that climate risk variables could prompt different
input purchasing responses for specific inputs, the general model may not provide us with
accurate information on the relationships. Therefore, in the following sections, we report
results from models of purchasing practices for specific inputs.

5.2.2. Inorganic Fertilizers

In Table 3, we present results on the impact of rainfall shocks on purchasing inorganic
fertilizers. From the results, we learn that exposure to the 1-year lag of drought shock
enhances the intensity of fertilizer purchasing in the central and southern regions. Addi-
tionally, the 2-year lag of drought shock exposure enhances the likelihood of purchasing
fertilizer in the national sample, enhances the likelihood and intensity of purchasing fertil-
izer in the central region, and reduces the chances of purchasing fertilizer in the northern
and southern regions (Table 3).

Regarding flood shocks, we learn that a 1-year lag enhances the intensity of fertilizer
purchases in the northern region and reduces the intensity of fertilizer purchases in the cen-
tral region. In addition, long-term rainfall enhances fertilizer purchases, while temperature
discourages fertilizer purchases in the national sample and studied regions (Table 3).

Table 3. The influence of rainfall shocks on fertilizer purchasing across regions in Malawi.

National Northern Central Southern

VARIABLES Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

Climate risk variables

Growing season drought
shock (1-year lag)

0.032
(0.0198)

0.054
(0.0481)

−0.037
(0.0364)

0.089
(0.0851)

0.051
(0.0395)

0.223 **
(0.0948)

0.062
(0.0609)

0.636 ***
(0.1712)

Growing season drought
shock (2-year lag)

0.070 ***
(0.0197)

0.046
(0.0549)

−0.113 **
(0.0530)

−0.142
(0.1739)

0.178 **
(0.0843)

0.548 **
(0.2172)

−0.119 ***
(0.0423)

0.146
(0.1419)

Growing season flood shock
(1-year lag)

0.013
(0.0170)

0.060
(0.0521)

0.051
(0.0378)

0.232 **
(0.0924)

0.029
(0.0363)

−0.234 **
(0.1029)

0.006
(0.0343)

0.104
(0.1283)

Long-term season average
rainfall (mm)

0.000
(0.0001)

0.002 ***
(0.0003)

0.000
(0.0002)

0.002 ***
(0.0005)

0.000
(0.0002)

0.001 **
(0.0006)

0.000
(0.0002)

0.001
(0.0007)

Long-term season average
temperature (deg)

−0.051 ***
(0.0042)

−0.097 ***
(0.0102)

−0.020 *
(0.0110)

−0.065 ***
(0.0204)

−0.051 ***
(0.0077)

−0.094 ***
(0.0167)

−0.058 ***
(0.0050)

−0.101 ***
(0.0149)

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes

Sigma constant 0.821 ***
(0.0079)

0.751 ***
(0.0167)

0.832 ***
(0.0122)

0.817 ***
(0.0124)

Survey year dummies Yes Yes Yes Yes Yes Yes Yes Yes
District fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 25,631 8796 4123 1508 9001 3923 12,507 3365

Notes: Cluster robust standard errors are in parenthesis. Hurdle 1 is a probit regression for the probability of
purchasing fertilizer while Hurdle 2 is the model for intensity of purchase for purchasers (log value of purchased
fertilizer (USD/ha), * p < 0.10, ** p < 0.05, *** p < 0.01.
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5.2.3. Agrochemicals

In Table 4, we report results from the model of agrochemical input purchasing. We
learn from the findings that a 1-year lag of drought shock enhances the likelihood of
purchasing agrochemicals in the national sample and all three regions studied. Addi-
tionally, the 2-year lag of drought shock exposure enhances the probability of purchasing
agrochemicals in the national sample and the southern region (Table 4).

Regarding flood shocks, results show that a recent exposure to a flood shock (1-year
lag flood shock) reduces the likelihood of purchasing agrochemicals in the national sample,
particularly in the southern region (Table 4). The long-term average rainfall is also associated
with an increased likelihood of purchasing agrochemicals in the national sample, particularly
in central and southern regions. Additionally, long-term average temperatures increase the
chances of agrochemical purchase in the national sample, northern, and southern regions
(Table 4).
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Table 4. The influence of rainfall shocks on agrochemical purchase across regions in Malawi.

National Northern Central Southern

VARIABLES Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

Climate risk variables

Growing season drought shock
(1-year lag)

0.039 ***
(0.0084)

0.115
(0.1274)

0.045 ***
(0.0145)

0.254
(0.2301)

0.024 *
(0.0141)

−0.549
(0.5205)

0.069 ***
(0.0220)

−0.154
(0.2598)

Growing season drought shock
(2-year lag)

0.011 *
(0.0067)

−0.087
(0.1194)

0.010
(0.0211)

0.068
(0.4118)

0.000
(0.0333)

−0.950
(0.7597)

0.050 ***
(0.0148)

−0.460 *
(0.2549)

Growing season flood shock
(1-year lag)

−0.022 **
(0.0086)

−0.049
(0.1349)

−0.012
(0.0165)

0.149
(0.1864)

0.007
(0.0176)

0.198
(0.4681)

−0.044 **
(0.0175)

0.020
(0.2488)

Long-term season average
rainfall (mm)

0.000 **
(0.0000)

0.001
(0.0008)

0.000
(0.0001)

−0.000
(0.0009)

−0.000
(0.0001)

0.004 *
(0.0022)

0.000 ***
(0.0001)

−0.001
(0.0016)

Long-term season average
temperature (deg)

0.005 ***
(0.0018)

−0.020
(0.0266)

0.011 **
(0.0046)

0.049
(0.0542)

−0.000
(0.0030)

−0.068
(0.0468)

0.008 ***
(0.0026)

−0.023
(0.0408)

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes

Sigma constant 0.698 ***
(0.0168)

0.633 ***
(0.0356)

0.747 ***
(0.0323)

0.654 ***
(0.0215)

Survey year dummies Yes Yes Yes Yes Yes Yes Yes Yes
District fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 25,631 906 4123 138 9001 290 12,502 478

Notes: Cluster robust standard errors are in parenthesis. Hurdle 1 is a probit regression for the probability of
using purchased agrochemicals while Hurdle 2 is the model for intensity of agrochemical purchase for purchasers
(log value of purchased agrochemicals (USD/ha), * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 8. Plotting marginal effects of changes in 1-year lag drought shocks (pos_dshock_overall1),
2-year lag drought shock (pos_dshock_overall2), 1-year lag flood shock (floodshock_overall1), and
historical mean rainfall (Rain_histmean (mm)) on the probability (top panel), and intensity of agro-
chemical purchase (bottom panel) by region.

5.2.4. Seed

The results from the models of seed purchase are reported in Table 5, where we learn
that the likelihood of purchasing seeds increases with prior exposure to drought shocks.
Precisely, a 1-year lag of drought shock exposure increases the possibility of buying seeds
in the national sample, northern region, and the intensity of seed purchase in the southern
region. However, in the central region, a 1-year lag of drought shock reduces the intensity of
seed purchase for purchasers. The 2-year lag drought shock increases the probability of seed
purchase in the national sample and increases the likelihood and intensity of seed purchase
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in the northern and southern regions (Table 5). Overall results consistently confirm that past
exposure to drought shocks enhance seed purchasing in the following seasons.

In addition, we also learn that a flood shock (1-year lag) reduces the likelihood of
purchasing seeds in the national sample, central, and southern regions and enhances the
intensity of seed purchasing in the northern region (Table 5). Long-term season average
rainfall enhances the intensity of seed purchase in the national sample and the central
region and both the likelihood and intensity of seed purchase in the southern region
(Table 5). Long-term temperature also significantly enhances seed purchasing decisions in
the southern region.

Table 5. The influence of rainfall shocks on seed purchasing across regions in Malawi.

National Northern Central Southern

VARIABLES Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

Climate risk variables

Growing season drought shock
(1-year lag)

0.069 ***
(0.0200)

−0.025
(0.0475)

0.080 **
(0.0372)

0.065
(0.0854)

0.012
(0.0378)

−0.370 ***
(0.0922)

0.030
(0.0560)

0.377 ***
(0.1225)

Growing season drought shock
(2-year lag)

0.089 ***
(0.0197)

0.031
(0.0432)

0.090 *
(0.0536)

0.257 *
(0.1339)

0.092
(0.0805)

−0.184
(0.1893)

0.141 ***
(0.0425)

0.185 **
(0.0903)

Growing season flood shock
(1-year lag)

−0.102 ***
(0.0184)

0.080
(0.0520)

0.017
(0.0377)

0.255 **
(0.1087)

−0.066 *
(0.0383)

−0.010
(0.1005)

−0.246 ***
(0.0377)

−0.001
(0.1127)

Long-term season average
rainfall (mm)

0.000
(0.0001)

0.001 ***
(0.0003)

−0.000
(0.0002)

0.000
(0.0005)

0.000
(0.0002)

0.002 **
(0.0006)

0.001 **
(0.0002)

0.001 ***
(0.0005)

Long-term season average
temperature (deg)

0.003
(0.0039)

0.012
(0.0088)

−0.003
(0.0111)

0.006
(0.0243)

−0.006
(0.0060)

−0.022
(0.0156)

0.012 **
(0.0052)

0.031 ***
(0.0114)

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes

Sigma constant 0.831 ***
(0.0083)

0.857 ***
(0.0255)

0.861 ***
(0.0160)

0.801 ***
(0.0101)

Survey year dummies Yes Yes Yes Yes Yes Yes Yes Yes
District fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 25,631 11,171 4123 1309 9001 3680 12,507 6182

Notes: Cluster robust standard errors are in parenthesis. Hurdle 1 is a probit regression for the probability of
using purchased agrochemicals while Hurdle 2 is the model for intensity of purchased seeds for purchasers (log
quantity of purchased seed (kg/ha), * p < 0.10, ** p < 0.05, *** p < 0.01.
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Sustainability 2022, 14, 14904 21 of 31

5.2.5. Hired Labor

We present the results from the model of hired labor in Table 6. Results show that
exposure to a 2-year lag of drought shock enhances the likelihood of hiring labor in the
national sample and reduces the intensity of labor hiring for hirers in the southern region
(Table 6). In addition, a 1-year lag flood shock enhances the intensity of labor hire in the
northern region while reducing the chances of labor hire in the central region.

We also learn that long-term rainfall enhances the use and intensity of hired labor use
in the national sample and the chances and intensity of hired labor use in the central and
southern regions. More so, the long-term average temperature reduces the likelihood and
intensity of hired labor use in the national sample, the intensity of hired labor use in the
central region, and the likelihood of using hired labor in the southern region. Additionally,
long-term temperature enhances the intensity of hired labor use in the northern region.

Table 6. The influence of rainfall shocks on hiring labor across regions in Malawi.

National Northern Central Southern

VARIABLES Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

Climate risk variables

Growing season drought shock
(1-year lag)

−0.007
(0.0145)

−0.063
(0.0791)

0.042
(0.0281)

0.183
(0.1349)

−0.039
(0.0284)

−0.112
(0.1557)

−0.019
(0.0413)

0.095
(0.2328)

Growing season drought shock
(2-year lag)

0.031 **
(0.0140)

−0.105
(0.0750)

0.063
(0.0401)

−0.358
(0.2266)

−0.013
(0.0630)

0.289
(0.3195)

0.004
(0.0294)

−0.522 ***
(0.1608)

Growing season flood shock
(1-year lag)

−0.018
(0.0149)

0.145 *
(0.0758)

−0.037
(0.0266)

0.109
(0.1687)

−0.109 ***
(0.0286)

0.041
(0.1615)

−0.018
(0.0325)

0.190
(0.1600)

Long-term season average
rainfall (mm)

0.000 ***
(0.0001)

0.001 *
(0.0004)

0.000
(0.0001)

0.000
(0.0005)

0.000 **
(0.0002)

0.000
(0.0011)

0.000
(0.0002)

0.002 *
(0.0008)

Long-term season average
temperature (deg)

−0.008 **
(0.0031)

−0.027 *
(0.0158)

−0.004
(0.0084)

0.065 *
(0.0367)

−0.002
(0.0053)

−0.051 *
(0.0287)

−0.014 ***
(0.0041)

−0.028
(0.0197)

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes

Sigma constant 0.899 ***
(0.0096)

0.883 ***
(0.0248)

0.901 ***
(0.0169)

0.872 ***
(0.0127)

Survey year dummies Yes Yes Yes Yes Yes Yes Yes Yes
District fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 25,631 4433 4123 706 9001 1678 12,502 2049

Notes: Cluster robust standard errors in parenthesis. Hurdle 1 is a probit regression for the probability of using
hired labor, while Hurdle 2 is the model for intensity of use (log days of hired labor (#/ha), * p < 0.10, ** p < 0.05,
*** p < 0.01.
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0.000 
(0.0005) 
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0.000 
(0.0002) 

0.002 * 
(0.0008) 

Long-term season average tempera-
ture (deg) 

−0.008 ** 
(0.0031) 

−0.027 * 
(0.0158) 

−0.004 
(0.0084) 

0.065 * 
(0.0367) 

−0.002 
(0.0053) 

−0.051 * 
(0.0287) 

−0.014 *** 
(0.0041) 

−0.028 
(0.0197) 

Other control variables Yes Yes Yes Yes Yes Yes Yes Yes 

Sigma constant  
0.899 *** 
(0.0096) 

 
0.883 *** 
(0.0248) 

 
0.901 *** 
(0.0169) 

 
 

0.872 *** 
(0.0127) 

Survey year dummies Yes Yes Yes Yes Yes Yes Yes Yes 
District fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 25,631 4433 4123 706 9001 1678 12,502 2049 
Notes: Cluster robust standard errors in parenthesis. Hurdle 1 is a probit regression for the proba-
bility of using hired labor, while Hurdle 2 is the model for intensity of use (log days of hired labor 
(#/ha), * p < 0.10, ** p < 0.05, *** p < 0.01. 

 
Figure 10. Plotting marginal effects of changes in 1-year lag drought shocks (pos_dshock_overall1), 
2-year lag drought shock (pos_dshock_overall2), 1-year lag flood shock (floodshock_overall1), and 
historical mean rainfall (Rain_histmean (mm)) on the probability (top panel) and intensity of labor 
purchase (bottom panel) by region. 

Figure 10. Plotting marginal effects of changes in 1-year lag drought shocks (pos_dshock_overall1),
2-year lag drought shock (pos_dshock_overall2), 1-year lag flood shock (floodshock_overall1), and
historical mean rainfall (Rain_histmean (mm)) on the probability (top panel) and intensity of labor
purchase (bottom panel) by region.



Sustainability 2022, 14, 14904 22 of 31

5.3. Heterogeneities—Wealth, Gender, and Access to Information

Farming households usually choose climate change adaptation strategies such as input
purchasing mainly as a function of resource endowments (land, household assets, and
labor) at their disposal [48,49]. Having gathered evidence that recent past exposure to
drought shocks largely encourages input purchasing across regions in Malawi, we further
explore the impact of drought shocks in relatively richer and poorer households and male-
vs. female-headed households. The intention is to test whether the impact of drought
shocks is the same for households in different strata of socioeconomic status (wealth and
gender) and access to information regarding input purchasing. We present summarized
results in Tables 7–9.

Table 7. The influence of rainfall shocks on input purchasing by wealth endowments.

All Inputs Fertilizer Agrochemicals Seed Hired labor

Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

High asset endowments

Growing season
drought shock

(1-year lag)

0.093 ***
(0.0253)

0.143 **
(0.0729)

0.065 ***
(0.0243)

0.123 **
(0.0541)

0.065 ***
(0.0124)

0.121
(0.1360)

0.099 ***
(0.0238)

−0.021
(0.0580)

−0.004
(0.0209)

−0.079
(0.0920)

Growing season
drought shock

(2-year lag)

0.110 ***
(0.0249)

0.074
(0.0748)

0.092 ***
(0.0244)

0.129 **
(0.0590)

0.022 **
(0.0107)

−0.030
(0.1422)

0.114 ***
(0.0228)

−0.016
(0.0546)

0.027
(0.0205)

−0.125
(0.0843)

Growing season
flood shock
(1-year lag)

−0.118 ***
(0.0298)

0.281 ***
(0.0739)

0.043 *
(0.0222)

0.046
(0.0573)

−0.029 **
(0.0140)

−0.117
(0.1474)

−0.092 ***
(0.0230)

0.092
(0.0682)

−0.004
(0.0227)

0.104
(0.0849)

Long-term
season average
rainfall (mm)

0.000
(0.0002)

0.002 ***
(0.0005)

0.000
(0.0002)

0.002 ***
(0.0004)

0.000 **
(0.0001)

0.000
(0.0009)

0.000
(0.0001)

0.001 **
(0.0004)

0.000 **
(0.0001)

0.001
(0.0005)

Long-term
season average

temperature (deg)

−0.018 ***
(0.0064)

−0.183 ***
(0.0154)

−0.058 ***
(0.0053)

−0.078 ***
(0.0114)

0.007 ***
(0.0026)

−0.021
(0.0292)

0.002
(0.0048)

0.011
(0.0117)

−0.009 **
(0.0047)

−0.032 *
(0.0182)

Other control
variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Survey year
dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District fixed
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12,815 8334 12,815 5628 12,789 695 12,815 5972 12,815 3217

Low asset endowments

Growing season
drought shock

(1-year lag)

0.010
(0.0273)

0.022
(0.0981)

−0.017
(0.0231)

−0.015
(0.0918)

0.010
(0.0089)

−0.249
(0.2809)

0.023
(0.0269)

−0.050
(0.0755)

−0.004
(0.0158)

−0.006
(0.1255)

Growing season
drought shock

(2-year lag)

0.073 ***
(0.0258)

−0.104
(0.0844)

0.018
(0.0228)

−0.099
(0.0905)

−0.004
(0.0059)

0.020
(0.2918)

0.051 **
(0.0260)

0.095
(0.0618)

0.035 **
(0.0147)

−0.078
(0.1399)

Growing season
flood shock
(1-year lag)

−0.189 ***
(0.0284)

0.263 ***
(0.0865)

−0.003
(0.0206)

0.099
(0.0854)

−0.016 **
(0.0073)

0.393
(0.2861)

−0.111 ***
(0.0233)

0.050
(0.0661)

−0.032 **
(0.0137)

0.252 *
(0.1387)

Long-term
season average
rainfall (mm)

0.000 **
(0.0002)

0.001 **
(0.0005)

0.000
(0.0001)

0.001 **
(0.0005)

0.000
(0.0000)

0.000
(0.0021)

0.000
(0.0001)

0.001 ***
(0.0004)

0.000 *
(0.0001)

0.001
(0.0008)

Long-term
season average

temperature (deg)

−0.010 *
(0.0053)

−0.166***
(0.0168)

−0.043 ***
(0.0045)

−0.111 ***
(0.0154)

0.003 *
(0.0016)

−0.052
(0.0518)

0.003
(0.0049)

0.012
(0.0111)

−0.005 **
(0.0027)

−0.009
(0.0247)

Other control
variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Survey year
dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District fixed
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observation 12,816 6724 12,816 3168 12,075 211 12816 5199 12,796 1216

Notes: Cluster robust standard errors are in parenthesis. Hurdle 1 is a probit regression for the probability
of input purchase while Hurdle 2 is the model for intensity of purchase for purchasers, * p < 0.10, ** p < 0.05,
*** p < 0.01.

From the results, we see that drought shocks (1- and 2-year lags) significantly and
to a greater extent enhance the probability and intensity of input purchasing in general,
particularly for key inputs (fertilizer, seed, and agrochemicals) in the group of relatively
richer households compared to their poorer counterparts (Table 7). The implication is that
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wealthier households are more likely to purchase inputs following exposure to drought
shocks, unlike their poorer counterparts.

Table 8. The influence of rainfall shocks on input purchasing by gender of household head.

All Inputs Fertilizer Agrochemicals Seed Hired Labor

Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

Female-Headed

Growing season
drought shock

(1-year lag)

0.030
(0.0309)

0.017
(0.1108)

−0.030
(0.0262)

0.043
(0.1007)

0.005
(0.0072)

−0.063
(0.3538)

0.020
(0.0315)

−0.053
(0.0782)

0.006
(0.0205)

0.158
(0.1404)

Growing season
drought shock

(2-year lag)

0.137 ***
(0.0279)

−0.066
(0.0995)

0.045 *
(0.0231)

0.079
(0.1073)

0.009
(0.0070)

0.275
(0.2801)

0.147 ***
(0.0284)

−0.042
(0.0760)

0.009
(0.0177)

0.009
(0.1340)

Growing season
flood shock
(1-year lag)

−0.153 ***
(0.0319)

0.236 **
(0.1189)

−0.006
(0.0240)

0.082
(0.1169)

−0.027 **
(0.0133)

−0.815 *
(0.4882)

−0.127 ***
(0.0313)

0.052
(0.0996)

−0.005
(0.0207)

0.329 **
(0.1525)

Long-term
season average
rainfall (mm)

−0.000
(0.0001)

0.001
(0.0005)

−0.000
(0.0001)

0.000
(0.0005)

−0.000**
(0.0000)

0.002 *
(0.0010)

−0.000
(0.0001)

0.000
(0.0004)

0.000 ***
(0.0001)

0.000
(0.0005)

Long-term
season average

temperature (deg)

−0.015 ***
(0.0041)

−0.187 ***
(0.0144)

−0.050 ***
(0.0033)

−0.111 ***
(0.0146)

0.006 ***
(0.0013)

0.085 ***
(0.0328)

0.007 *
(0.0040)

0.015
(0.0098)

−0.005 **
(0.0028)

−0.020
(0.0177)

Other control
variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Survey year
dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District fixed
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7432 3820 7432 1863 7432 146 7432 2879 7432 1096

Male-headed

Growing season
drought shock

(1-year lag)

0.049 **
(0.0225)

0.185 ***
(0.0652)

0.051**
(0.0230)

0.101 **
(0.0504)

0.022 **
(0.0090)

0.005
(0.1281)

0.036 *
(0.0220)

−0.009
(0.0494)

−0.014
(0.0167)

−0.121
(0.0934)

Growing season
drought shock

(2-year lag)

0.092 ***
(0.0234)

0.023
(0.0659)

0.037*
(0.0220)

0.064
(0.0587)

0.011
(0.0082)

−0.142
(0.1133)

0.108 ***
(0.0212)

0.116 **
(0.0454)

0.036 **
(0.0159)

−0.238 ***
(0.0836)

Growing season
flood shock
(1-year lag)

−0.173 ***
(0.0280)

0.280 ***
(0.0687)

0.033
(0.0205)

0.017
(0.0567)

−0.031 ***
(0.0121)

−0.040
(0.1416)

−0.132 ***
(0.0207)

0.049
(0.0574)

−0.037 **
(0.0169)

0.045
(0.0850)

Long-term
season average
rainfall (mm)

−0.000
(0.0001)

0.001 ***
(0.0003)

0.000
(0.0001)

0.001 ***
(0.0002)

−0.000
(0.0000)

0.001 **
(0.0005)

−0.000
(0.0001)

0.001 ***
(0.0002)

0.000 ***
(0.0001)

0.001 ***
(0.0004)

Long-term
season average

temperature (deg)

−0.015 ***
(0.0035)

−0.179 ***
(0.0090)

−0.063 ***
(0.0029)

−0.091 ***
(0.0076)

0.013 ***
(0.0014)

0.033 *
(0.0185)

0.007 **
(0.0028)

0.016 ***
(0.0063)

−0.002
(0.0023)

−0.045 ***
(0.0110)

Other control
variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Survey year
dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District fixed
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observation 18,199 11,238 18,199 6933 18,199 760 18,199 8292 18,199 3337

Notes: Cluster robust standard errors are in parenthesis. Hurdle 1 is a probit regression for the probability
of input purchase while Hurdle 2 is the model for intensity of purchase for purchasers, * p < 0.10, ** p < 0.05,
*** p < 0.01.

Comparing the results in male- and female-headed households provides additional
insights. From the results, we see that drought shocks (1- and 2-year lags) significantly
enhance the probability and intensity of input purchasing in general, particularly for
key inputs (fertilizer, seed, and agrochemicals) in male-headed households compared to
female-headed households (Table 8).
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Table 9. The influence of rainfall shocks on input purchasing by access to information.

All Inputs Fertilizer Agrochemicals Seed Hired Labor

Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2 Hurdle1 Hurdle2

Access to information

Growing season
drought shock

(1-year lag)

0.072 ***
(0.0205)

0.274 ***
(0.0664)

0.071 ***
(0.0219)

0.176 ***
(0.0514)

0.024 ***
(0.0086)

0.079
(0.1251)

0.042 *
(0.0218)

−0.018
(0.0488)

−0.004
(0.0161)

0.033
(0.0898)

Growing season
drought shock

(2-year lag)

0.136 ***
(0.0231)

0.018
(0.0684)

0.076 ***
(0.0226)

0.021
(0.0662)

0.010
(0.0084)

−0.149
(0.1190)

0.145 ***
(0.0232)

0.052
(0.0501)

0.029 *
(0.0161)

−0.087
(0.0869)

Growing season
flood shock
(1-year lag)

−0.106 ***
(0.0305)

0.299 ***
(0.0821)

0.052 **
(0.0241)

0.023
(0.0715)

−0.036 ***
(0.0137)

0.006
(0.1722)

−0.126 ***
(0.0266)

0.082
(0.0661)

−0.006
(0.0197)

0.162 *
(0.0983)

Long-term
season average
rainfall (mm)

−0.000
(0.0001)

0.001 ***
(0.0003)

0.000
(0.0001)

0.001 ***
(0.0002)

−0.000 *
(0.0000)

0.002 ***
(0.0005)

−0.000
(0.0001)

0.001 ***
(0.0002)

0.000 ***
(0.0001)

0.001 **
(0.0004)

Long-term
season average

temperature (deg)

−0.014 ***
(0.0033)

−0.169 ***
(0.0096)

−0.057 ***
(0.0030)

−0.093 ***
(0.0084)

0.012 ***
(0.0015)

0.060 ***
(0.0189)

0.005 *
(0.0030)

0.024 ***
(0.0065)

−0.002
(0.0022)

−0.046 ***
(0.0113)

Other control
variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Survey year
dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District fixed
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 16,152 10,065 16,152 6059 16,152 670 16,152 7468 16,152 3033

No access to information

Growing season
drought shock

(1-year lag)

−0.022
(0.0368)

−0.164
(0.1174)

−0.068 **
(0.0303)

−0.113
(0.0953)

0.005
(0.0094)

−0.176
(0.2762)

0.003
(0.0363)

−0.018
(0.0906)

−0.022
(0.0246)

−0.257 *
(0.1500)

Growing season
drought shock

(2-year lag)

0.059 *
(0.0308)

−0.038
(0.0941)

−0.020
(0.0249)

0.136
(0.0836)

0.015 *
(0.0079)

−0.067
(0.1936)

0.083 ***
(0.0283)

0.102
(0.0685)

0.035 *
(0.0199)

−0.366 ***
(0.1242)

Growing season
flood shock
(1-year lag)

−0.239 ***
(0.0304)

0.195 **
(0.0950)

−0.007
(0.0217)

−0.005
(0.0785)

−0.025 **
(0.0102)

−0.241
(0.1923)

−0.141 ***
(0.0244)

−0.001
(0.0707)

−0.052
***

(0.0190)

0.037
(0.1323)

Long-term
season average
rainfall (mm)

0.000
(0.0001)

−0.000
(0.0004)

−0.000 *
(0.0001)

0.000
(0.0004)

−0.000
(0.0000)

0.001
(0.0009)

−0.000
(0.0001)

0.001 **
(0.0003)

0.000 ***
(0.0001)

0.001
(0.0005)

Long-term
season average

temperature (deg)

−0.016 ***
(0.0046)

−0.210 ***
(0.0133)

−0.064 ***
(0.0034)

−0.104 ***
(0.0123)

0.009 ***
(0.0015)

−0.002
(0.0286)

0.009 **
(0.0037)

0.004
(0.0097)

−0.005 *
(0.0031)

−0.028
(0.0173)

Other control
variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Survey year
dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

District fixed
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9479 4993 9479 2737 9479 236 9479 3703 9479 1400

Notes: Cluster robust standard errors are in parenthesis. Hurdle 1 is a probit regression for the probability
of input purchase while Hurdle 2 is the model for intensity of purchase for purchasers, * p < 0.10, ** p < 0.05,
*** p < 0.01.

Furthermore, when we compare the impact of climate risk variables, particularly
drought shocks, on decisions to invest in commercial inputs through purchase, we establish
that, for farmers with access to agricultural information, lagged drought shocks largely
enhance input purchase decisions (in general and for specific inputs, e.g., fertilizer, agro-
chemicals, seed, and labor) (Table 9). However, for those without access to information, the
relationships are mostly insignificant and, in some cases, negative (e.g., 1-year lag drought
shock on fertilizer purchase) compared to those with access to information (Table 9).

6. Discussion

We discuss our key findings on the influence of covariate rainfall shocks in stimulating
commercial input purchasing in heterogeneous settings in Malawi and derive implications
for input market developments that can support climate change adaptation in smallholder
agriculture. From the study, we can reveal a few relevant findings for discussion: (i) First,
we gather overwhelming evidence that recent past exposure to drought shocks has largely
encouraged input purchasing across regions in general, particularly for agrochemicals,
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fertilizer, seed, and labor. Drought and flood shocks are confirmed key determinants of
commercial input purchasing by objective and subjective measures of rainfall shocks. Input
purchase decisions appear more responsive to climate risk variables in the drier southern
and central regions than in the northern region. However, in some instances, we have
established that drought shocks, although they enhance the likelihood of input purchasing,
also reduce purchase intensity. For instance, we established that drought shocks reduce
the intensity of input purchasing in the northern region and the intensity of labor hiring in
the southern region. (ii) Second, we also establish that drought and flood shocks do not
necessarily prompt similar responses in input purchasing decisions by farmers. We learn
that flood shocks reduce the likelihood of purchasing some inputs, for example seeds, in all
the regions but enhance the intensity of purchase in some regions, e.g., the northern region.
(iii) Third, we have established that relatively richer households with access to information
and male-headed households are more likely to purchase inputs following drought shock
exposure when compared to their opposite counterparts.

6.1. Impact of Rainfall Shocks on Input Purchasing Decisions in Different Regions in Malawi
6.1.1. Inorganic Fertilizers

Based on the findings, particularly the national sample results, we could not reject
our hypothesis that previous exposure to drought shocks enhance fertilizer purchasing
in the following seasons in Malawi. Access to inorganic fertilizers through purchasing
is beneficial in helping farmers adapt to climate change. Given the devastating effects
of the continued exposure to drought shocks coupled with poor soil fertility on crop
yields and food insecurity [63], farmers are willing to invest in inorganic fertilizers to
stabilize and/or reduce the risk of total crop failure under rainfall stress. Our findings
corroborate the available literature that has demonstrated that investment in integrated
soil fertility management (ISFM) technologies protect against climate risk; in particular,
previous exposure to dry spells influences the use of ISFM in Malawi [25]. Inorganic
fertilizer purchasing becomes more important under a changing climate as it complements
on-farm organic fertilizer sources such as manure that may become less reliable with
increased climate variability (e.g., manure production could fall on the farm due to possible
loss of livestock due to diseases and pests that may arise with extreme weather events).
Furthermore, access to purchased inorganic fertilizers also allows farmers to implement
climate-resilient micro-dosing fertilizer application techniques proven to offer sufficient
nutrition in highly degraded soil in a sustainable fashion [41,42].

However, heterogeneity in the influence of drought shocks in studied regions and
the effects of drought and flood shocks on fertilizers provide additional insights. Drought
shocks were found to reduce the chances of fertilizer purchase in the northern region, while
flood shocks enhanced the intensity of fertilizer purchasing. These contrasting findings
could be linked to different climate and agro-ecological conditions in the northern compared
to the central and southern regions and the heterogeneity in possible shock responses to
innovative technology adoption. Farmers in the northern region generally experience
comparably higher rainfall conditions and cooler temperatures (Figures 1 and 4), which
could explain the heterogeneities. Additionally, drought shocks can significantly reduce
farmers’ purchasing power, limiting the chances of purchasing fertilizers after drought
shock exposure. On the contrary, flood shocks experienced in prior seasons could stimulate
the purchase of more inorganic fertilizers in the following seasons when flood shocks are
anticipated due to the possibility of fertilizer leaching with excessive rain, a phenomenon
common in regions that receive more rainfall, such as the case in the northern region.

6.1.2. Agrochemicals

Despite agrochemical input purchasing being a less common practice in the studied
sample, we could not reject our hypothesis that past exposure to drought shocks in the
national sample and all studied regions promotes agrochemical purchasing in the following
seasons. Crop production, particularly maize production in Malawi, is highly susceptible
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to drought shocks and increased pest attacks. Therefore, farmers are willing to invest in
modern crop protection methods to minimize yield losses from pest attacks. This notion is
plausible given that climate variability and change have been associated with increased
crop pests and diseases [36], which demand stern efforts in managing through agrochemical
use. Using some examples from Malawi, we learn that, in some parts of the country, e.g.,
the Mwansambo area from the central region, rainfall variability in the form of dry spells
has been associated with increased fall armyworm infestations in maize fields [37]. Thus,
investment in agrochemical use may help farmers deal with increased pest attacks that are
probable with amplified rainfall variability, hence offering adaptation to climate change.

On the contrary, positive rainfall deviations are found to reduce agrochemical pur-
chasing. A possible explanation could be that past exposure to positive rainfall deviations
probably did not bring severe problems with pest and disease attacks, causing them to
be reluctant to invest in purchasing agrochemicals when they anticipate flood shocks in
the future. However, given the limited rates of purchasing agrochemicals in the analyzed
sample, future research is needed to explore this aspect further.

6.1.3. Seed

We could not reject our hypothesis that previous exposure to drought shocks encour-
ages seed purchasing in the following seasons. The result could be explained by the fact
that although farmers in developing regions, such as Malawi, often rely on farmer-saved
seeds, exposure to drought shocks in prior seasons increase the demand for purchased
seeds [12,64]. This notion is also supported by the fact that using on-farm seed sources
alone with an increased climate risk may render crop yields more vulnerable [38], which
calls for the diversification of farmer-saved seeds with seeds sourced from other channels.
For instance, in Malawi, drought-tolerant maize varieties have been proven to enhance the
resilience of maize yields to climate stress [39,40]. The implication is that access to pur-
chased seeds may allow smallholder farmers to diversify their conventional seed varieties
with other resilient varieties available on the market.

In addition, flood shocks were found to reduce the likelihood of purchasing seed
in the national sample, particularly the central and southern regions, but also enhance
the intensity of purchase in the northern region. The results could largely be explained
by the fact that positive rainfall deviations (flood shocks) may lead to more possibilities
than constraints regarding seed production and saving seeds from harvest for use in the
following seasons. Positive rainfall deviations in the recent past may support the possibility
of producing enough seeds by farmers, which are saved for use in the following seasons.
The contrasting result of flood shocks in the northern region could be explained by the
fact that anticipated favorable rainfall deviations (flood shocks) encourage intensified crop
production in the same way as drought shocks.

6.1.4. Hired Labor

On the one hand, drought shocks enhance labor hiring in the national sample and the
intensity of labor hiring in the southern region. On the other hand, flood shocks enhance
the intensity of labor hire in the northern region while reducing the chances of labor hire
in the central region. We failed to reject our hypothesis based on the national sample that
previous drought shock exposure enhances the demand for hired labor in the following
seasons. This notion could be explained by the idea that adapting to climate change may
require supplementing family labor with off-farm labor. Supplementing family labor can
be beneficial when the household faces labor shortages in general or when new skills are
required to effectively implement innovations or technologies relevant for climate change
adaptation. For instance, climate-smart practices such as (manual) conservation agriculture
(CA) practices (implementing conservation agricultural practices on larger farms, which
often includes the digging of planting basins and manual weeding using hand hoes that
require more labor than conventional plough-based farming) were previously reported
to increase labor demand at the household level [43,65], thus increasing the need to hire
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laborers off-farm. However, due to the possible effects of drought shocks on reducing
purchasing power by households, it is also possible that drought shocks can lessen the
intensity of labor hiring, as we found in the southern region. Additionally, the result from
the northern region that portrays positive rainfall deviations (flood shocks) to stimulate the
enhanced intensity of labor hiring could imply that in the northern region, positive rainfall
deviations create possibilities rather than limitations for enhanced labor hiring in coming
seasons, as found with other inputs (e.g., seed, fertilizer).

6.2. Asset Wealth, Gender, and Information Access Heterogeneities

The result indicating that richer households are more likely to purchase inputs and to
a greater extent following drought shock exposure than their poorer counterparts reveal
that poorer households are more vulnerable to drought shocks. This finding aligns with the
literature that considers household wealth endowments as an essential cushion for rural
households against shocks [48,49,66,67]. Households better endowed with assets are more
resilient to shocks and have higher chances of buying inputs post-shock exposure to help
them deal with shocks in the coming seasons. Additionally, female-headed households,
especially those in single relationships with fewer assets, are more vulnerable to shocks
as they are less likely to purchase inputs in response to rainfall shocks. The results here
could confirm the existence of gender disparities in climate change vulnerability emanating
from both endowment and structural factors [52,68]. Female-headed families in the sample
have fewer assets (land and non-land assets), low access to information, and access to
borrowed credit. These could be some mechanisms behind their impaired response to
shocks compared to male-headed households. More research is needed to further investigate
the mechanisms (and their interactions) through which the gender disparities in input
purchasing as a response to climate shocks arise. Additionally, access to information reduces
transaction costs associated with the search, negotiation, and access to inputs from available
markets [44,69,70], which explains why farmers with access to information were found to
respond more positively to previous drought shock exposure compared to their counterparts.

7. Conclusions and Implications for Policy

From the results, we can conclude that input purchasing decisions are responsive
to rainfall variability and recent shocks. This conclusion is true when objectively or sub-
jectively measured rainfall shock variables are used. Having access to inputs through
local markets helps smallholder farmers adjust their input mix to adapt and/or cope with
climate risk. Access to inputs through purchase brings the necessary diversity in input
options that the farmers need to adapt to shocks. Given the persistent exposure of farmers
to rainfall shocks, particularly drought shocks in Malawi, leading to severe crop failure,
mostly in drier central and southern regions [32], coupled with weak or missing agricul-
tural insurance markets, our findings bear significant implications for climate resilience.
Improving resilience to climate change in agriculture will require farmers to access risk-
substituting inputs through purchase or other channels. Policy efforts should enhance or
encourage active participation through public and private marketing institutions in local
input distribution and marketing to improve the availability of diverse agricultural inputs
that will eventually support the scaling success of climate adaptation efforts. Given that it is
mainly the better-endowed, male-headed households, and those with access to information
that have a higher propensity and tenacity to invest in purchased inputs, policy interven-
tions aiming to enhance household resilience to climate shocks must be inclusive of the
most vulnerable population (including poor and female-headed households) and enhance
access to climate information services. Additionally, given the inter-regional variations in
biophysical factors, socioeconomic development, and environmental conditions prompting
different responses to shocks, policy efforts must consider having different development
needs and priorities for specific regions.

Through its National Agricultural Policy (NAP) (GOM 2016a), the government of
Malawi supports climate change adaptation in agriculture by promoting climate-smart
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agriculture (CSA). This is also evidenced in the recently launched National Agriculture
Investment Plan (NAIP), which is now the main implementation vehicle for NAP, in which
“resilient livelihoods and agricultural systems” is one of the four programs. Malawi’s National
Agriculture Investment Plan (NAIP) has four programs: (1) policies, institutions, and coor-
dination, (2) resilient livelihoods and agricultural systems, (3) production and productivity,
and (4) markets, value addition, trade and finance, all targeted at transforming agriculture.
Adaptation to shocks is evidently a key target for policy. Findings from this study support
market development-related interventions that will enhance the supply of inputs in local
markets (supply-side efforts). They deserve elevated attention and continuous updates in
current CSA policies to help accelerate adaptation to climate change. In addition, demand-
side efforts are needed to enhance both the physical and economic access to inputs for
smallholder farmers through the market. For instance, scaling up quality extension services,
access to credit, and other economic empowerment efforts that promote household asset
build-up may help farmers use the market for adaptation effectively.

Given that Malawi has an already active agricultural input subsidy program assisting
farmers in accessing inputs, it is imperative to mention that developing local input markets
will complement such government efforts and help effect climate change adaptation.

Overall, the objective of promoting market growth is to ensure that farmers have access
to a dynamic and diverse set of inputs that can provide them with the autonomy to respond
to adverse climate change and enhance productivity and food security in a changing climatic
environment. These recommendations primarily apply to Malawi but may also be relevant
for neighboring countries facing similar conditions in persistent exposure to climate shocks
with ravaging implications on agricultural productivity and food security.
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