
Citation: Chen, Y.; Li, M.

An Effective Online Sequential

Stochastic Configuration Algorithm

for Neural Networks. Sustainability

2022, 14, 15601. https://doi.org/

10.3390/su142315601

Academic Editors: Miltiadis D. Lytras

and Andreea Claudia Serban

Received: 18 October 2022

Accepted: 16 November 2022

Published: 23 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

An Effective Online Sequential Stochastic Configuration
Algorithm for Neural Networks
Yuting Chen and Ming Li *

Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University,
Jinhua 321004, China; yuting@zjnu.edu.cn
* Correspondence: zjnu.ieta@gmail.com

Abstract: Random Vector Functional-link (RVFL) networks, as a class of random learner models,
have received careful attention from the neural network research community due to their advantages
in obtaining fast learning algorithms and models, in which the hidden layer parameters are randomly
generated and remain fixed during the training phase. However, its universal approximation ability
may not be guaranteed if the random parameters are not properly selected in an appropriate range.
Moreover, the resulting random learner’s generalization performance may seriously deteriorate once
the RVFL network’s structure is not well-designed. Stochastic configuration (SC) algorithm, which
incrementally constructs a universal approximator by obtaining random hidden parameters under
a specified supervisory mechanism, instead of fixing the selection scope in advance and without
any reference to training information, can effectively circumvent these awkward issues caused by
randomness. This paper extends the SC algorithm to an online sequential version, termed as an OSSC
algorithm, by means of recursive least square (RLS) technique, aiming to copy with modeling tasks
where training observations are sequentially provided. Compared to the online sequential learning
of RVFL networks (OS-RVFL in short), our proposed OSSC algorithm can avoid the awkward setting
of certain unreasonable range for the random parameters, and can also successfully build a random
learner with preferable learning and generalization capabilities. The experimental study has shown
the effectiveness and advantages of our OSSC algorithm.

Keywords: stochastic configuration algorithm; random vector functional-link (RVFL) networks;
online sequential learning; neural networks with random weights

1. Introduction

Neural networks have received careful attention with the development of artificial
intelligence by virtue of their ‘black-box’ capability in model approximation via a data-
driven manner [1–4]. It commonly known that the primary way for training a neural
network with fixed architecture is the back-propagation (BP) algorithm, which has become
one of the main driving forces in deep learning domains [5]. However, it is generally
accepted that the BP algorithm has certain drawbacks in different perspectives: (1) the
effectiveness of the BP algorithm to some extent relies on the design of network architecture.
However, it is generally difficult to predefine an optimal architecture for a given task.
The commonly used way for designing the network architecture is the trial-and-error
method, which is time-consuming and potentially impacts the effectiveness of the resulting
model; (2) it suffers from several issues such as the weight initialisation, local minima, and
sensitivity of the learning performance with respect to the learning rate setting. Empirically,
this gradient-based learning method could not produce meaningful or interpretable internal
representations from each hidden outputs [6]; (3) it usually tends to be trained slowly when
all of the neural network parameters must be iteratively tuned from scratch.

Randomized algorithms for training neural networks have been explored and de-
veloped since the 1980s [7,8] and well discussed in the early- to mid-1990s [9–13]. It is

Sustainability 2022, 14, 15601. https://doi.org/10.3390/su142315601 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142315601
https://doi.org/10.3390/su142315601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su142315601
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142315601?type=check_update&version=2

Sustainability 2022, 14, 15601 2 of 17

empirically verified that neural networks with random weights (NNRWs) are computation-
ally efficient since their input weights are randomly assigned and remain fixed during the
training process. There are many different formulation/concepts related to NNRWs [14,15],
such as Random Vector Functional-link (RVFL) network [11–13], Random Kitchen Sinks
(RKS) [16], Random Features for Kernel Machines (RFKM) [17], Stochastic Configuration
Networks (SCN) [18], etc. A fundamental issue for NNRWs is that of whether or in which
perspective the randomized learner model has universal approximation capability (UAC),
which is the most important theoretical basis for algorithm implementation. In particular,
the UAC of RVFL networks has been theoretically verified in [13] and further refined in [19].
Both the approximation and estimation error bounds are proved for RKS in [16]. These
theoretical results, however, only ensure that there exists suitable random distribution P
such that a randomized neural network with the weights and biases randomly selected
from P has universal approximation capability in the sense of probability. Given a training
dataset, as for the algorithm implementation in practice, it is not trivial to set a proper
distribution (range) for problem solving. In other words, once the random distribution is
not reasonably pre-defined, the universal approximation of the randomized neural network
model cannot be ensured [20–22]. To the best of our knowledge, SCN [18] is the first work
that constructs effective NNRWs by stochastically configuring the hidden weights and
biases according to a data-dependent supervisory mechanism. Importantly, the universal
approximation theory of SCN is guaranteed in a deterministic way, and, in comparison with
RVFL networks, its favorable capability and good potential in dealing with both regression
and classification problems has been well verified in various scenarios [23–28]. In this
work, therefore, we focus on the extension of SCN, and the RVFL network is considered as
a baseline.

In some domains, such as industry, finance, meteorology, etc., the data samples are
collected in a sequential/streaming manner, that is, samples are available via the one-by-one
or chunk-by-chunk way. In addition, in some applications, batch learning algorithms are
not suitable, as the process of retraining, whenever new data are received, is impractical for
problem-solving. Under this problem formulation, in this paper, we aims to further extent
the framework of SCN, which is formulated in batch mode (i.e., considering all the available
data at once), to be capable for building randomized neural networks with sequential
training data. In particular, an effective Online Sequential Stochastic Configuration (OSSC)
algorithm is proposed for problem-solving. The whole process of the OSSC algorithm can
be formulated by two main steps: (i) initialization phase, where the stochastic configuration
algorithm [18] is applied to construct a base (initial) random learner model with generally
acceptable (initial) approximation error; (ii) sequential updating phase, where the widely-
used recursive least square (RLS) approach is performed for the purpose of renewing
recursively the output weights of the initial model. The algorithmic convergence can be
guaranteed, provided that the initialization phase is successfully processed. To highlight
the effectiveness of OSSC, we also summarize some remarks to present the advantages of
OSSC over the baseline OS-RVFL (i.e., a straightforward/trivial extension of RVFL network
to its online sequential learning version). Extensive experimental studies, including two
synthetic examples for 1D function approximation, one example for nonlinear dynamic
system modeling, one example of Mackey–Glass time-series prediction, and one case study
for foreign exchange rate forecasting application, are conducted to demonstrate the merits
of our proposed OSSC, in comparison with OS-RVFL. We also provide a robustness analysis
to study empirically the influence of chunk size on the model’s performance. All of the
experimental results show clearly the fact that OSSC is effective and has a good potential
for dealing with sequential data modeling tasks.

In summary, our contributions are as follows:

• An effective Online Sequential Stochastic Configuration (OSSC) algorithm is proposed
for training neural networks with sequential training data. As a favorable randomized
learner model, OSSC further supplements the variants of SCNs [18];

Sustainability 2022, 14, 15601 3 of 17

• Based on the extensive experimental studies, where OSSC is compared with OS-
RVFL on several online learning tasks, we uncover certain uncertainty issues and also
provide some useful clues, which are empirically beneficial for interested readers to
have a clear and accurate understanding about developing online version of neural
networks with random weights.

The remainder of this paper is organized as follows: Section 2 briefly reviews RVFL
networks. Section 3 recalls the stochastic configuration framework with both theoretical and
algorithmic description. An effective Online Sequential Stochastic Configuration (OSSC)
algorithm is proposed in Section 4. Extensive experimental investigations are provided
in Section 5. Finally, Section 6 concludes this work and gives further expectations for
future work.

2. Basics of RVFL Networks

RVFL networks can be treated as a class of random learner models with a remarkable
feature that the input weights and biases are randomly selected and remain fixed during
the training phase. In this paper, we only consider RVFL networks without a direct link
from the input to the output, which is equivalent to a single hidden layer feedforward
neural network (SLFN) that can be mathematically described as

GL(x; w, b) =
L

∑
j=1

β jg(wT
j x + bj),

where L is the number of hidden nodes, x = [x1, x2, . . . , xd]
T ∈ Rd is the input vector, g

is the activation function, bk ∈ R is the bias, wj = [wj1, wj2, . . . , wjd]
T ∈ Rd is the input

weight, β j ∈ R is the output weight connecting the j-th hidden node and the output node.
Now, we briefly describe the learning process for RVFL networks. Assume that we are
given a training set {xi, ti} with N samples of the target function (i = 1, 2, . . . , N), xi ∈ Rd,
ti ∈ R. Remember that wk and bk are randomly selected and fixed in the training phase;
therefore, the learning objective is to solve the following optimization problem:

min
β1,...,β j

N

∑
i=1

(
L

∑
j=1

β jg(wT
j xi + bj)− ti

)2

,

which is equivalent to a standard least square (LS) problem

β∗ = arg min
β∈RL

‖Hβ− T‖2
2

where

H =

 g(wT
1 x1 + b1) · · · g(wT

Lx1 + bL)
... · · ·

...
g(wT

1 xN + b1) · · · g(wT
LxN + bL)

is the hidden layer output matrix, T = [t1, t2, . . . , tN]

T, β = [β1, β2, . . . , βL]
T. Finally, a close

form solution of the output weights can be obtained by using the pseudo-inverse method,
i.e., β∗ = H†T.

In passing, the universal approximation theorem of RVFL networks [13,19] can only
ensure that there exists a certain appropriate range for randomly assigning the hidden
parameters rather than totally independent with the training information, indicating the
fact that the random selection scope for the input weights and biases has a significant impact
on the random learner’s performance. In other words, a trivial range [−1, 1] for randomly
assigning input weights and biases may fail in leading to a universal approximator. Indeed,
an inappropriate selection scope from which the hidden parameters are randomly generated
will incur very bad learning and generalization performance. Li and Wang [21] have

Sustainability 2022, 14, 15601 4 of 17

addressed some ‘risky’ aspects caused by the randomness, revealing some practical issues
and pitfalls when using this kind of random learner model. These ‘risky’ aspects may
still exist and/or cause outrageous results in the process of applying a sequential learning
framework for RVFL networks, in the case that training observations are sequentially
provided. This motivates us to find a better online learning system by reconsidering
the stochastic configuration algorithm that has sufficient effectiveness in constructing a
random learner with good learning and generalization capabilities [18], as delineated in
the next section.

3. Revisit of the Stochastic Configuration Algorithm

In [18], stochastic configuration algorithms were proposed to circumvent those awk-
ward issues in applying RVFL networks, by incrementally constructing an universal ap-
proximator with random hidden parameters found on the basis of specified supervisory
mechanism. The selection scope for the hidden parameters is determined randomly but
with an objective to decrease the residual error incrementally, instead of being fixed in
advance. The simulation results in [18] have shown the merits of the SC algorithm in
comparison with some existing RVFL-based randomized algorithms.

Here, we revisit the constructive process of the SC framework, followed by the restate-
ments of both the theoretical and algorithmic results. Let L2(D) denote the space of all
Lebesgue-measurable vector-valued functions f : Rd → R on a compact set D ⊂ Rd, with
the L2 norm defined as ‖ f ‖2 := (

∫
D | f (x)|2dx)1/2 < ∞. For a target function f : Rd → R,

assume a single layer feed-forward network (SLFN) with L− 1 hidden nodes (L = 1, 2, . . .)
have already been constructed, that is, fL−1(x) = ∑L−1

j=1 β jgj(wT
j x + bj) (f0 = f). If the

current residual error denoted as eL−1 = f − fL−1 is still unacceptable, the SC framework
is concerned with how to add βL, gL (wL and bL) leading to fL = fL−1 + βLgL until the
residual error eL = f − fL is suitable for the given task, that is, ‖eL‖ is smaller than an
expected specific tolerance ε.

Theorem 1 ([18]). Given that span (Γ) is dense in L2 and ∀g ∈ Γ, 0 < ‖g‖ < b for some b ∈ R+.
Given 0 < r < 1 and a nonnegative real number sequence, {µL} with limL→+∞ µL = 0 and
µL ≤ (1− r). For L = 1, 2, . . ., denote a factor

δL = (1− r− µL)‖eL−1‖2
2 > 0. (1)

If gL is selected to satisfy
〈eL−1, gL〉2 ≥ b2δ∗L, (2)

and

β∗ = arg min
β
‖ f −

L

∑
j=1

β jgj‖2 (3)

then
lim

L→+∞
‖ f − f ∗L‖2 = 0,

where f ∗L = ∑L
j=1 β∗j gj.

Given a training set with inputs X = {x1, x2, . . . , xN}, xi = [xi,1, . . . , xi,d]
T ∈ Rd and

outputs T = [t1, t2, . . . , tN]
T, i = 1, . . . , N. We denote eL−1(X) = [eL−1(x1), . . . , eL−1(xN)]

T ∈
RN as the corresponding residual error vector before the L-th new hidden node is added.
The hidden layer output matrix (with L hidden nodes) can be formulated as H(L) =
[h1, h2, . . . , hL], where hL(X) = [gL(wT

Lx1 + bL), gL(wT
Lx2 + bL), . . . , gL(wT

LxN + bL)]
T is the

activation of the new hidden node for each input xi, i = 1, 2, . . . , N. In practice, we use
ξL = ((eL−1(X)T · hL(X))2/(hL(X)T · hL(X)) − (1 − r − µL)eL−1(X)TeL−1(X)) as a con-
sistent estimate version of Equation (2). With these notations, the detailed stochastic
configuration algorithm [18] is summarized as the following Algorithm 1.

Sustainability 2022, 14, 15601 5 of 17

Algorithm 1: SC

Given inputs X = {x1, x2, . . . , xN}, xi ∈ Rd and outputs T = {t1, t2, . . . , tN}, ti ∈ R. Set
maximum number of hidden neurons Lmax, expected error tolerance ε, maximum times
of random configuration Tmax. Choose 0 < r < 1, and a set of the scale parameters
Υ .
= {λ1 : ∆λ : λmax} in sigmoid

1. Initialize e0 := [t1, t2, . . . , tN]
T, denote two empty sets Ω and W;

2. For L = 1, 2, . . . , Lmax, Do
3. For λ ∈ Υ, Do
4. For k = 1, 2 . . . , Tmax, Do
5. Randomly select ωL and bL from [−λ, λ]d and [−λ, λ]
6. Calculate hL and ξL. Set µL = 1−r

L+1
7. If ξL ≥ 0
8. Save wL and bL in W, ξL in Ω, respectively;
9. Else go back to Procedure 4
10. End For (corresponds to Procedure 4)
11. If W is not empty
12. Break
13. End If
14. End For (corresponds to Procedure 3)
15. If W is empty
16. Reset r := r + (1− r)/2 and return to Procedure 3;
17. Else find w∗L, b∗L that maximize ξL in Ω
18. Calculate H(L), β∗ = (H(L))†T, and eL = eL−1 − β∗Lh∗L
19. If ‖eL‖2 ≤ ε
20. Return β∗, ω∗, and b∗;
21. Else go back to Procedure 2
22. End For (corresponds to Procedure 2)

It should be noted that the vanilla version of the Algorithm 1 is a batch mode that
considers all the available data at once during the training process, which in other words
can be viewed as a batch learning algorithm. However, when new data samples are
received, one needs to retrain the whole model from scratch using the SC algorithm again,
which is impractical for some real-world applications with special concerns on real-time
processing. For problem-solving, it is necessary to extend the current Algorithm 1 to a more
advanced one that supports sequential learning, which allows iteratively updating the
model’s trainable parameters (on the basis of the parameters obtained in the last iteration
session), instead of retaining the whole model, when new data samples are available via the
one-by-one or chunk-by-chunk way. We detail the proposed new variant of SC algorithm
in the following section.

4. Online Sequential Stochastic Configuration Algorithm

In this section, the SC algorithm is generalized into a sequential learning version, by
executing the widely-used recursive least square (RLS) approach. We will first provide
the mathematical deduction step by step to finalize the iteration equations for the output
weights. Then, the whole procedures are summarized as the Algorithm 2 OSSC, followed
by further comments about its inherent superiority over the OS-RVFL algorithm, that is, a
similar sequential learning method that uses RVFL networks as a base model during the
online training process.

The whole process can be formulated by two main steps including initialization phase
and sequential updating phase, where the Algorithm 1 is applied in the first phase and
consequently obtains a base (initial) random leaner, and the RSL approach is performed in
the second phase for renewing output weights of the initial model, detailed as follows.

Initialization Phase: We use the SC algorithm on the first available training data; sup-
pose that the constructed random learner has L hidden nodes, i.e., fL(x) = ∑L

j=1 β jgj(wT
j x +

Sustainability 2022, 14, 15601 6 of 17

bj). Let β(0) = [β1, . . . , βL]
T be the current output weights. The associated hidden layer

output matrix is denoted as H0 (here, we remove its top right corner index L for simplicity,
i.e., H0 = H(L)).

Sequential Updating Phase: At time instant k + 1, k = 0, 1, . . ., suppose the hidden
layer output matrix corresponding to the new available data are Hk+1, then the optimization
problem becomes

min
β(k+1)

∥∥∥∥∥
[

Hk
Hk+1

]
β(k+1) −

[
Tk

Tk+1

]∥∥∥∥∥
2

2

. (4)

The RLS approach aims at calculating the weight βk+1 recursively from β(k) without
directly solving the above minimization problem (4).

It is straightforward to observe that

β(k+1) =

([
Hk

Hk+1

]T[Hk
Hk+1

])−1[
Hk

Hk+1

]T[Tk
Tk+1

]

= P−1
k+1

[
Hk

Hk+1

]T[Tk
Tk+1

]
,

where

Pk+1 =

[
Hk

Hk+1

]T[Hk
Hk+1

]
.

It is easy to find that

Pk+1 = Pk + HT
k+1Hk+1, and β(k) = P−1

k HT
k Tk.

Thus, [
Hk

Hk+1

]T[Tk
Tk+1

]
= Pkβ(k) + HT

k+1Tk+1

= (Pk+1 − HT
k Hk)β(k) + HT

k+1Tk+1

= Pk+1β(k) − HT
k Hkβ(k) + HT

k+1Tk+1.

Then,

β(k+1) = P−1
k+1(Pk+1β(k) − HT

k Hkβ(k) + HT
k+1Tk+1)

= β(k) + P−1
k+1HT

k+1(Tk+1 − Hk+1β(k))

By using the matrix inversion lemma [29], we can obtain that

P−1
k+1 = (Pk + HT

k+1Hk+1)
−1

= P−1
k − P−1

k HT
k+1(Hk+1P−1

k HT
k+1)

−1Hk+1P−1
k .

To summarize, let Uk = P−1
k , and the online update of the weight can be achieved by

the following operation:

Uk+1 = Uk −Uk HT
k+1(Hk+1P−1

k HT
k+1)

−1Hk+1Uk

β(k+1) = β(k) + Uk+1HT
k+1(Tk+1 − Hk+1β(k)).

The whole schematic of OSSC algorithm (i.e., Algorithm 2) can be summarized as fol-
lows.

Sustainability 2022, 14, 15601 7 of 17

Algorithm 2: OSSC

Input: Training dataset arriving sequentially {xi, ti}N
i=1, initial number of training

samples N0, the number of observations in the k-th chunk, Nk.
Output: Output weight β.

Begin
Step 1. Use the Algorithm 1 on {xi, ti}N0

i=1, obtain H0 and β(0),set k:=0;
Step 2. Provide the (k+1)-th chunk of new observations and calculate Hk+1

Pk = HT
k Hk, Uk = P−1

k ;

Uk+1 = Uk −Uk HT
k+1(Hk+1P−1

k HT
k+1)

−1Hk+1Uk;

β(k+1) = β(k) + Uk+1HT
k+1(Tk+1 − Hk+1β(k)).

k:=k+1 and repeat Step 2 until all the observations in {xi, ti}N
i=1 are used;

End

The general process of Algorithm 2 (OSSC) is illustrated in the following Figure 1.

Given an initial chunk of

training data 𝐱𝑖 , 𝑡𝑖 𝑖=1
𝑁0 , train

a base SCN model
(Step 1 in OSSC Algorithm)

Are all the training samples in

𝐱𝑖 , 𝑡𝑖 𝑖=1
𝑁 used?

Update the output weights 𝛽
using the next chunk of new

training samples
 (Step 2 in OSSC Algorithm)

Yes

Stop

Start

No

Figure 1. A schematic diagram of OSSC.

Remark 1. It is easy to find that the whole algorithmic procedures can be immediately used on the
original RVFL networks that lead to its online sequential learning version, termed OS-RVFL. That
is to say, instead of conducting the SC algorithm in the initialization phase (Step 1 in Algorithm 2),
the initial model is offered by implementing the randomized learning algorithm for RVFL networks,
i.e., randomly assigning input weights and biases from certain scopes and only optimizing the
output weights, as recalled in Section 2. Later for the sequential learning process, the basic iteration
procedures remain the same as Step 2 in Algorithm 2.

Remark 2. The existing convergence results of RLS methodology [30,31] can lend some support to
ensure the convergence of our Algorithm 2 (OSSC), provided the initialization phase is successfully
processed. In other words, the sequential learning process might be meaningless if the initialization
model has not been appropriately trained either due to insufficient training information provided, or
because of unreasonable neural network structure and/or parameter setting. On the other hand, for
the OS-RVFL algorithm, some undesirable impacts of randomness, for instance, an inappropriate
random selection range for input weights and biases, fails in bringing a universal approximator [21],
will still exist or be enhanced during the sequential learning phase. That is, the reason why more

Sustainability 2022, 14, 15601 8 of 17

attention should be raised when applying OS-RVFL for modeling due to the ‘risky’ aspects caused
by randomness in RVFL networks.

Remark 3. Compared with OS-RVFL, our Algorithm 2 (OSSC) incrementally constructs the
initial model based on Theorem 1 that can effectively build a random learner with good learning and
generalization capabilities. Importantly, the the SC algorithm (i.e., Algorithm 1) performed in the
initialization phase can circumvent the awkward setting of the number of hidden nodes, and also
find an effective choice of random parameters resulting in a universal approximator on the basis of
the first available data. The merits of SC algorithm stated in [18] benefit the following sequential
learning processes and bring inherent advantages for OSSC in comparison with OS-RVFL, just like
the SC algorithm outperforms the RVFL algorithm shown in [18].

Remark 4. It should be mentioned that the chunk size, i.e., the number of observations arrived
at each time instant, does not necessarily have to be equal. On the other hand, the problem of the
minimum number of observations that are needed in the initialization phase is application and
problem-dependent. As a whole, the influence of the initial number of observations and the chunk
size on the system’s performance should be investigated in depth, as conducted in our experimental
study in the next section.

Overall, the key technical differences between OSSC and OS-RVFL (Here, without loss
of generality, OS-RVFL represents a broad class of existing models that uses neural networks
with random weights assigned via a data-independent manner, which inevitably causes
some uncertainly issues as mentioned in the remarks, to name a few) can be summarized
as follows in Table 1.

Table 1. Differences between OSSC and OS-RVFL in terms of several aspects: whether or not
the randomness is involved, whether or not stochastic configuration mechanism is used for input
weights assignment (term as ‘SC for Random Weights’), whether or not the universal approximation
capability (UAC) of base model is guaranteed, and whether or not the convergence property of the
online learning process is guaranteed.

Algorithms

Characteristics

Randomness SC for Random
Weights

Guarantee of
UAC

Guarantee of
Convergence

OS-RVFL X × × ×
OSSC X X X X

5. Experiments

In this section, we compare the proposed OSSC algorithm with OS-RVFL on different
tasks, in order to demonstrate its merits and good potential in dealing with online sequen-
tial learning problems. First, we revisit the toy examples used in [21] and change their
formulation as a online learning task, by which the advantages of OSSC (over OS-RVFL),
which can successfully find some workable random parameters (input weights and biases)
and consequently lead to a universal approximator, are illustrated. Then, the effectiveness
of our OSSC algorithm is assessed in the problem of nonlinear dynamic system modeling
and Mackey–Glass time-series prediction, respectively. In the performance comparison,
several scenarios with different parameter settings are performed. Root Mean Square
Error (RMSE) that is commonly used in data analysis literature is calculated to measure
the performance. Both the average value and standard deviation of RMSE are reported.
The parameter setting will be specified in each task. All simulations are carried out in the
MATLAB 2020b environment running on a core i7, 2.9 G HZ CPU, and 8 GB RAM.

Sustainability 2022, 14, 15601 9 of 17

5.1. 1D Function Approximation

First, to better demonstrate the advantages of OSSC over OS-RVFL with performance
visualization, we use two examples for 1D function approximation. In particular, the first
regression task is about the followed target function, which has also been used in [21], i.e.,

f1(x) = 0.2e−(10x−4)2
+ 0.5e−(80x−40)2

+ 0.3e−(80x−20)2
,

x ∈ [0, 1].

The second target function is a rapidly changing continuous SinE function f2, i.e.,

f2(x) = 0.8 exp(−0.2x) sin(10x), x ∈ [0, 5].

To fit the problem formulation of sequential learning task, we sample N0 = 400 sam-
ples as the initial training samples (i.e., t = 0) and then add training samples sequentially
(e.g., 1 by 1, 20 by 20, 50 by 50) as the instances used in training time instants t = 1, 2, . . . , T,
and finally 500 samples as the test samples (which we assume are used for the performance
evaluation at the time instant T + 1).

As shown in Table 2, it is clear that OSSC outperforms OS-RVFL in all cases. For exam-
ple, for the case of f1, the RMSE values of OS-RVFL are larger than 0.03 in all situations
with different settings of λ and chunk size. In contrast, the best test result of OSSC is 0.0075,
which means that OS-RVFL’s error is approximately 25 times larger than that of OSSC. This
verifies the effectiveness of OSSC as discussed in Remark 2 in Section 4. Approximately,
OSSC has obtained 25 times lower RMSE than OS-RVFL. As for f2, the same finding can
be obtained, that is, the best test result of OSSC is 8.879e− 04, while the RMSE values of
OS-RVFL are all larger than 0.1. In Figures 2 and 3, for the case of f1 and f2, respectively,
we plot the target test outputs, OSSC outputs, OS-RVFL outputs, as well their associated
error curves. As can be seen clearly, identical to the findings shown in Table 2, OSSC
achieves much better performance than OS-RVFL in both f1 and f2 sequential learning
tasks. Obviously, the error curves of OS-RVFL show that the resulting learner models are
not well sequentially trained and then do not have acceptable generalization capabilities.

Table 2. Test performance comparison for 1D function approximation Task. MEAN and STD denote
the average value and standard deviation of RMSE values.

Datasets Algorithms
Test Performance with Different Chunk Size (MEAN, STD)

1 by 1 20 by 20 50 by 50

f1,N0 = 400, L = 100

OS-RVFL (λ = 1) 0.0527, 2.9028 × 10−4 0.0527, 2.7041 × 10−4 0.0527, 2.6000 × 10−4

OS-RVFL (λ = 50) 0.0337, 0.0126 0.0330, 0.0053 0.0329, 0.0057
OS-RVFL (λ = 100) 0.0406, 0.0447 0.0355, 0.0069 0.0359, 0.0083
OS-RVFL (λ = 200) 0.0400, 0.0106 0.0416, 0.0079 0.0394, 0.0112

OSSC 0.0096, 0.0223 0.0087, 0.0094 0.0075, 0.0060

f2,N0 = 400, L = 50

OS-RVFL (λ = 1) 0.5165, 1.1486 0.3405, 0.1944 0.4623, 0.9694
OS-RVFL (λ = 5) 0.1188, 0.2022 0.1084, 0.0865 0.1055, 0.0914
OS-RVFL (λ = 10) 0.2404, 0.7154 0.3790, 0.1944 0.4623, 0.9694
OS-RVFL (λ = 50) 0.5165, 1.1486 0.3405, 0.1944 0.4623, 0.9694

OSSC 8.1488 × 10−4, 0.0013 6.7606 × 10−4, 0.0005 8.8794 × 10−4, 0.0023

In summary, similar to the findings presented in [21], the random distribution (cor-
responding to λ) is of great importance to induce an effective randomized learner model.
Furthermore, users should ensure that the initialization phase of online sequential learn-
ing can lead to a good initial model; otherwise, the following sequential updating phase
is meaningless.

Sustainability 2022, 14, 15601 10 of 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(t)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

f 1
(x

(t
))

Target Output
OSSC Output
OS-RVFL Output

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(t)

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
rr

or

OSSC Error
OS-RVFL Error

(b)
Figure 2. Performance visualization for f1 with N0 = 400, L = 100 for both OSSC and OS-RVFL,
λ = 200 for OS-RVFL: (a) target and function regression curves; (b) error curves.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x(t)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f 2
(x

(t
))

Target Output
OSSC Output
OS-RVFL Output

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x(t)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

E
rr

or

OSSC Error
OS-RVFL Error

(b)
Figure 3. Performance visualization for f2 with N0 = 400, L = 50 for both OSSC and OS-RVFL, λ = 5
for OS-RVFL: (a) target and function regression curves; (b) error curves.

5.2. Nonlinear Dynamic System Modeling

The second task that we consider in our experiments is a nonlinear dynamic system
modeling (nDSM) example. In particular, the following artificial example is a widely-used
one to demonstrate the neural networks’ feasibility on nDSM:

y(t + 1) =
y(t)y(t− 1)(y(t + 2.5))

1 + y2(t) + y2(t− 1)
+ u(t), (5)

where y(1) = 0, y(2) = 0, u(t) = sin(πt/25).
We compare OSSC and OS-RVFL on this task, in which 900 points are generated using

Equation (5) and split into two parts, 300 (1 ≤ t ≤ 300), 600 (301 ≤ t ≤ 900) for training
and test, respectively. For either OSSC or OS-RVFL, the inputs used for model training are
given by (y(t− 1), y(t), u(t)) and the corresponding target output is y(t + 1).

In Table 3, it is clear that OSSC have obtained better test results than OS-RVFL in
all the situations considered in the experiments. For example, when N0 = 300, chunk
size is set to 50, the resulting averaged RMSE of OS-RVFL is 0.0103 while that of OSSC
is 0.0076, which means that OS-RVFL’s error is nearly 1.5 times larger than that of OSSC. To
further uncover the potential advantages of OSSC over OS-RVFL, we fix the chunk size
as 1, consider two settings of initial training samples, i.e., N0 = 100, 50, respectively, and
try different setting of the number of hidden nodes (e.g., L) for both OSSC and OS-RVFL.
As shown in Figure 4, it is interesting that OS-RVFL fails in certain cases, as marked as the
blue dotted ellipses, while OSSC is feasible and effective in all the cases. Specifically, as
can be seen in Figure 4a, when the number of hidden nodes of OS-RVFL is larger than 30,

Sustainability 2022, 14, 15601 11 of 17

the resulted model significantly overfits the test samples, which in other words leads to a
huge test error. This is why we have used the blue dotted ellipses to reflect this ‘abnormal’
phenomenon, in contrast to the stable and favorable performance of OSSC. Similar findings,
for example when the number of hidden nodes exceeds 30, can also be found in Figure 4b.
In addition, we see clearly in Figure 5 that the error curve of OS-RVFL is much worse than
that of OSSC. Therefore, OSSC outperforms OS-RVFL in problem-solving for this kind of
sequential learning task.

Table 3. Test performance comparison for the nonlinear dynamic system modeling task. MEAN and
STD denote the average value and standard deviation of RMSE values.

N0 Values Algorithms
Test Performance with Different Chunk Size (MEAN, STD)

1 by 1 10 by 10 20 by 20 50 by 50

N0 = 100 OS-RVFL 0.0131, 0.0022 0.0134, 0.0025 0.0137, 0.0026 0.0136, 0.0027
OSSC 0.0109, 0.0011 0.0111, 0.0012 0.0106, 0.0010 0.0106, 0.0010

N0 = 200 OS-RVFL 0.0115, 0.0093 0.0099, 0.0012 0.0100, 0.0015 0.0101, 0.0014

OSSC 0.0076, 6.9002 ×
10−4

0.0076, 6.3451 ×
10−4

0.0076, 5.3478 ×
10−4

0.0077, 6.1279 ×
10−4

N0 = 300 OS-RVFL 0.0100, 0.0014 0.0099, 0.0015 0.0102, 0.0014 0.0103, 0.0015

OSSC 0.0076, 5.9729 ×
10−4

0.0076, 6.0805 ×
10−4

0.0077, 6.0507 ×
10−4

0.0076, 6.2020 ×
10−4

5 10 15 20 25 30 35 40 45 50 55

Number of Hidden Nodes

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
es

t R
M

S
E

OS-RVFL
OSSC

(a)

0 5 10 15 20 25 30 35 40

Number of Hidden Nodes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
es

t R
M

S
E

OS-RVFL
OSSC

(b)
Figure 4. Performance comparison for OSSC and OS-RVFL with different setting of the number of
hidden nodes: (a) N0 = 100 and chunk size is 1; (b) N0 = 50 and chunk size is 1.

300 400 500 600 700 800 900
t

-2

-1

0

1

2

3

4

y(
t)

Target Output
OSSC Output
OS-RVFL Output

(a)

300 400 500 600 700 800 900
t

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

E
rr

or

OSSC Error
OS-RVFL Error

(b)
Figure 5. Performance visualization for nDSM task: (a) comparison for target outputs, OSSC outputs,
and OS-RVFL outputs; (b) error curves for OSSC and OS-RVFL.

Sustainability 2022, 14, 15601 12 of 17

5.3. Mackey–Glass Time-Series Prediction

The third task we consider in our experimental study is the classic Mackey–Glass
time-series prediction, which has been widely used in literature to test the performance of
neural networks on nonlinear chaotic system modeling. The time series used in this part is
derived from a time-delay differential system with the following form:

dy
dt

=
ay(t− τ)

1 + yn(t− τ)
+ by(t),

where n = 10, a = 0.2, b = −0.1, τ = 17, and the initial condition y(0) = 1.2.
The aim of this experiment is to model the Mackey–Glass chaotic system using OSSC and OS-

RVFL, respectively, and to predict the value x(t + 6) from {x(t), x(t− 6), x(t− 12), x(t− 18)}.
Five hundred data points with t ∈ [101, 600] are chosen as the training samples, and
five hundred data points with t ∈ [601, 1100] are used as test samples to evaluate the
performance of OSSC and OS-RVFL.

As shown in Table 4, OSSC outperforms OS-RVFL in all the cases. For example, when
N0 = 150, chunk size is 50, the averaged test RMSE of OSSC is 3.4146 × 10−4 while that of
OS-RVFL is 0.0039. Approximately, OS-RVFL’s error is 11 times larger than that of OSSC.
Furthermore, as can be seen in Figure 6, similar to the findings found in Figures 2, 3 and 5, the
error curves of OSSC reflect its better generalization capabilities than OS-RVFL. In summary,
OSSC works more favorably than OS-RVFL in dealing with the Mackey–Glass time-series
prediction problem, which further verifies the good potential of OSSC algorithm for (on-
line) sequential learning. Furthermore, OSSC shows better stability over OS-RVFL, as
demonstrated in Figure 7.

Table 4. Test performance comparison for the Mackey–Glass time-series prediction task. MEAN and
STD denote the average value and standard deviation of RMSE values.

N0 Values Algorithms
Test Performance with Different Chunk Size (MEAN, STD)

1 by 1 10 by 10 20 by 20 50 by 50

N0 = 50
OS-RVFL 0.0038, 0.0017 0.0037, 0.0016 0.0038, 0.0017 0.0035, 0.0015

OSSC 0.0018, 6.7672 × 10−4 0.0017, 6.3603 × 10−4 0.0017, 6.2183 × 10−4 0.0017, 5.8115 × 10−4

N0 = 100
OS-RVFL 0.0012, 7.6733 × 10−4 0.0013, 8.8951 × 10−4 0.0013, 0.0015 0.0011, 6.5840 × 10−4

OSSC 3.9257 × 10−4, 1.7408
× 10−4

3.6046 × 10−4, 1.7566
× 10−4

3.6421 × 10−4, 1.6275
× 10−4

3.6826 × 10−4, 1.8212
× 10−4

N0 = 150
OS-RVFL 0.0012, 7.3932 × 10−4 0.0012, 7.0551 × 10−4 0.0012, 7.1992 × 10−4 0.0039, 0.0279

OSSC 3.5359 × 10−4, 1.6470
× 10−4

3.5709 × 10−4, 1.8728
× 10−4

3.1413 × 10−4, 1.4894
× 10−4

3.4146 × 10−4, 1.9137
× 10−4

600 650 700 750 800 850 900 950 1000 1050 1100
t

0.2

0.4

0.6

0.8

1

1.2

1.4

x(
t)

Target Output
OSSC Output
OS-RVFL Output

(a)

600 650 700 750 800 850 900 950 1000 1050 1100
t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
rr

or

OSSC Error
OS-RVFL Error

(b)
Figure 6. Performance visualization for Mackey–Glass time-series prediction task: (a) comparison for
target outputs, OSSC outputs, and OS-RVFL outputs; (b) error curves for OSSC and OS-RVFL.

Sustainability 2022, 14, 15601 13 of 17

5.4. Application in Foreign Exchange Rate Forecasting

To further explore the effectiveness and advantages of OSSC for problem-solving in
real-world applications, we compare OSSC and OS-RVFL with a real dataset for the foreign
exchange rate forecasting task. In particular, we start with a detailed description of the data
preparation process, then demonstrate the performance comparison based on extensive
experimental results, followed by a robust analysis to investigate empirically the influence
of the chunk size on the model’s performance. All the experimental results have verified
the advantages of OSSC over OS-RVFL, delineated as follows.

1 5 10 15 20 25 30 35 40 45 50

chunk size

2

4

6

8

10

12

T
es

t R
M

S
E

×10-4

(a)

1 5 10 15 20 25 30 35 40 45 50

chunk size

6

6.5

7

7.5

8

8.5

9

9.5

T
es

t R
M

S
E

×10-3

(b)
Figure 7. Robust analysis for the influence of chunk size on the test performance of OSSC model:
(a) nonlinear dynamic system modeling task; (b) Mackey–Glass time-series prediction task.

5.4.1. Data Preparation

The datasets utilized in this part are all downloaded from the official website of
American Federal Reserve Bank (https://fred.stlouisfed.org/fred-addin/, accessed on
1 March 2022), in which 2542 exchange rates from 1 January 2004 to 27 September 2013 are
chosen to verify the effectiveness of OSSC and OS-RVFL. In particular, four types of foreign
exchange, including US Dollar/Euro, U.S. Dollar/Australia Dollar, Danish Kroner/U.S.
Dollar, and Canadian Dollar/U.S. Dollar. The missing observations in the above period
are removed from the chosen data. Finally, we can obtain 2453 observations for each data
set. The time window size for the following 1-day-ahead forecasting is chosen as 5. Hence,
there are 2448 samples for each data set. Among them, based on the partition of time-series,
1836 samples, 306 samples, and 306 samples are utilized as the training set, validation set,
and test set, respectively.

5.4.2. Performance Illustration

In Table 5, it is clear that OSSC outperforms OS-RVFL on all the four datasets with
different chunk size settings. For example, for the case of U.S. Dollar/Euro, the averaged
RMSE values obtained by OS-RVFL are generally two times larger than that of OSSC in
all the situations. As for the other cases, such as U.S. Dollar/Australia Dollar, Danish
Kroner/U.S. Dollar, Canadian Dollar/U.S. Dollar, the averaged RMSE values resulted by
OS-RVFL are nearly four times larger than that of OSSC in all the situations. To better
indicate the performance comparison, in Figure 8, we plot the target outputs, OSSC outputs,
OS-RVFL outputs, respectively, for all the four datasets. As can be seen clearly, OSSC
achieves better prediction than OS-RVFL for all the four cases, which is consistent with the
test RMSE records summarized in Table 5.

https://fred.stlouisfed.org/fred-addin/

Sustainability 2022, 14, 15601 14 of 17

0 100 200 300 400 500 600
t

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

U
.S

. D
ol

la
rs

 to
 O

ne
 E

ur
o

Target Output
OSSC Output
OS-RVFL Output

(a)

0 100 200 300 400 500 600
t

0.85

0.9

0.95

1

1.05

1.1

U
.S

. D
ol

la
rs

 to
 O

ne
 A

us
tr

al
ia

n
D

ol
la

r

(b)

0 100 200 300 400 500 600
t

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

D
an

is
h

K
ro

ne
r

to
 O

ne
 U

.S
. D

ol
la

r

(c)

0 100 200 300 400 500 600
t

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

C
an

ad
ia

n
D

ol
la

rs
 to

 O
ne

 U
.S

. D
ol

la
r

(d)
Figure 8. Performance comparison for OSSC and OS-RVFL on the four real-world datasets. (a) U.S.
Dollar/Euro; (b) U.S. Dollar/Australia Dollar; (c) Danish Kroner/U.S. Dollar; (d) Canadian Dol-
lar/U.S. Dollar.

Table 5. Test performance comparison for the real-world foreign exchange rate forecasting task.
MEAN and STD denote the average value and standard deviation of RMSE values. Abbrevia-
tions used in this table: U/E: U.S. Dollar/Euro, U/A: U.S. Dollar/Australia Dollar, D/U: Danish
Kroner/U.S. Dollar, C/U: Canadian Dollar/U.S. Dollar

Cases Algorithms
Test Performance with Different Chunk Size (MEAN, STD)

1 by 1 10 by 10 20 by 20 50 by 50

U/E OS-RVFL 0.0146 3.46 × 10−4 0.0147 6.42 × 10−4 0.0146 4.18 × 10−4 0.0147 7.56 × 10−4

OSSC 0.0068, 2.43 × 10−5 0.0068, 2.46 × 10−5 0.0068, 5.10 × 10−5 0.0068, 2.49 × 10−5

U/A
OS-RVFL 0.0210 5.67 × 10−3 0.0191 4.36 × 10−3 0.0182 5.78 × 10−3 0.0175 3.56 × 10−3

OSSC 0.0066, 4.99 × 10−4 0.0067, 5.60 × 10−4 0.0067, 5.50 × 10−4 0.0067, 4.06 × 10−4

D/U
OS-RVFL 0.1017, 8.51 × 10−2 0.0921, 4.51 × 10−2 0.0835, 3.51 × 10−2 0.0717, 4.11×10−2

OSSC 0.0310, 1.30 × 10−3 0.0307, 7.85 × 10−4 0.0311, 1.40 × 10−3 0.0307, 6.52 × 10−4

C/U
OS-RVFL 0.0126, 6.73 × 10−3 0.0097, 2.73 × 10−3 0.0088, 7.73 × 10−4 0.0084, 2.42×10−4

OSSC 0.0041, 1.73 × 10−5 0.0041, 1.78 × 10−5 0.0041, 1.74 × 10−5 0.0041, 2.01 × 10−5

5.4.3. Robust Analysis

To further demonstrate the merits of OSSC for the problem-solving of foreign exchange
rate forecasting, in this part, we investigate empirically the impact of the chunk size on the
OSSC’s test performance. In particular, for each dataset, we run 50 trials independently for
each chunk size settings (=1, 10, 30, 50, 80, 100, 150, respectively), then draw the boxplot for
each case, of which the central mark indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively, and the outliers are plotted
individually using the ’+’ marker symbol, see Figure 9. It shows clearly that OSSC works

Sustainability 2022, 14, 15601 15 of 17

stably for all the settings of different chunk size, which to some extent offers some guidance
for users when employing OSSC in similar tasks.

1 10 30 50 80 100 150

chunk size

6.78

6.8

6.82

6.84

6.86

6.88

6.9

6.92

6.94

6.96

T
es

t R
M

S
E

×10-3

(a)

1 10 30 50 80 100 150

chunk size

6

6.5

7

7.5

8

8.5

9

T
es

t R
M

S
E

×10-3

(b)

1 10 30 50 80 100 150

chunk size

0.03

0.031

0.032

0.033

0.034

0.035

T
es

t R
M

S
E

(c)

1 10 30 50 80 100 150

chunk size

4.02

4.04

4.06

4.08

4.1

4.12

4.14

T
es

t R
M

S
E

×10-3

(d)
Figure 9. Robust analysis on how the chunk size affects the test performance of OSSC model on
the four real-world datasets. (a) U.S. Dollar/Euro; (b) U.S. Dollar/Australia Dollar; (c) Danish
Kroner/U.S. Dollar; (d) Canadian Dollar/U.S. Dollar.

Overall, based on all the presented experimental results and discussion in this sec-
tion, we can draw a convincing conclusion that OSSC can be used as an effective online
sequential learning algorithm for neural networks, and it has good potential to contribute
to favorable learner models with sufficient capability for streaming data modeling tasks,
such as nonlinear dynamic system modeling, time-series prediction, foreign exchange rate
forecasting, and so on.

6. Conclusions

This paper has extended the previously-proposed stochastic configuration (SC) algo-
rithm into an online sequential version that can effectively work on sequentially given
training observations. The recursive least square (RLS) approach is used in formulating
our OSSC algorithm. The primary motivation behind our work is that the commonly-used
(offline) RVFL-based randomized algorithm, i.e., randomly assigning the input weights and
biases and only optimizing the output weights, may possibly fail in bringing a universal
approximator due to an inappropriate setting of random parameters, which consequently
incurs potential danger for the corresponding online sequential extension (OS-RVFL).
The merits of SC have been retained in the online learning process as the initial base
model (with the first available data) is constructed by SC, instead of being trained by
the RVFL-based randomized algorithm. Extensive experiments have validated that our
proposed OSSC algorithm outperforms OS-RVFL on both synthetic datasets (1D function
approximation, nonlinear dynamic system modeling, time-series prediction) and real-world
application (foreign exchange rate forecasting). Extensions of the present algorithm to a

Sustainability 2022, 14, 15601 16 of 17

more advanced version that can self-organize the neural network structure via growing
and/or pruning schemes, or a robust version that works favorably on data contaminated
with varying degrees of outliers, are being expected. In addition, based on our idea pre-
sented in this work, it is interesting to study the online sequential learning algorithm for
graph neural networks (with random weights) that have received careful attention in recent
years [32–34].

Author Contributions: Conceptualization, Y.C. and M.L.; Data curation, Y.C.; Formal analysis, Y.C.
and M.L.; Funding acquisition, M.L.; Investigation, Y.C. and M.L.; Methodology, Y.C. and M.L.;
Validation, Y.C. and M.L.; Writing—original draft, Y.C.; Writing—review and editing, Y.C. and M.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Open Research Fund of the College of Teacher Education,
Zhejiang Normal University (Grant No.: jykf22030).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
2. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366.
3. Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with gaussian hidden units as universal approximations.

Neural Comput. 1990, 2, 210–215.
4. Nielsen, M.A. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2015; Volume 25.
5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
6. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
7. Gallant, S. Random cells: An idea whose time has come and gone... and come again? In Proceedings of the IEEE International

Conference on Neural Networks, San Diego, CA, USA, 21–24 June 1987.
8. Lowe, D. Multi-variable functional interpolation and adaptive networks. Complex Syst. 1988, 2, 321–355.
9. Schmidt, W.F.; Kraaijveld, M.; Duin, R.P. Feedforward neural networks with random weights. In Proceedings of the 11th

IAPR International Conference on Pattern Recognition Methodology and Systems, Hague, The Netherlands, 30 August–3
September 1992; Volume 2, pp. 1–4.

10. Sutton, R.S.; Whitehead, S.D. Online learning with random representations. In Proceedings of the Tenth International Conference
on Machine Learning, Beijing, China, 21–26 June 2014; pp. 314–321.

11. Pao, Y.H.; Takefji, Y. Functional-link net computing. IEEE Comput. J. 1992, 25, 76–79. [CrossRef]
12. Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net. Neurocom-

puting 1994, 6, 163–180.
13. Igelnik, B.; Pao, Y.H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE

Trans. Neural Networks 1995, 6, 1320–1329. [CrossRef]
14. Scardapane, S.; Wang, D. Randomness in neural networks: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017, 7, e1200.
15. Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random weights. Neurocomputing 2018, 275, 278–287.
16. Rahimi, A.; Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.

In Proceedings of Advances in Neural Information Processing Systems, San Francisco, CA, USA, 30 November–3 December 2008.
17. Liu, F.; Huang, X.; Chen, Y.; Suykens, J.A. Random features for kernel approximation: A survey on algorithms, theory, and

beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7128–7148. [CrossRef] [PubMed]
18. Wang, D.; Li, M. Stochastic configuration networks: Fundamentals and algorithms. IEEE Trans. Cybern. 2017, 47, 3466–3479.

[CrossRef] [PubMed]
19. Needell, D.; Nelson, A.A.; Saab, R.; Salanevich, P. Random vector functional link networks for function approximation on

manifolds. arXiv 2020, arXiv:2007.15776.
20. Gorban, A.N.; Tyukin, I.Y.; Prokhorov, D.V.; Sofeikov, K.I. Approximation with random bases: Pro et contra. Inf. Sci. 2016, 364, 129–145.

[CrossRef]
21. Li, M.; Wang, D. Insights into randomized algorithms for neural networks: Practical issues and common pitfalls. Inf. Sci. 2017, 382, 170–178.

[CrossRef]
22. Li, M.; Gnecco, G.; Sanguineti, M. Deeper insights into neural nets with random weights. In Proceedings of the Australasian Joint

Conference on Artificial Intelligence, Perth, WA, Australia, 5–8 December 2022; pp. 129–140.

http://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/2.144401
http://dx.doi.org/10.1109/72.471375
http://dx.doi.org/10.1109/TPAMI.2021.3097011
http://www.ncbi.nlm.nih.gov/pubmed/34310285
http://dx.doi.org/10.1109/TCYB.2017.2734043
http://www.ncbi.nlm.nih.gov/pubmed/28841561
http://dx.doi.org/10.1016/j.ins.2015.09.021
http://dx.doi.org/10.1016/j.ins.2016.12.007

Sustainability 2022, 14, 15601 17 of 17

23. Wang, D.; Li, M. Robust stochastic configuration networks with kernel density estimation for uncertain data regression. Inf. Sci.
2017, 412, 210–222. [CrossRef]

24. Wang, D.; Li, M. Deep stochastic configuration networks with universal approximation property. In Proceedings of the Interna-
tional Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

25. Ai, W.; Wang, D. Distributed stochastic configuration networks with cooperative learning paradigm. Inf. Sci. 2020, 540, 1–16.
[CrossRef]

26. Li, M.; Wang, D. 2D stochastic configuration networks for image data analytics. IEEE Trans. Cybern. 2021, 51, 359–372. [CrossRef]
27. Felicetti, M.J.; Wang, D. Deep stochastic configuration networks with different random sampling strategies. Inf. Sci. 2022, 607, 819–830.

[CrossRef]
28. Dai, W.; Ji, L.; Wang, D. Federated stochastic configuration networks for distributed data analytics. Inf. Sci. 2022, 614, 51–70.

[CrossRef]
29. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012.
30. Haykin, S.S. Adaptive Filter Theory; Pearson Education India: Noida, India, 2008.
31. Scharf, L.L. Statistical Signal Processing; Addison-Wesley: Boston, MA, USA, 1991.
32. Li, M.; Ma, Z.; Wang, Y.G.; Zhuang, X. Fast Haar transforms for graph neural networks. Neural Netw. 2020, 128, 188–198.

[CrossRef] [PubMed]
33. Wang, Y.G.; Li, M.; Ma, Z.; Montufar, G.; Zhuang, X.; Fan, Y. Haar graph pooling. In Proceedings of the International Conference

on Machine Learning, Online, 13–18 July 2020; pp. 9952–9962.
34. Wang, Z.; Li, Z.; Leng, J.; Li, M.; Bai, L. Multiple pedestrian tracking with graph attention map on urban road scene. IEEE Trans.

Intell. Transp. Syst. 2022. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2017.05.047
http://dx.doi.org/10.1016/j.ins.2020.05.112
http://dx.doi.org/10.1109/TCYB.2019.2925883
http://dx.doi.org/10.1016/j.ins.2022.06.028
http://dx.doi.org/10.1016/j.ins.2022.09.050
http://dx.doi.org/10.1016/j.neunet.2020.04.028
http://www.ncbi.nlm.nih.gov/pubmed/32447263
http://dx.doi.org/10.1109/TITS.2022.3193961

	Introduction
	Basics of RVFL Networks
	Revisit of the Stochastic Configuration Algorithm
	Online Sequential Stochastic Configuration Algorithm
	Experiments
	1D Function Approximation
	Nonlinear Dynamic System Modeling
	Mackey–Glass Time-Series Prediction
	Application in Foreign Exchange Rate Forecasting
	Data Preparation
	Performance Illustration
	Robust Analysis

	Conclusions
	References

