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Abstract: Introducing steel fibers into traditional concrete can improve its mechanical properties
and crack resistance, but few studies have considered how the steel fiber shape and the bond-slip
effect between fibers and matrix affect the mechanical behavior of concrete. This paper establishes a
three-dimensional representative volume element (3D RVE) of steel fiber-reinforced concrete (SFRC)
with random distribution, different shapes, and different interfacial strengths of steel fibers using
Python, Abaqus and Hypermesh. Uniaxial tensile behaviors and failure modes of the SFRC are
systematically simulated and analyzed. The results show that when the interfacial strength of steel
fiber/concrete is changed from 1 to 3 MPa, the tensile strength of the SFRC increases accordingly.
When the interfacial strength is greater than 3 MPa, it has no effect on tensile strength. Additionally,
if the interfacial strength is 1 MPa, the tensile strength of the SFRC with end-hook steel fibers is
increased by 7% when compared to the SFRC with straight steel fibers, whereas if the interfacial
strength reaches 2.64 MPa (strength of pure concrete), the fiber shape has little effect on the tensile
strength of the SFRC. Moreover, the simulation results also show that interfacial damage dominates
when the interfacial strength is less than 1 MPa, and the crack propagation rate in the end-hook steel
fiber-modified SFRC is lower than that in a straight steel fiber-modified SFRC. Therefore, this research
reveals that using end-hook steel fibers can improve the strength of the SFRC under low interfacial
strength, but the ideal strength of the SFRC can be achieved only by using straight fibers when the
interfacial strength between steel fibers and concrete is relatively high.

Keywords: steel fiber; concrete; representative volume element (RVE); meso-mechanical

1. Introduction

Concrete is a typical building engineering material. During the manufacturing, trans-
portation and construction of concrete parts, it is easy to produce micro-cracks and cause
damage because of its low tensile properties, which creates a potential safety hazard in
the subsequent service [1–6]. The strength of concrete can be improved by introducing an
appropriate amount of short steel fibers [7,8]. The added volume fraction of steel fiber (Vsf)
is generally about 0–2%. If the Vsf is too high, it is easy to agglomerate during stirring and
mixing and cause initial defects, while the reinforcing and crack resistance of the concrete
with low Vsf are not obvious [9–13]. Previous studies have reported that the splitting
strength, compressive strength, and flexural strength of short steel fibers-reinforced con-
crete (SFRC) could be maximally enhanced by about 50% [14–16], 86% [3], and 20% [15],
respectively, when compared to the unmodified concrete with a Vsf of 0–2%. Therefore, the
SFRC shows better mechanical properties when compared with the traditional concrete.

The mechanical properties of the SFRC are synergistically determined by the mechani-
cal properties of steel fibers, concrete and doping characteristics. In order to explore how
to obtain high performance in SFRC, the meso-mechanical analysis method of composite
materials can be used for predicting and thereby reducing the experimental cost [16–22].
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Zhao et al. used LS-DYNA finite element software to establish a three-dimensional cylindri-
cal representative volume element (3D RVE) for the SFRC. The mechanical properties and
crack evolution under axial compression were numerically simulated [23]. Wu et al. used
LS-DYNA to build an RVE model composed of mortar and steel fibers for the Hopkinson
compression bar test, and how the Vsf affected the dynamic performance of the concrete was
studied comprehensively [24]. Tian et al. proposed a cylindrical RVE model for the SFRC
using LS-DYNA, and studied the uniaxial compression performance of the cylinder [25].
Kim et al. reported the effect of the aggregate–mortar interface on the concrete properties
and crack orientation through the pre-inserted cohesive element model (CZM) [26]. Zhou
et al. studied the pull-out behavior of steel fibers via the cohesive element and determined
the basic interfacial parameters of the SFRC [27]. The afore-mentioned studies reveal that
by establishing RVE to perform the mesoscopic simulation analysis, the influence trend
of doped steel fibers on the macroscopic mechanical properties of SFRC can be obtained.
When the Vsf is 0–2%, the tearing strength and compressive strength can both be increased
by 0–30%, and the crack direction and failure modes are obviously different from those of
pure concrete, that is, the steel fibers show good strengthening and toughening effects on
the concrete. Additionally, the CZM can well fit the bond-slip behavior between steel fibers
and concrete [28], in which the hook-shaped steel fibers greatly influence the interfacial
bonding performance. The longer the embedded length, the greater the pull-out load.
Abbas et al. [29] and Gao et al. [30] estimated the relationship between strength and aspect
ratio/Vsf via experimental methods, with the results suggesting that the aspect ratio has a
more obvious effect on the strength of the concrete than the Vsf.

However, due to the complexity of the numerical model and the mesh, the current
studies still have some obvious limitations. Firstly, the steel fibers are usually considered
as line elements, and the concrete and the fibers are coupled by an embedded method.
Secondly, the mechanical properties or damage cracks of SFRC are mainly analyzed using
two-dimensional RVE in many studies, and the involved calculation method can prelimi-
narily calculate the influence of Vsf on the concrete strength, but cannot take the bridging
effect of steel fibers into account. Thirdly, in terms of the influence mechanism of the doped
steel fibers on the mechanical properties and failure modes, few studies have considered the
bond-slip effect between steel fibers and concrete as well as establishing three-dimensional
(3D) RVE for the SFRC. At last, the combination of Abaqus–Python–Hypermesh can realize
the automation and parameterization of RVE generation, greatly reducing the generation
time. Based on this, this paper combines Python–Abaqus–Hypermesh to establish a 3D
RVE for the SFRC, which can greatly reduce the construction complexity of the traditional
3D model. Based on the established model, the influence trend of steel fiber shapes as
well as the interfacial strength between steel fibers and concrete on the tensile mechanical
properties, crack initiation, and failure modes was systematically analyzed.

2. Analytical Method
2.1. Materials and Constitutive Model

SFRC composites are inhomogeneous at the mesoscale. The establishment of RVE cor-
responds to the stress–strain distribution of homogeneous materials, so that the calculation
of macroscopic SFRC composites is decoupled from the microscopic ones. Based on this,
the mechanical response of RVE can reflect the mechanical properties of macroscopic SFRC
composites. The Vsf is an important index that affects the performance of SFRC. Based
on literature reports [26], two types of steel fibers, the straight type and end-hook type
with a diameter of 0.7 mm and a length of 30 mm, were used in this paper. The interfacial
strength was set as 1, 2, 3, 4 and 5 MPa and the concrete chosen was model C50. The
performance parameters of steel fibers and concrete are shown in Table 1. Because of the
tensile and compressive anisotropic hardening and damage of the concrete, the built-in
CDP (Concrete Damaged Plastic) model in Abaqus was adopted for the concrete [31], and
the plastic parameters of the plastic damage model of GB50010-2010 specification was used
as reference [32], as shown in Table 2.
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Table 1. Material parameters.

Material Density/t/mm3 Modulus/GPa Poisson’s
Ratio

Steel fiber 7.8 × 10−9 200 0.25
Concrete 2.5 × 10−9 36.6 0.2

Table 2. Plastic parameters of CDP damage.

Dilation Angle/◦ Eccentricity Stress Ratio Viscosity Parameter

30.5 0.1 0.666 0.001

Yield stress
/MPa Inelastic strain Yield stress

/MPa Cracking strain

12.96 0 2.64 0
16.51 5.23 × 10−5 2.54 5.13 × 10−5

20.73 1.05 × 10−4 2.36 6.72 × 10−5

24.30 1.75× 10−4 2.17 8.34 × 10−5

27.23 2.63× 10−4 1.99 9.93 × 10−5

For the steel fiber/concrete interface, the CZM was used to simulate the interfacial
bond-slip effect, as shown in Figure 1, showing the CZM damage evolution constitutive
relationship. Here, t0

n is the interface normal strength, t0
s and t0

t are the interface shear
strengths, and the green dotted line represents the secondary stress criterion controlled by
the above three parameters, that is, the initial damage criterion of the Cohesive element [27]
can be given as: (

〈tn〉
t0
n

)2
+

(
〈ts〉
t0
s

)2
+

(
〈tt〉
t0
t

)2
= 1 (1)

where tn is the normal stress of the interface; ts and tt are the two shear stresses of the
interface, respectively; <> is the Macaulay bracket that is used to indicate that the pure
compressive deformation (or stress) state will not cause damage; <tn> indicates that when
the item is negative (i.e., compressive stress), its value is zero. In addition, the blue and
red triangles in Figure 1 are the tensile–separation curves of shear and normal modes,
respectively; the areas enclosed by the red and blue solid lines represent modes I (GIC)
and II/III (GIIC/GIIIC) critical strain energy release rate, respectively; the areas shaded in
red and blue represent the strain energy release rates in the normal and two tangential
directions of the cohesive element, namely, GI and GII (or GIII); the shaded area in the black
triangle represents the total critical strain energy release rate GC. Thus, the B-K criterion for
judging the interface damage extension is:

GC = GIC + (GI IC − GIC)

(
GI I + GI I I

GI + GI I + GI I I

)η

(2)

In Equation (2), η is the material parameter (usually taken as 1.35). When using
Equations (1) and (2) to determine the initial damage and the crack growth, the performance
parameters used for the cohesive element are presented in Table 3 [33].

Table 3. Interface parameters of steel fiber/concrete.

Modulus/MPa t0
n/MPa t0

s /t0
t /MPa GIC/N/mm1 GIIC = GIIIC/N/mm1

1 × 107 1–5 1–5 0.025 0.625
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Figure 1. Constitutive model of cohesive element.

2.2. 3D RVE Tensile Model

Here, a secondary development of Python–Abaqus was used to establish the RVE
model of the random steel fibers/concrete [33]. Figure 2a presents the models of end-
hook and straight steel fibers in Abaqus, and the corresponding physical fibers are given
in Figure 2b. Since this paper seeks to explore the effects of different shapes of steel fibers
on the strength of the SFRC, the number and random positions of these two steel fibers
should be the same. The Python algorithm was used to determine the node collection
point whereat two fibers would not cross each other, as shown in Figure 2c. Firstly,
the random position was controlled by a set of random coordinates and two corner
values to construct the distance function between any two-line segments in space and
the function of any line rotating around any point in space. Secondly, the end-hook fiber
was divided into four segments from the broken line. We then calculated the shortest
distance between the newly generated random end-hook fiber and the generated fibers.
If all the distances were less than the steel fiber diameter, then the newly generated fiber
was stored in the collection, otherwise another random fiber was regenerated. The two
kinds of fibers generated by the algorithm have the same endpoints, which can ensure
that the random position is exactly the same. By comparing the actual number of fibers
with the predesigned fiber volume fraction, we judged whether to continue inserting
new fibers, and repeat the process until the actual fibers reached the target value, at
which point the generation process was completed. The final obtained RVE model is
shown in Figure 2d.

The above method was used to generate two kinds of RVE with different shapes
of steel fibers. Due to the relatively large aspect ratio of steel fibers in the RVE model,
Abaqus has limitations when used in processing meshes, so Hypermesh was used to
divide the model into tetrahedral meshes. We read the surface elements on the interface
between steel fibers and concrete in batches to create a collection, and output the Abaqus
inp file. By modifying the keyword, the grid set was transferred to the grid component,
and so the edit mesh would generate the interface unit, as shown in Figure 3a.
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Secondly, to qualitatively analyze the influence of steel fibers on the mechanical prop-
erties of the SFRC from the point of view of the bond-slip effect, the bilinear elastic–plastic
model was adopted for the steel fibers, and the plastic damage model was used for the
concrete. Therefore, in the 3D RVE model, C3D6 tetrahedral elements were used for both
the concrete and the steel fibers, and the COH3D6 cohesive element was used to simulate
the bond-slip effect between steel fibers and the concrete. The meshing was given in
Figure 3b. In order to visualize the damage phenomenon of the concrete, the quasi-static
display analysis step was used, and the reaction force and displacement of the reference
point were selected from the field variable output.

Based on the above proposed RVE models and taking interfacial strength parameters
and fiber shapes into consideration, ten RVE models were established. The first series of
RVE contained straight steel fibers (SFs) with interfacial strengths of 1, 2, 3, 4, and 5 MPa,
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respectively. The second series of RVE contained end-hook fibers (EFs) with interfacial
strengths of 1, 2, 3, 4 and 5 MPa, respectively. Table 4 presents these ten groups of RVE
models, from which the influence of steel fiber types and interfacial strengths on the tensile
properties of SFRC could be obtained.

Table 4. SFRC simulation groups.

Group Interface Strength/MPa Steel Fiber Type

SFs (1–5) 1\2\3\4\5 Straight fibers
EFs (1–5) 1\2\3\4\5 End-hook fibers

3. Results and Discussion
3.1. Effect on the Tensile Strength

According to the pre-analysis results, the fracture toughness shown in Table 3 has little
influence on the ultimate strength of the SFRC. Therefore, the fracture toughness remains
unchanged in the calculation. Additionally, when the interfacial strength is greater than
3 MPa, the yielded stress–strain curves almost overlap each other. Therefore, Figure 4a
shows the tensile stress–strain curves of SFRC with interfacial strengths of 1–3 MPa. It
can be seen that the steel fiber shapes and interfacial strengths have little effect on the
stiffness of the SFRC. The obtained tensile strength is given in Figure 4b. It can be seen
from Figure 4b that when the interfacial strength is lower than 2 MPa, the reinforcing effect
of EFs is better than that of SFs. Additionally, if the interfacial strength is 1 MPa, the tensile
strength of the SFRC with end-hook steel fibers is increased by 7% when compared to the
SFRC with straight steel fibers. Additionally, when the interfacial strength approaches or
exceeds 2.64 MPa (strength of concrete), these two steel fibers show similar reinforcing
effects on the SFRC. Moreover, when the interfacial strength reaches 3 MPa (about 14%
higher than the strength of concrete), these two steel fibers no longer show a reinforcing
ability in relation to the strength of the SFRC. Therefore, Figure 4 proves that when the
interfacial strength between steel fibers and concrete is relatively weak (less than 2 MPa),
using the end-hook fibers as reinforcing is a better choice, while if the interfacial strength is
high enough (close to or greater than the strength of concrete), choosing the straight fibers
for reinforcing is relatively simple and effective.
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3.2. Effects on the Interfacial Damage and Failure Modes
3.2.1. With Low Interfacial Strength

Figure 5 gives the mesoscale failure process of the SFRC with SFs at a low interfacial
strength of 1 MPa. Figure 5a indicates the initial failure of fibers/concrete interfaces in the
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RVE, which shows that when the external load reaches 3.23 kN, cracks begin to initiate at
the end interface because of stress concentration, and cracks propagate along the interface
due to the fact that the interfacial strength is lower than the strength of concrete. Figure 5b
suggests that when the external load achieves 4.13 kN, crack propagation occurs at the
interface perpendicular to the loading direction. This is because the interface perpendicular
to the loading direction bears a large normal load, while the interface parallel to the loading
direction mainly bears shear load; therefore, the damage mode is dominated by a mode-I
crack. As shown in Figure 5c,d, when the crack propagates from the end interface to the
concrete matrix, the crack extends quickly with the increase in load. When the crack reaches
the SFRC surface, a penetrating crack is formed, thus the SFRC fails macroscopically, and
the ultimate load is 6.18 kN.
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Figure 6 shows the mesoscale failure process of SFRC with EFs at a low interfacial
strength of 1 MPa. Figure 6a gives the initial interface damage of the SFRC RVE, which
indicates that when the external load reaches 1.64 kN, cracks begin to occur at the end
interfaces and at the fiber corners due to stress concentration. It can be seen from Figure 6b
that when the external load reaches 4.13 kN, cracks begin to propagate along the interface,
which propagate more significantly at these interfaces nearly perpendicular to the loading
direction. This is because these interfaces bear large normal loads, and cracks are easy to
occur. Moreover, Figure 6c,d suggest that the SFRC with EFs is still dominated by interface
damage, where cracks initiate at the fiber ends, propagate into the concrete matrix, and
finally fail macroscopically. The obtained ultimate load is 6.60 kN.
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It can be seen from Figures 5 and 6 that the failure modes of the SFRC with SFs or EFs
are similar at low interfacial strengths. However, due to the additional corners of the EFs,
the external load induced by the initial interface damage of the SFRC with EFs is lower
than that of the SFRC with SFs. Alternatively, it can be seen from Figures 5 and 6 that the
SFs-modified SFRC has more damaged areas than the EFs-modified SFRC (SDEG > 0.98,
shown in red), which means the initial crack onset rate at the interface of the SFRC with EFs
is lower than that of the SFs-modified SFRC. Additionally, the external load corresponding
to interfacial crack propagation for these two SFRCs is the same, obtained as 4.13 kN, where
the propagation rate of interfacial cracks of the EFs-modified SFRC is obviously slower than
that of the SFs-modified SFRC. More importantly, the tensile strength of the EFs-modified
SFRC is 7% higher than that of the SFs-modified SFRC when the interfacial strength is
1 MPa.

3.2.2. With High Interfacial Strength

Figure 7 gives the mesoscale damage process of the SFs-modified SFRC at the relatively
high interfacial strength of 5 MPa. As shown in Figure 7a, when the external load reaches
6.9 kN, a small number of initial cracks occur at the end interfaces. With the external
load increasing to 7.32 kN (Figure 7b), the cracks propagate a short distance along the
interfaces and immediately extend into the concrete matrix because the interfacial strength
is higher than that of the concrete matrix. Figure 7c,d present the damage diagrams of
the interfaces and the concrete matrix at the final failure moment, respectively. It can be
seen that with high interfacial strength, the damage percentage of interfaces at the final
failure moment is much smaller than that of the concrete matrix, and the concrete damage
is the dominating failure mode of the SFRC. The obtained ultimate load is 7.80 kN. Once
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again, Figure 8 presents the mesoscale damage process of EFs-modified SFRC at the high
interfacial strength of 5 MPa. When the external load reaches 4.5 kN (Figure 8a), tiny initial
cracks appear at the end interfaces. As the external load continues to increase to 7.32 kN
(Figure 8b), the cracks extend from both ends of the fibers to their middle parts, and then
quickly extend into the concrete matrix. Figure 8c,d give the damage diagrams of the
interfaces and the concrete matrix at the final failure moment, respectively. Here, the cracks
have propagated to the surface of the SFRC, accompanied by a large damage area in the
concrete (Figure 8d), which eventually leads to macroscopic damage to the SFRC, with an
ultimate load of 7.81 kN.
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interface damage, (b) propagation of interface crack, (c) interface failure, (d) SFRC failure.

It can be seen from Figures 7 and 8 that due to the additional corners of the EFs,
cracks easily initiate in the EFs-modified SFRC. Under high interfacial strength, both
interfacial strengths and fiber shapes reach their reinforcing threshold, and the failure
mode is dominated by the concrete matrix. That is, when the interfacial strength is 5 MPa,
the EFs-modified SFRC and the SFs-modified SFRC show the same damage modes and
ultimate strengths.

It can be concluded from Figures 4–8 that the external load corresponding to the initial
damage is relatively high in the case of high interfacial strength (Figures 7 and 8), and
otherwise is reverse (Figures 5 and 6). The tensile strength of the SFRC increases with the
increase in the interfacial strength. The addition of low-fiber volume content steel fibers
into concrete does not show a reinforcing effect, and the induced interface is very easy
to crack.
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4. Conclusions

This paper uses Abaqus–Python–Hypermesh to establish a 3D RVE for the SFRC with
different types of steel fibers and different interfacial strengths. The results show that when
the interfacial strength is less than 2 MPa, end-hook steel fibers have a better reinforcing
effect than straight steel fibers, with a maximum enhancement of about 7% in the concrete
compared to the straight steel fibers. Additionally, when the interfacial strength approaches
the concrete’s strength, both fibers show similar reinforcing effects. Moreover, interfacial
damage is the dominating failure mode in cases of low interfacial strength, and the main
failure mode is the concrete if the interfacial strength is high. Furthermore, the induced
initial damage load in the end-hook steel fibers-modified SFRC is lower than that in the
straight steel fibers-modified SFRC, because more ends and corners present in the former
would cause more stress concentration points. However, the crack propagation rate in
the end-hook steel fibers-modified SFRC is slower than that in the straight steel fibers-
modified SFRC. Summarily, interfacial strength and fiber type are the main parameters that
determine the effect of the addition of fibers into concrete. This research provides a better
design guideline for the modification of concrete. Real interface strength testing, SFRC
tensile experimental verification, and more finite element groups of high-fiber volume
content will be considered in future research.
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