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Abstract: The current serious air pollution problem has become a closely investigated topic in
people’s daily lives. If we want to provide a reasonable basis for haze prevention, then the prediction
of PM2.5 concentrations becomes a crucial task. However, it is difficult to complete the task of PM2.5
concentration prediction using a single model; therefore, to address this problem, this paper proposes
a fully adaptive noise ensemble empirical modal decomposition (CEEMDAN) algorithm combined
with deep learning hybrid models. Firstly, the CEEMDAN algorithm was used to decompose the
PM2.5 timeseries data into different modal components. Then long short-term memory (LSTM), a
backpropagation (BP) neural network, a differential integrated moving average autoregressive model
(ARIMA), and a support vector machine (SVM) were applied to each modal component. Lastly,
the best prediction results of each component were superimposed and summed to obtain the final
prediction results. The PM2.5 data of Hangzhou in recent years were substituted into the model
for testing, which was compared with eight models, namely, LSTM, ARIMA, BP, SVM, CEEMDAN–
ARIMA, CEEMDAN–LSTM, CEEMDAN–SVM, and CEEMDAN–BP. The results show that for the
coupled CEEMDAN–LSTM–BP–ARIMA model, the prediction ability was better than all the other
models, and the timeseries decomposition data of PM2.5 had their own characteristics. The data with
different characteristics were predicted separately using appropriate models and the final combined
model results obtained were the most satisfactory.

Keywords: timeseries data; PM2.5 concentration prediction; CEEMDAN–LSTM–BP–ARIMA
coupling model

1. Introduction

Atmospheric pollution [1] is closely related to agricultural production and human
health. In recent years, with the expansion of industrial production, the problem of
atmospheric pollution has become increasingly serious. Thus, we must pay attention
to this problem [2]. PM2.5 refers to particles in the air with a particle size less than or
equal to 2.5 microns, which can float in the outdoor air for a long time. Its content is a key
factor in determining the degree of air pollution. A greater content of PM2.5 in the outdoor
air indicates increased pollution. PM2.5 particles are also an important element in the
formation of haze, as they are finer particles, are richer in harmful substances, and have a
longer transmission distance and life span. Therefore, PM2.5 particles are harmful to human
health, the quality of the atmospheric environment, and they have a more direct impact on
air quality and visibility. A person’s travel and health conditions in haze environments [3]
are greatly affected. Therefore, it is necessary to establish accurate, reliable, and effective
models to make predictions of atmospheric pollutant concentrations over a long period of
time. The prediction results [4–7] can provide guidance for decision-making behavior, in
addition to being important for the protection and management of ambient air.

Accurate long-term forecasting of PM2.5 concentration is more important than short-
term forecasting, as it allows us more time to deal with the impact of air pollution. At
present, the main timeseries forecasting methods are divided into two categories. One is
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the traditional probabilistic method [8], which determines the parameters of the model
according to theoretical assumptions and prior knowledge of the data. If our actual data
and theoretical models do not match, then this method cannot give satisfactory long-
term prediction results. There is also the machine learning method [9]. The biggest
difference with the traditional probability method is that the machine learning method
does not need to determine the model parameters through theoretical assumptions and
prior knowledge of the data. The algorithm is used for learning to obtain the law between
the model parameters and the data to make predictions. Therefore, deep learning networks
have actually surpassed traditional probabilistic prediction methods in many nonlinear
modeling fields.

Traditional methods are mostly used in simple applications of the environment, such as
threshold autoregressive (TAR) models [10] and hidden Markov models (HMM) [11] since
these models are determined on the basis of theoretical assumptions and prior knowledge
of the data parameters. Many times we cannot know the previous parameters, resulting in
relatively large limitations, which seriously affect the accuracy of prediction.

Machine learning models are generally based on basic algorithms and historical data
to build predictive models that can adaptively learn model parameters, obtain laws and
relationships between complex data, and conduct simulation training through part of the
data to obtain models to predict future development trends. Basic parameter identification
algorithms include iterative algorithms [12], particle-based algorithms [13], and recursive
algorithms [14].

Machine learning models are divided into shallow networks and deep networks [15,16].
Shallow networks include the short-term prediction method based on the back-propagation
(BP) neural network proposed by Ni et al. [17], the improved grey neural network model [18],
the radial basis function (RBF) neural network [19], etc. These methods have been used for
PM2.5 concentration data, daily average temperature, and other pollutant concentration data.

However, due to the simple structure of the shallow network, it can only achieve
short-term prediction performance, and long-term accurate prediction results must be
captured using deep neural networks.

Deep machine learning networks show strong learning ability in complex time-
series. They have good performance in capturing the high nonlinearity of timeseries
data. They can highly abstract data analysis through the multi-nonlinear transformation
of complex structures. Timeseries problem-solving functions include long short-term
memory (LSTM) [20,21], differential integrated moving average autoregressive model
(ARIMA) [22,23], and support vector machine (SVM) [24,25].

Although deep machine learning models have the ability to extract accurate informa-
tion in complex environments, PM2.5 concentration sequences are datasets with strong
randomness and nonlinearity, and the accuracy of long-term prediction needs further
development. In recent years, the application of deep learning methods in the field of air
pollution has also attracted the attention of researchers, combinatorial approaches to data
decomposition have been shown to be effective ways to improve forecasting performance,
and various hybrid models have been introduced to forecast nonlinear timeseries data.

For example, Huang and Kuo [26] used a hybrid model based on convolutional neural
networks (CNNs) and LSTM to predict PM2.5 concentrations. Rojo used a loess-based
seasonal decomposition program [27,28] to decompose the seasonal components of the data
for the short-term prediction of air pollen, and Zhang and Li set the wavelet basis function
through wavelet decomposition [29,30] to obtain the predicted decomposition information.

The fully adaptive noise ensemble empirical modal decomposition (CEEMDAN)
algorithm [31,32] can completely decompose timeseries data into intrinsic mode function
(IMF) components with different frequency characteristics [33] and sort them from high
frequency to low frequency, which can greatly reduce the complexity of the original data.
We believe that the predictive power of a single model is ultimately limited; therefore, we
focused on developing a combined model based on data decomposition.
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The focus of this study is to improve the long-term prediction accuracy of PM2.5 based
on deep learning networks, combined with the CEEMDAN decomposition algorithm,
the complexity of the original PM2.5 data is effectively reduced, and to predict all IMF
components separately through four different timeseries machine learning models, the
BP model, ARIMA model, LSTM model, and SVM model. Different characteristics were
used to adapt to different models, and then the optimal prediction results corresponding to
each IMF component were superimposed and summed to restore the optimal solution so
as to obtain the combination model based on the above models that was most suitable for
Hangzhou PM2.5 data. Our innovation priorities were as follows:

(1) The CEEMDAN decomposition algorithm was introduced for the long-term prediction
of PM2.5 timeseries data.

(2) After the IMF component was obtained using the CEEMDAN decomposition algo-
rithm, an adaptive model was further established according to the characteristics of
the IMF component, so as to improve the accuracy of long-term prediction.

(3) This method of further predictive analysis of the IMF components can become a
new framework, which can be applied for the prediction of more similar data, thus
obtaining accurate long-term prediction results.

2. Materials and Methods

The air quality data used in this paper came from the air quality historical data query
website (https://www.aqistudy.cn/historydata/, accessed on 19 July 2022), and the daily
average PM2.5 concentration data records from December 2013 to December 2021 were
selected from Hangzhou, Zhejiang Province, and Kunming, Yunnan Province. The samples
were both 2952. The sampling interval was 1 day (the daily average data for each day are
obtained from the arithmetic mean of the 24-h effective hourly concentration data of all
single stations in the city where they are located). The PM2.5 unit was ug/m3. The first 90%
of the sample data was selected for simulation training, and the last 10% of the sample data
was used to test the prediction results; i.e., we used the PM2.5 concentration data for 2952
days (December 2013–February 2021) to predict the trend of PM2.5 concentration data in
the next 295 days (March 2021–December 2021). Lastly, in the 295-day forecast results, we
intercepted the 50-day model forecast results with more obvious comparisons for graphical
display and comparative analysis. The timeseries data of PM2.5 concentration in Hangzhou
are shown in Figure 1, which shows that the PM2.5 concentration in Hangzhou had obvious
changes and fluctuations.
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Figure 1. Hangzhou PM2.5 data sequence diagram.

2.1. Introduction to the Model
2.1.1. Fully Adaptive Noise Ensemble Empirical Modal Decomposition
(CEEMDAN) Algorithm

The CEEMDAN algorithm is mostly used in the field of forecasting. It can completely
decompose the original data, with strong volatility, into several intrinsic mode function
(IMF) components with different frequency characteristics, thereby reducing the volatility of

https://www.aqistudy.cn/historydata/
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the data and improving the prediction accuracy. The CEEMDAN algorithm has three major
advantages. The first is its completeness. In other words, the original data can be obtained
by adding and summing the components decomposed by the algorithm, which is beyond
the reach of many decomposition algorithms. Secondly, the CEEMDAN algorithm has a
faster calculation speed, which can effectively improve the operation speed of the program.
Lastly, the CEEMDAN algorithm has a better modal decomposition effect, preventing the
occurrence of multiple low-frequency components with small amplitudes, which are of
little significance for data analysis.

Let Ei(·) be the ith eigenmode component obtained through empirical mode de-
composition (EMD). Then, the ith eigenmodal component obtained through CEEMDAN
decomposition is Ci(t). V j denotes the Gaussian white noise signal conforming to the
standard normal distribution. j = 1, 2, . . . , N is the frequency at which white noise is
added, ε is the standard table of white noise and y(t) is the data to be decomposed. The
CEEMDAN decomposition steps are described below.

(1) The new signal y(t) + (−1)qεj(t) is obtained by adding Gaussian white noise to the
signal to be decomposed y(t), where q = 1.2. The EMD decomposition of the new
signal yields the first order eigenmode components.

E(y(t) + (−1)qεvj(t)) = Cj
1(t) + rj (1)

(2) The first eigenmodal component of the CEEMDAN decomposition is derived by
taking the resulting Nth modal component and balancing it overall.

C1(t) =
1
N

N

∑
j=1

Cj
1(t) (2)

(3) The residuals are calculated after subtracting the first modal component.

r1(t) = y(t)− Ci(t) (3)

(4) By adding a new signal of positive and negative paired Gaussian white noise to r1(t)
and using the new signal as a medium to start the EMD decomposition, the first-
order modal component, D1, can be derived, which generates the second eigenmodal
component of the CEEMDAN decomposition as follows:

C2(t) =
1
N

N

∑
j=1

Dj
1(t). (4)

(5) The residuals are calculated after subtracting the second modal component from
the results.

r2(t) = r1(t)− C2(t) (5)

(6) The above process is repeated until the obtained residual signal is always a monotonic
function and cannot be further decomposed. Then, the calculation is completed. The
number of eigenmodal components obtained at this point is K. The original signal is
then decomposed as

y(t) =
K

∑
K=1

CK(t) + rK(t). (6)

An exploded view of the CEEMDAN algorithm is shown in Figure 2. The original
PM2.5 concentration timeseries data in Hangzhou were completely decomposed into nine
intrinsic mode function (IMF) components and residuals and then displayed in order from
top to bottom according to high and low frequency. Then, the difference between each IMF
component and residual was substituted into the machine learning timeseries model for
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prediction. Lastly, the final prediction result was obtained by superimposing and summing
the predicted IMF components. The flowchart is shown in Figure 3.
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2.1.2. Long Short-Term Memory (LSTM) Model

LSTM has a strong ability to remember data in a delayed manner; when it grasps the
current content, it acquires the relationships existing in the data over a longer time span
to achieve long-term memory, enabling more accurate predictions of their development.
An LSTM cell has three gates, called the forget gate, the input gate, the and output gate.
Figure 4 shows the cell body of the neuronal structure.

ft = σ(W f ∗ [ht−1, xt] + b f ) (7)

Here, ft is the forget gate, σ is the standard sigmoid activation function, ht−1 indicates the
unit value at the previous time, Wf is the weight value, xt is the input value at time t, and bf
is the vector of bias value.

it = σ(Wi ∗ [ht−1, xt] + bi) (8)
∼
Ct = tan h(Wc ∗ [ht−1, xt] + bc) (9)

Here, it is the input gate,
∼
Ct is the current input state unit, and tanh (·) is the hyperbolic

tangent activation function.

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (10)

Here, Ct is the state cell of the hidden layer at moment t, ft is the degree of the last forget

function about information Ct−1, it is the degree to which
∼
Ct is to be added, and Ct is the

state of the cell obtained.
Ot = σ(W0[ht−1, xt] + b0) (11)

ht = ot ∗ tanh(Ct) (12)

Here, Ot is the current output gate.
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2.1.3. Differential Integrated Moving Average Autoregressive Model (ARIMA)

The ARIMA model, known as the differential integrated moving average autoregres-
sive model, is the most commonly used demand forecasting model in all industries. It
treats the original timeseries data to be forecasted as a random dataset of equal length, uses
mathematical methods to identify the characteristics of this dataset, and describes them by
means of a numerical model. After modeling, it is possible to predict future values from
known values. The flowchart of the ARIMA model is shown in Figure 5.
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The ARIMA (p, d, q) model yields the following expression:(
1−

p
∑

i=1
φiL

i
)
(1− Ld)Xt =

(
1 +

q
∑

i=1
θiLi

)
εt, (13)

where L is the lag operator, and p, d, and q represent the three basic parameters in the
model; p is the number of lags of the original data itself in the ARIMA model, d is a
positive integer parameter describing the number of orders of differentiation needed to
stabilize the original data, and q is the number of lags of the prediction error used in the
prediction model.

2.1.4. Backpropagation (BP) Neural Network Model

BP neural networks are a class of multilayer feedforward neural networks trained by
error backpropagation, and they are one of the most popular neural network architectures
in use today. Their network structure can be divided into an input layer, an implicit layer,
and an output layer. The essence of this model is to convert the sample data from an
input–output problem into a nonlinear optimization problem and use certain methods
to change the weights along the negative trend of the error function. Figure 6 shows the
structure of the BP neural network model.

Its mathematical expression is as follows:

y = w(2,3)
11 ∗ tan sig(w(1,2)

11 ∗ x1 + w(1,2)
21 ∗ x2 + b(2)1 )

+w(2,3)
21 ∗ tan sig(w(1,2)

12 ∗ x1 + w(1,2)
22 ∗ x2 + b(2)2 )

+w(2,3)
31 ∗ tan sig(w(1,2)

13 ∗ x1 + w(1,2)
23 ∗ x2 + b(2)3 ) + b(3)1

(14)



Sustainability 2022, 14, 16128 8 of 15

where w is the weight value, b is the threshold value, w(2,3)
11 represents the weight from the

first node of the second layer to the first node of the third layer, and b(2)1 represents the
threshold of the first node of the second layer.
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2.1.5. Support Vector Machine (SVM) Model

The SVM is essentially a small sample classification method. It maximizes the spatial
distance of the samples by finding an optimal partitioning “plane”, and it is superior in
solving nonlinear high-dimensional spatial problems. It is often used in pattern recognition,
function approximation, etc. The principle of the SVM method is shown in Figure 7.
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The expression of the optimal partition ‘plane’ is as follows:

wTx + b = 0. (15)

The two plane expressions that are parallel and equal to the optimal dividing ‘plane’
are expressed as follows:

wTx + b = 1, (16)

wTx + b = −1. (17)

2.1.6. Reference for Setting Important Parameters of the Model

In this model, the input dataset was the original PM2.5 timeseries data, the training
set is the first 90% of the original data, and a select 10% of the training set data for 10-fold
cross testing, reduce the chance caused by a random division, improve its generalization
ability, and improve the efficiency of data use. the LSTM model was implemented using
the keras package in Python 3.6. We set the most important parameter reference values to
include a hidden layer with 300 dimensions, the ‘relu’ activation function, look back of 10,
‘Adam’ optimizer, batch size of 64, and 300 epochs. For the ARIMA model, we chose to use
the Akaike information criterion to formulate the reasonable order of p and q, only limiting
the parameter p. The maximum value of q was 3, with a scrolling step of 30. The model
automatically determined the best order within three operations. The reference order of the
BP neural network model function prediction order was 30, and the hidden layer reference
was three layers. In the model prediction of SVM, a scrolling step of 30, the KernelFunction
was set to ‘polynomial’, the KernelScale was set to 10, and the BoxConstraint was set to 5.

2.1.7. Model Evaluation Indices

In order to effectively compare the parameters of the models, we chose the root-mean-
square error (RMSE), the mean absolute error (MAE), and the goodness of fit (R-squared,
coefficient of determination) to judge the prediction accuracy of the models. The units of
RMSE and MSE were the same as that of the PM2.5 concentration data, i.e., ug/m3. Smaller
values indicate a greater measurement accuracy. A closer value of R2 to 1 indicates a better
fit. The expressions are shown in Equations (18)–(20):

RMSE =

√
1
m∑m

i=1 (yi − ŷi)
2, (18)

MAE =
1
m ∑m

i=1|yi − ŷi

∣∣∣, (19)

R2 = 1− ∑m
i=1 (yi − ŷi)

2

∑m
i=1 (yi − y)2 , (20)

where m is the number of test samples, and yi and ŷi are the original and predicted values
of the data, respectively.

3. Results and Analysis

In this study, we first compared the prediction effectiveness of individual models
for PM2.5.

The PM2.5 prediction results of the four single models are shown in Figure 8, and the
error results are shown in Table 1. It can be concluded that the basic trend of the future
PM2.5 concentration could be predicted simply by using single models, but there were
clearly large errors, especially at the peaks and troughs. The ARIMA model was the best
model for predicting PM2.5 in Hangzhou among the four single models, with an RMSE of
10.09, an MAE of 7.51, and an R2 of 0.46.
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Table 1. Single model error comparison.

LSTM ARIMA BP SVM

RMSE 10.27 10.09 10.55 10.61
MAE 7.88 7.51 8.21 7.93

R2 0.42 0.46 0.37 0.43

We then optimized the single models using the CEEMDAN algorithm due to its predic-
tive power. Figure 9 and Table 2 show the prediction and error comparison results for the
CEEMDAN–LSTM, CEEMDAN–ARIMA, CEEMDAN–BP, and CEEMDAN–SVM models.
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Table 2. Comparison of coupled model errors based on the CEEMDAN algorithm.

CEEMDAN–LSTM CEEMDAN–ARIMA CEEMDAN–BP CEEMDAN–SVM

RMSE 7.28 6.27 6.90 6.27
MAE 5.71 4.95 5.48 4.88

R2 0.70 0.74 0.67 0.77

It can be concluded that the prediction ability of the coupled models processed using
the CEEMDAN algorithm was greatly improved, and the trend of PM2.5 concentration
in the future could be better predicted. Every error metric in the coupled model was
better than that of the single models in Table 1. The fitting result of the CEEMDAN–SVM
model was best, with an RMSE value of 6.27, an MAE value of 4.88, and an R2 of 0.77. The
comparison between the coupled models, combined with the CEEMDAN algorithm, and
the simple models without the CEEMDAN algorithm fully reflect the superior performance
of the CEEMDAN algorithm in improving the prediction accuracy of PM2.5.
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Without the CEEMDAN algorithm, the predictive ability of the ARIMA model was
better than that of the SVM model; whereas, with the CEEMDAN algorithm, the prediction
ability of the CEEMDAN–SVM model was better than that of the CEEMDAN–ARIMA
model. Their RMSE values were the same, but the MAE values of the CEEMDAN–SVM
model were better. Therefore, we chose to compare the prediction results of each modal
component after decomposition using the CEEMDAN algorithm in detail.

We used the CEEMDAN algorithm to completely decompose the original PM2.5
concentration data in Hangzhou into nine IMF components and residuals according to
their frequency from high to low, and then substituted each IMF component and residual
into the LSTM, ARIMA, SVM, and BP neural network models for prediction. The final
prediction result was obtained by stacking and summing. The comparison results are
shown in Tables 3–5. The LSTM network performed best in IMF1 component prediction.
The BP neural network performed best in predicting the IMF2 components. The prediction
performance of the ARIMA model was excellent for the IMF3–9 components. Since the
residual value was minuscule, the value of all models when predicting the residual was
infinitely close to 0. It can be concluded that the model corresponding to each data type
with the best performance was different, and no model could be used for all components.
Therefore, data types with different frequencies should be matched with different prediction
models, and the optimal solution for each IMF component prediction was obtained by
constructing the CEEMDAN–LSTM–BP–ARIMA model. The prediction results obtained
from the experiment are shown in Figure 10, and the error results are shown in Table 6. The
fitting degree in the figure is high, and the various error indicators are significantly better
than all the previous models.

Table 3. Comparison of RMSE values of split result graphs based on the CEEMDAN algorithm.

LSTM (RMSE) ARIMA (RMSE) SVM (RMSE) BP (RMSE)

IMF1 5.84 6.16 6.12 6.90
IMF2 1.76 1.53 1.80 1.52
IMF3 0.27 0.25 0.71 0.29
IMF4 0.15 0.04 0.43 0.05
IMF5 0.10 1.57× 10−3 0.20 1.9 × 10−3

IMF6 0.04 6.66 × 10−5 0.46 1.1 × 10−3

IMF7 0.06 3.72 × 10−6 0.77 1.2 × 10−3

IMF8 0.01 3.81 × 10−8 0.14 3.21 × 10−4

IMF9 0.13 1.38 × 10−8 1.34 0.09
Residual 0.00 0 0 0

Table 4. Comparison of MAE values of split result graphs based on the CEEMDAN algorithm.

LSTM (MAE) ARIMA (MAE) SVM (MAE) BP (MAE)

IMF1 4.70 4.97 4.75 5.51
IMF2 1.37 1.20 1.31 1.17
IMF3 0.19 0.17 0.53 0.21
IMF4 0.13 0.02 0.35 0.03
IMF5 0.05 1 × 10−3 0.14 1 × 10−3

IMF6 0.03 2.17 × 10−5 0.38 7.83 × 10−4

IMF7 0.05 7.36 × 10−7 0.68 8.78 × 10−4

IMF8 0.01 7.88 × 10−9 0.10 3.10 × 10−4

IMF9 0.09 9.35 × 10−9 1.34 0.074
Residual 0.00 0.00 0.00 0.00
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Table 5. Comparison of R2 values of split result graphs based on CEEMDAN algorithm.

LSTM (R2) ARIMA (R2) SVM (R2) BP (R2)

IMF1 0.20 0.16 0.17 0
IMF2 0.88 0.91 0.88 0.91
IMF3 0.99 1.00 0.98 1.00
IMF4 1.00 1.00 0.99 1.00
IMF5 1.00 1.00 1.00 1.00
IMF6 1.00 1.00 1.00 1.00
IMF7 1.00 1.00 1.00 1.00
IMF8 1.00 1.00 1.00 1.00
IMF9 1.00 1.00 1.00 1.00

Residual 0.00 0.00 0.00 0.00

Table 6. CEEMDAN–LSTM–BP–ARIMA model error comparison (Hangzhou).

CEEMDAN–LSTM–BP–ARIMA

RMSE 5.9
MAE 4.63

R2 0.79
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In order to better reflect the applicability of the model, and to prevent the occurrence of
chance, we substitute the data from Kunming, Yunnan Province, into the optimal model for
validation. The prediction results are shown in Figure 11, and the error results are shown in
Table 7. We can obviously conclude that the optimal model applicable to Hangzhou PM2.5
prediction is also applicable to Kunming, and the prediction results fit well with the actual
values. Therefore, in this experiment, it can be said that the model combining the machine
learning time series model with the CEEMDAN algorithm is the ideal model for predicting
PM2.5 concentration.
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Table 7. CEEMDAN–LSTM–BP–ARIMA model error comparison (Kunming).

CEEMDAN–LSTM–BP–ARIMA

RMSE 4.55
MAE 3.66

R2 0.79

Comparing various methods, Qian [8] et al. used the traditional probabilistic method
for PM2.5 concentration prediction, which was able to provide highly time-resolved particle
concentrations, but required high parameters of the individual data itself, and required
the combination of meteorological variables, land use terms, and spatial and temporal lag
terms. In contrast, the learning ability of simple time series models such as LSTM, ARIMA,
SVM, and BP is limited, and there is an upper limit to their ability to handle anomalous
data. Zhao [20] et al. used LSTM models to model the local variation of PM2.5, Chen [18]
et al. used BP neural networks for a 3-h short-term prediction of PM2.5 concentrations,
and the experimental results proved that the single machine learning time series model has
certain PM2.5 concentration prediction ability, which is mainly superior in the short term or
locally, and the long-term results are not satisfactory. The CEEMDAN algorithm has been
well applied in the hands of Rongbin [32] et al. The algorithm has good decomposition
integrity by decomposing the original signal with complexity and nonsmoothness into
eigenmodal components (IMF), and the decomposition completes with significantly lower
data values, so the decomposed training data can better improve the prediction accuracy
when applied to a single neural network model.

4. Conclusions

In recent years, air quality problems have had a serious impact on people’s normal
life. Environmental problems such as PM2.5 have received more and more attention and
PM2.5 is characterized by a strong multilateral and a strong randomness. Thus, accurate
long-term PM2.5 concentration prediction remains a formidable challenge for us.

In this study, we proposed a way to combine the CEEMDAN algorithm with the
LSTM model, ARIMA model, BP neural network, and SVM model to predict the PM2.5
concentration. The results of various evaluation indicators showed that all models based on
the CEEMDAN algorithm improved the prediction accuracy to varying degrees compared
with the original simple models. The introduction of the CEEMDAN algorithm can provide
new inspiration for a PM2.5 prediction, and the CEEMDAN algorithm can perhaps be
combined with additional timeseries machine learning models. In this experiment, the
predictive performance of the coupled model was higher than that of the single model.

Secondly, we discovered a new application of the IMF components obtained using
the CEEMDAN algorithm. We carried out LSTM, ARIMA, BP neural network, and SVM
modeling and prediction for each IMF component of the PM2.5 concentration timeseries
data. The optimal prediction results of the components were added and summed. In this
paper, the CEEMDAN-LSTM-BP-ARIMA model obtained the ideal results for a PM2.5
concentration prediction in Hangzhou and Kunming. Compared with the other models,
the long-term prediction accuracy was significantly improved. Applying a single model
is not optimal. We found that the best models differed according to IMF components,
whereby a combination of timeseries machine learning models obtained the best prediction
accuracy. We believe that this method also has good generalizability and can be used to
predict additional characteristics such as wind speed and other pollutant concentrations.
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Abbreviation Full Name
CEEMDAN Complete EEMD with adaptive noise
LSTM Long short-term memory
BP Backpropagation
ARIMA Differential integrated moving average autoregressive
SVM Support vector machine
IMF Intrinsic mode function
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