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Abstract: The scientific basis for conceptualizing how farm households achieve the three climate-
smart agriculture (CSA) pillars, the “triple benefit”, is not well developed. This paper examined
the impacts of CSA innovations on simultaneously enhancing food security, climate adaptation,
and reducing GHG emissions. A cross-sectional household survey was collected from a multi-stage
sample of 424 smallholder farmers selected from five agroecosystems of the upper Blue Nile highlands
in Ethiopia and analyzed using an endogenous switching regression (ESR) model. CSA innovations,
improved variety, compost, row planting, and agroforestry, provide farmers with the benefits of
enhanced food security and climate change adaptation, reducing GHG emissions from farm plots.
Crop rotation provides farmers with enhanced food security and reduced livelihood vulnerability,
while SWC meets the goal of enhancing food security and reducing GHG emissions. Unfortunately,
adopting crop residue management, one of the recommended CSA practices in Ethiopia, does not
deliver at least two of the CSA pillars. Farmers should be encouraged to adopt improved variety, crop
rotation, compost, row planting, soil and water conservation, and agroforestry as the best portfolio of
CSA innovation for highland smallholder agriculture systems.

Keywords: climate-smart agriculture; livelihood vulnerability; food security; GHG emissions;
synergy; trade-off; Ethiopia

1. Introduction

Current agricultural development policies, strategies, and technologies are not in sync
with the global effort to mitigate current and future climate change trends, nor do they
provide a window of opportunity for smallholder farmers to build climate resilience [1].
Climate change and agriculture are intertwined in three critical links. First, climate change
affects crop yield and productivity, which causes food insecurity for smallholder farmers [2].
Second, for sustainable future agricultural development, agriculture should adapt to climate
change to reduce climate-related livelihood vulnerability [3]. Third, agriculture is a source
of greenhouse gas (GHG) emissions that accounts for thirteen, forty-four, and eighty-two
percent of carbon dioxide, methane, and nitrous oxide emissions [4]. Therefore, future
and current development policies should address the complex challenges of sustainable
farming, food security, and the current and anticipated climate change [5,6].

Land degradation, low-input use, water scarcity, and a lack of adaptive capacity
contribute to a decline in land productivity in Ethiopian smallholder agriculture [7–9].
When these issues are combined with the risk of climate change, the smallholder agriculture
system suffers from additional productivity loss, increased water scarcity, and a lack of
adaptive capacity to respond to climate change risk [10,11]. Whenever yield declines,
smallholder households face malnutrition and food insecurity. Crops stored for the lean
season may also be harmed due to crop pests caused by climate change. Furthermore, road
infrastructure can be washed away or closed, restricting market access and aggravating
food insecurity [12,13].
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The shift of agricultural areas from more suitable land to marginal and environmentally
fragile areas may exacerbate the problem of GHG emissions in three ways. First, degraded
and abundant farmland emits more greenhouse gases than cultivated land. Second, the
cultivation of grazing and wet land may release already stored carbon in the area and
exacerbate GHG emissions [14]. Finally, when smallholders deforest natural forest area for
cultivation, the GHG emissions released into the atmosphere increase.

Climate-smart agriculture (CSA) and livelihood diversification can improve the re-
silience and sustainability of African food systems in the face of climate change [15]. CSA
integrates sustainable productivity, resilience (adaptation), emissions reductions, food
security, and development objectives [6,16,17]. CSA innovations involve new and old agri-
cultural technologies and are part of conservation agriculture [18–20]; agroforestry [21–26];
sustainable intensification [27–29]; and sustainable land management [17,30–32]. Hence,
CSA is a suite of practices and technologies integrated into an agricultural system, often at
different scales, rather than a specific, plot-based practice or technology [19]. Hence, CSA
is sustainable agriculture that meets the needs of the present generation by ensuring food
security and reducing agricultural livelihood vulnerability to climate change. It also meets
the need of future generations by building climate resilience and reducing GHG emissions
at the farm level for food production and the maintenance of ecosystem services.

Ethiopia has adopted CSA to meet the adaptation and mitigation objectives of the
Climate-Resilient Green Economy (CRGE) strategy in the highland agriculture system [33].
The major initiatives are soil erosion or land degradation restoration practices through soil
and water conservation measures, agroforestry, and area closures [33,34]. CSA practices
in Ethiopia have been implemented primarily within integrated watershed management
through projects such as the Sustainable Land Management Programme [33].

Despite the existence of literature on the effect of CSA practices on food security and
welfare [35,36], literature on the synergy and trade-off effect of CSA innovations on food
security, climate change adaptation, and mitigation benefit is scarce. [37,38] examined
CSA innovations adoption and its effect on household income and resilience, yet their
studies have limited insight into the synergy and trade-off effect. We hypothesized that
multiple CSA innovations improve synergy among CSA goals and reduce trade-offs by
ensuring food security, adaptation (reducing livelihood vulnerability to climate change),
and mitigation (reducing GHG emissions at the farm level). Therefore, this study examined
the effect of CSA innovations on agricultural sustainability in relation to improving synergy
and reducing trade-offs among smallholder farmers in the Blue Nile highlands of Ethiopia.

2. Methodology
2.1. Study Area

The Choke mountain watershed is located in Ethiopia’s Blue Nile highlands. It is
located between 9◦38′00′′ to 10◦55′24′′ north latitude and 37◦07′00′′ to 38◦17′00′′ east
longitude (Figure 1). It is located at an elevation of 2100 to 4113 m above sea level, and
the total land surface area of the watershed is approximately 15,950 km2, with an average
annual rainfall of 200 to 2200 mm as well as an average annual temperature of 11.5 ◦C to
27.5 ◦C. The watershed has a slope gradient from flat to steep, and eight dominant soil
types are found: Alisols, Andosols, Cambisols, Leptosols, Luvisols, Nitosols, Phaeozems,
and Vertisols. The climate of the watershed ranges from the hot, arid climate of the Abay
(Blue Nile) gorge to the cold and moist climate of the peak of Choke mountain [39].
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Figure 1. Map of the study area.

The study employed a mixed research method that uses both qualitative and quantita-
tive data. The quantitative data were generated from household surveys. The household
and plot-level survey data gathered consisted of information on socio-demographic and
economic characteristics; climate-smart agricultural practices and preferences; crop produc-
tion; livelihood assets; climate change risk and exposure; food consumption and frequency;
and climate resilience. The qualitative data largely depended on information obtained
through key informant interviews, observation, and document review. Key informant
interviews were particularly used to generate in-depth information pertinent to climate
trends over time, agricultural technologies, perception towards the technologies, major
climate-related hazards, land use and land cover change, climate adaption, and mitigation
measures. For these purposes, a total of 10 key informant interviews, 2 key informants per
woreda, among woreda agricultural and natural resource officials were conducted. Five
in-depth interviews of smallholder farmers in each woreda were conducted. The intervie-
wee was selected based on age, community status, and engagement with government-led
land restoration activities. In addition, secondary data were also collected from woreda
agricultural offices through a desk review that included information on the agroecosystems,
precipitation, temperature, land use, crop production, livestock, population, and other data
related to the study objectives. The sample size was determined based on the formula
obtained from [40], with the assumption that half of the population in the study area had
adopted CSA innovations. Thus, we used the formula:

n1 =
Z2

1− α
2

d2 P(1− P) =
(1.96)2(0.5)2

(0.05)2 = 385
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where n1 is the initial sample size; Z1−α/2 = 1.96 for a 95 percent confidence interval; P is
the proportion of smallholder farmers who adopt multiple CSA innovations, P = 0.5; and d
is the error of margin, taking d = 0.05. There was a 10 percent non-response rate, which was
39 households. The sample size became 424 smallholder households.

A multi-stage sampling technique was used to select 424 households at random from
the five woredas. The woredas were chosen through purposive sampling in the first stage
based on the agroecosystem zone they represent. In the second stage, one kebele from each
woreda was chosen at random. Gelegele from Dejen, Enebi from Awobel, Limichim from
Basoliben, Debere klemu from Machakel, and Yeted from Sinan were among these kebeles.
Finally, using a sampling frame of a one-to-five community mobilization group register, a
systematic random sampling technique was used to select 424 households and 1818 farm
plots based on probability proportional to size (PPS) (Table 1).

Table 1. Sample woredas/districts and kebeles.

District/Woreda Kebele Sample Size Agroecosystem Zone (AESZ)

Dejen Gelgele 77 AESZ1: Lowland agroecosystem
Awabel Enebi 55 AESZ2: Midland with black soil

Basoliben Limichim 104 AESZ3: Midland with brown soil
Machakel Debre Kelemu 63 AESZ4: Midland with sloping land

Sinan Yeted 125 AESZ5: The hilly and mountainous highland
Total 424

A structured household survey questionnaire focusing on household and farm char-
acteristics was used for one-on-one interviews carried out using Android tablets by well-
trained and experienced enumerators.

2.2. Measurements

In measuring the CSA triple benefit, food security, livelihood vulnerability, and carbon
balance outcomes, the study used three standard food security, livelihood vulnerability, and
carbon balance calculators. For food security measurement, chosen from among many food
security measurements, the study used the food consumption score (FCS), which shows
the quantity and quality of food consumed by a household in the last seven days [41]. FCS
encompasses food security’s food availability, access, and utilization aspects [42,43]. It is
a composite score based on the dietary diversity, food frequency, and relative nutritional
importance of the various food groups consumed. FCS is calculated as follows:

FCS = astapleXstaple + apulseXPulse + avegXveg + a f ruitX f ruit + aanimalXanimal + asugarXsugar + adairyXdairy + aoilXoil (1)

where FCS is the food consumption score; Xi is the frequencies of food items i consumed in
the past 7 days; ai is the weight of each food group; and i is staple, pulse, vegetable, fruit,
animal, sugar, dairy, and oil.

The thresholds for identifying households with poor and borderline food consumption
were determined using dietary pattern assumptions, with a score of less than 21 showing
a less than 1470 calorie intake (Kcal/capita/day) [44], or less than 1680 calorie intake
(Kcal/capita/day) [45], and scores above 35 showing an acceptable threshold level of above
2100 calorie intake (Kcal/capita/day) [41,44]. Households with scores between 21 and 35
were considered to have borderline food consumption [46], a calorie intake of between 1470
and 2100 calories (Kcal/capita/day) [44] or a calorie intake between 1680 and 2100 calories
(Kcal/capita/day) [45]. When compared to the calorie intake method, poor and borderline
groups were considered to be food insecure [44].

Food availability was taken care of by the FCS [47]. As high food consumption
increases the possibility that a household achieves nutrient adequacy, food utilization is
included through the household’s frequency of the utilization of the available food or
accessed food [42,43,48]. A modified Household Dietary Diversity Score (HDDS) was
calculated for each household using data on the consumption of different food items over
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the previous 7 days [49]. The food items were categorized into 8 different food groups, with
each food group counting toward the household score if a food item from the group was
consumed by anyone in the household in the previous seven days. The modified HDDS,
then, was a continuous score from 0 to 8. The food groups used to calculate the modified
HDDS were: cereals, roots and tubers, pulses, vegetables, fruits, meat, eggs, fish, milk and
milk products, oils and fats, sugar, and condiments.

A risk and hazard model was used in the study to assess smallholder farmers’ house-
hold vulnerability to climate change [50–52]. Thus, the current study used an indicator
(composite index) approach to assess smallholder farmers’ vulnerability to climate change
based on the livelihood vulnerability index (LVI) developed by [53] and adopted for agroe-
cosystem analysis by [9]. However, unlike [9,53], this study used household-level primary
data and took into account several variables to capture the level of exposure to climate
hazards as well as the adaptive capacity and sensitivity to climate change. Hence, the
indices used in this study integrated the LVI and the IPCC-LVI [9,53–56].

The present study focused only on major factors (major components and sub-components).
Additionally, the study adopted an end-point vulnerability assessment framework that inte-
grates vulnerability concepts that combine information on potential climate impacts and the
socio-economic capacity to cope and adapt. It weighed the importance of various indicators
and computed the LVI using the balanced weighting approach. The current vulnerability anal-
ysis involved the calculation of a balanced, weighted average LVI (composite index) in which
each major component contributes equally to the overall index. Accordingly, first, the raw data
were transformed into appropriate measurement units, such as percentages, ratios, and indices,
and then the indicators measured on different scales were standardized (Equations (2) and (3)).

Sxi =
Sxa − Sxmin

Sxmax − Sxmin
(2)

while
Sxi = 1− Sxa − Sxmin

Sxmax − Sxmin
(3)

where Sxi is the standardized value for the indicator x, Sxa is the observed (average) major
component indicator for CSA innovation a, and Sxmin and Sxmax are the minimum and
maximum values, respectively, for the indicator across the seven CSA innovations. Then,
the major component indicators are averaged (Equation (4)).

Maj =
∑n

i=1 Sxi

n
(4)

where Maj represents the j major components for CSA innovation a; index Sxi represents
the indicators for the major component M indexed by j; N runs from 1 to 9, which makes
up each major component; and n is the number of indicators in the major component M.
Equation (5) combines the weighted averages of all the major components M to generate
the LVI score. The number of indicators which are compressed to determine the weights
of each major component is Wj. Values for each of the eight major components for a CSA
innovation a were calculated and averaged (Equation (5)) to obtain LVI:

LVIa =
∑N

j=1 Wj Maj

∑N
j=1 Wj

(5)

where LVIa is the LVI for CSA innovation a, the value of which ranges from 0 (least
vulnerable) to 1 (most vulnerable); Maj is the major component of CSA innovation a; and
Wj is the weight of the major component. The weights of each major component, Wj,
are determined by the number of sub-components that make up each component, and
all components contribute equally to the overall LVI. However, IPCC-LVI was calculated
using the IPCC vulnerability definition. Major components were categorized into the three
IPCC contributing factors of exposure (natural hazard and climate change), sensitivity
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(ecosystem and agriculture), and adaptive capacity (wealth, innovation, infrastructure, and
social network). Then, the IPCC contributing factors for CSA innovations were calculated
based on the following formula (Equation (6)):

IPCC_CFa =
∑N

k=1 Wj Mak

∑N
k=1 Wk

(6)

where IPCC_CFa denotes the IPCC contributing factor for CSA innovation a; Mak denotes
the major component index by k; and N denotes the number of contributing LVI major
components. The IPCC-LVI was calculated after the exposure, sensitivity, and adaptive
capacity of CSA innovations. Hence:

LVI − IPCC = (E− AC) ∗ S (7)

where IPCC-LVI is the LVI value calculated following the IPCC vulnerability definition,
which ranges from −1 (least vulnerable) to 1 (most vulnerable); E denotes exposure; AC
denotes adaptive capacity; and S denotes sensitivity.

Following the guidelines of GHG calculator selection [57], the study selected the
EX-ACT (EX-Ante Carbon Balance Tool) for the availability of data and simplicity of
calculation [58]. The EX-ACT is an open-source GHG calculator consisting of a set of
18 modules linked to Microsoft Excel sheets, into which researchers insert information on
the country- or region-specific data on soil types and climatic conditions together with
basic data on land use, land use change, and land management practices foreseen under
intervention activities as compared to a “business-as-usual” scenario [58]. Using EX-ACT,
the GHG influxes from CSA innovations were calculated using Equations (8)–(10). This net
emissions value per unit of farmland was considered as the carbon balance, i.e., net carbon
emissions per hectare (ton CO2 e/ha/yr). Based on [59], GHG emissions, carbon stock, and
carbon balance at the farm level were calculated as follows:

GHG emissions = activity data ∗GHG emission factor (8)

Carbon stock = Above and below− ground biomass ∗ carbon stock exchange factor (9)

Carbon balance = ∑ GHG emissions −∑ carbon stocks (10)

where activity data is GHG influxes, which include afforestation; annual agriculture; peren-
nial agriculture; livestock; and input and investment. Hence, the GHG influxes were
measured using land use/land cover change proxy measures such as the planting of trees
such as Eucalyptus globulus, the annual crop land system that includes the cropping sys-
tem, improved agronomic practices, improved nutrient management, no-till and residue
retention, water management, manure application, yield per hectare, the number of live-
stock, the types of livestock, and the quantity of livestock products, liming, fertilizer (UREA
and UPS), and energy consumption, i.e., wood fuel. These variables were used in the
analysis and describe the GHG emissions from each CSA innovation intervention area that
was measured using farm size (in ha), crop yield (qt/ha), the absolute number and types of
livestock and livestock products (milk and meat in tons), lime use (in tons), and fire wood
(in tons/year).

The data were subjected to descriptive statistics analysis to obtain frequencies and
cross-tabulations, and the mean, standard deviation, and percentage were utilized de-
pending on the nature of the variable and the need for presentation. STATA version 15
was used to analyze the data. T-test and chi-square test were used to determine whether
the effects of variations in the CSA innovation adoption on food security or livelihood
vulnerability or GHG emissions in the research area were statistically significant. The study
used endogenous switching regression (ESR) to examine the impact and determinants
of CSA innovations on livelihood vulnerability, food security, and GHG emission. The
dependent variables for the ESR were the adopted CSA innovations such as improved
variety, crop residue management, crop rotation, compost, row planting, soil and water
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conservation, and agroforestry [60–66]. The independent variables were selected based on
an extensive literature review on CSA innovations in sub-Saharan Africa and Ethiopia that
was primarily based on past empirical literature on the determinants of food security or
adaptation strategies or GHG emissions.

The adoption and impact of CSA innovations on food security, livelihood vulnerability,
and GHG emissions were modeled in the setting of a two-stage framework using an
endogenous switching regression model [67]. In the first stage, we used a selection model
for CSA innovation adoption where a smallholder farmer chooses to implement CSA
innovations if their gain with regard to food security, livelihood vulnerability, and GHG
emissions outweighs the loss incurred due to its adoption.

In the second stage, the model estimation simultaneously controlled the effect of
factors on adoption decisions and their outcomes by estimating a simultaneous equations
model of the adoption of CSA innovation and its impact on the outcome variable with ESR
using the full information maximum likelihood (FIML) estimation method. Instrumental
variables were used as selection instruments, not only those automatically generated by
the non-linearity of the selection model of adoption but also other variables that directly
affect the adoption of CSA innovations, though not their impact on the outcome variables.

In our case, the study used selection instruments in the outcome variable function of
the variables related to wealth, education, access to extension, and awareness of CSA. The
study established the admissibility of these instruments through a simple falsification test;
if a variable is a valid selection instrument, it affects adoption decisions but not the outcome
(food consumption score, livelihood vulnerability index, and farm GHG emission).

To account for selection biases, an ESR model was used for the outcome variables
(food consumption score, livelihood vulnerability index, farm GHG emission, and climate
resilience capacity index), in which farmers face two regimes: Regime 1, to adopt and
Regime 2, not to adopt, defined as follows:

U1i = Xiβ1 + ε1i (11)

U2i = Xiβ2 + ε2i (12)

G∗i = ∂(U1i −U2i) + Ziα + ui (13)

Here, G∗i is a latent variable that determines the utility obtained whether the household
i adopts a CSA innovation or not; Uji is the outcome variable value of a household i who
adopts CSA innovation and j = Regime 1 and Regime 2; and Zi is a vector of characteristics
that influences the decision to adopt the innovation but not the outcome variable value.
Xi is a vector of household characteristics that are thought to influence the decision to
adopt the innovation, β1, β2, and γ are vectors of parameters, and ui, ε1i, and ε2i are the
error terms.

The regression model coefficient of adoption, which measures the impact of adopting
the innovation, should be random. However, in the case of the adoption of CSA innovations,
farmers freely choose the particular CSA innovation they want to adopt with their consent.
Hence, there is the problem of self-selection, which leads to selection bias. The decision to
adopt a given innovation is likely to be affected by unobservable characteristics that may
be correlated with the outcome variables (food consumption score, livelihood vulnerability
index, farm GHG emissions, and climate resilience capacity index). Finally, the error terms in
Equations (12)–(14) are assumed to have a trivariate normal distribution (υ, ε1, ε2) ∼ N(0, Σ):

∑ =
σ2

υ συ1 συ2
σ1υ σ2

1 .
σ2υ . σ2

2

where σ2
υ is the variance in the adoption of Equation (13), which is equal to 1, since the

coefficients are estimable only up to a scale factor; σ2
1 and σ2

2 are the variances of the error
terms in the outcome variable of Equations (11) and (12); and σ1υ and σ2υ represent the
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covariance of υi and ε1i and ε2i. Since Equations (11) and (12) are not observed simultane-
ously, the covariance between ε1i and ε2i is not defined (reported as dots in the covariance
matrix). An important implication of the error structure is that, because the error term of
the selection in Equation (13) ui is correlated with the error terms of the outcome variable
of Equations (11) and (12) (ε1i and ε2i), the expected values of ε1i and ε2i, conditional on the
sample selection, are nonzero.

E = (ε1i|Gi = 1) = σ1υ
φ(Ziα)

Φ(Ziα)
= σ1υλ1i (14)

E = (ε2i|Gi = 0) = σ1υ
φ(Ziα)

1−Φ(Ziα)
= σ2υλ2i (15)

where φ (.) is the standard normal probability density function, Φ(.) the standard normal
cumulative density function, λ1i = φ(Ziα)

Φ(Ziα)
, and λ2i = − φ(Ziα)

1−Φ(Ziα)
. If the estimated covari-

ances σ1υ and σ2υ are statistically significant, then the decision to adopt and the outcome
variable are correlated, that is, evidence of endogenous switching is found and rejects
the null hypothesis of the absence of sample selectivity bias. An efficient method to esti-
mate endogenous switching regression models is full information maximum likelihood
estimation [68]. The logarithmic likelihood function [69] given the previous assumptions
regarding the distribution of the error terms is:

ln Li =
N

∑
i=1

Ai

[
lnln φ

(
ε1i
σ1

)
− lnln σ1 + lnln Φ(θ1i)

]
+ (1−Ai)

[
lnln φ

(
ε2i
σ2

)
− lnln σ2 + lnln (1−Φ(θ2i))

]
(16)

where θji =
Ziα+

εij
σj

ρj√
(1−ρ2

j )
, and j = 1, 2, with ρj denoting the correlation coefficient between

the error term ui of the CSA innovation adoption in Equation (13) and the error term
εji of Equation (16), respectively. The ESR model can be used to compare the expected
outcome variable of the farm households that adopt particular innovation (a) to the farm
households that do not adopt (b) and to investigate the expected outcome variable result
in the counterfactual hypothetical cases (c), in which the adopted farm households do not
adopt and (d) the non-adoption farm household adopts (Table 2).

Table 2. Conditional expectations, treatment, and heterogeneity effects.

Adoption Decision Treatment Effect
To Adopt Not to Adopt

Adopters Y11 = E(U1i|Gi = 1) Y21 = E(U2i|Gi = 1) ATT = Y11 − Y21
Non-adopters Y10 = E(U1i|Gi = 0) Y20 = E(U2i|Gi = 0) ATU = Y10 − Y20

Heterogeneity effects H1 = Y11 − Y10 H2 = Y21 − Y20 TH = ATT − ATU
Note: Y11 and Y20 represent observed expected CSA innovation adoption outcome variable; Y10 and Y21
represent counterfactual expected outcome variable Gi = 1 if farm households adopt CSA innovation; Gi = 0 if
farm households do not adopt; Y1i: the outcome variable if farm households adopt; Y2i: outcome variable if
farm households do not adopt; TT: the effect of adopting the innovation on the farm households that adopt the
innovation; TU: the effect of adoption of the innovation on the untreated; H1: the effect of base heterogeneity for
farm households that adopt the innovation; H2: the effect of base heterogeneity for farm households that do not
adopt the innovation; TH = (H1 − H2), i.e., transitional heterogeneity.

(a) E(U1i|Gi = 1) = X1iβ1 + σ1υ λ1i;
(b) E(U2i|Gi = 0) = X2iβ2 + σ2υ λ2i;
(c) E(U2i|Gi = 1) = X1iβ2 + σ2υ λ1i;
(d) E(U1i|Gi = 0) = X2iβ1 + σ1υ λ2i.

Cases (a) and (b) along the diagonal of Table 2 represent the actual expectations
observed in the sample. Cases (c) and (d) represent the counterfactual expected outcome
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variable. In addition, the effect of the treatment “to adopt” on the treated (ATT), as the
difference between (a) and (c), was calculated as:

ATT = E(U1i|Gi = 1)− E(U2i|Gi = 1) = X1i(β1 − β2) + (σ1υ −σ2υ)λ1i

which represents the effect of the adoption of CSA innovations on the outcome variable
result of the farm households that actually adopt a particular CSA technology [70]. Similarly,
the effect of the treatment on the untreated (TU) for the farm households that actually do
not adopt was calculated as the difference between (d) and (b):

TU = E(U1i|Gi = 0)− E(U2i|Gi = 0) = X2i(β1 − β2) + (σ1υ − σ2υ)λ2i

The expected outcomes described in Equations (a)–(d) can also be used to calculate
the effects of heterogeneity. The effect of base heterogeneity [71] for the group of farm
households that decides to adopt as the difference between (a) and (d) can be calculated as:

H1 = E(U1i|Gi = 1)− E(U1i|Gi = 0) = (X1i − X2i)β1i + σ1υ (λ1i − λ2i)

Similarly, for the group of farm households that decides not to adopt, the effect of base
heterogeneity is the difference between (c) and (b):

H2 = E(U2i|Gi = 1)− E(U2i|Gi = 0) = (X1i − X2i)β2i + σ2υ (λ1i − λ2i)

Finally, the transitional heterogeneity (TH) was investigated, that is, whether the
effect of adopting the innovation is larger or smaller for farm households that actually
adopt the innovation or for farm households that actually do not adopt; however, in the
counterfactual case, if they do adopt, that is the difference between Equations (9) and (10)
(i.e., TT and TU).

3. Results and Discussion
3.1. Livelihood Vulnerability and Adoption of CSA Innovations

The livelihood vulnerability index (LVI) provides information on the components of
livelihood vulnerability. These components include natural disaster and climate change
exposure, ecosystem and agriculture sensitivity, wealth, technology, infrastructure use,
knowledge, and social networks. On the other hand, the IPCC-LVI identifies which of the
exposure, adaptive capacity, and sensitivity factors has a significant impact on agricultural
vulnerability to climate change.

The mean comparison of adopters and non-adopters of CSA innovations using the ma-
jor components of exposure, sensitivity, and adaptive capacity is presented in Appendix A
Table A1. Accordingly, adopters of improved varieties have a significantly lower natural
disaster and climate change index and a higher ecosystem index but a lower agriculture
index than non-adopters. Hence, adopters of improved varieties have a lower climate
change exposure index than non-adopters due to their adoption of high-yielding and
drought-resistant varieties [72,73]. In terms of adaptive capacity, adopters of improved
varieties have significantly higher wealth and technology indices while having a lower
knowledge skill index than non-adopters. Hence, adopters of improved varieties have a
higher adaptive capacity index than non-adopters because the adoption of improved maize
varieties increases the adoption of mineral fertilizers coupled with increased extension
services [64,65]. Thus, adopters of improved varieties have a lower climate change exposure
index as well as a higher adaptive capacity index than non-adopters. Consequently, their
IPCC-LVI is closer to zero (0.09), which is significantly lower than that of non-adopters
(0.12) (p < 0.01), which shows that adopters are significantly less vulnerable to climate
change than non-adopters. Hence, the adoption of improved varieties significantly en-
hances adaptation to climate change, which concurs with studies [37,72,74], which reported
that improved varieties enhance climate resilience and food security through the adop-
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tion of high-yield, improved wheat varieties and drought-resistant maize varieties among
smallholder farmers.

Adopters of crop residue management have a higher climate change exposure index
than non-adopters. In terms of the sensitivity of their livelihood, adopters of crop residue
management have a lower ecosystem and agriculture index than non-adopters, which
results in them having a lower sensitivity index (0.36) than non-adopters (0.38) (p < 0.01).
In terms of adaptive capacity, adopters have a significantly lower wealth index and a
lower social network index than non-adopters (p < 0.05). Yet, adopters of crop residue
management have a higher adaptive capacity index (0.35) than non-adopters (0.33), but
there is no difference in the IPCC-LVI among adopters and non-adopters.

Crop residue management on farm plots might be considered essential in promoting
the physical, chemical, and biological aspects of soil health in smallholder agriculture
systems due to the dearth of substitute organic amendments. However, smallholder
farmers must make trade-offs when managing crop residues because of several alternative
uses such as livestock feed and fuel sources [35,75], which is the case in the study area.
One reason for the trade-off effect of crop residue management is the lack of crop residue
for farm management [76]. Furthermore, recent research has indicated that the quality of
teff crop residue is the least desired benefit by farmers [66]. Thus, conclusions about the
effect of crop residue management in reducing livelihood vulnerability to climate change
in particular and enhancing adaptation to climate change in general are inconclusive.

Adopters of crop rotation have a higher natural disaster and climate change exposure
index than non-adopters. This shows that areas with a variable climate or environmental
stress-response characteristics adopt crop rotation, which supports the finding of [77], who
reported that it allows farmers to grow products that can be harvested at different times
and in different climates, helping weed management and reducing pests and diseases
infestations [77]. In terms of adaptive capacity, the wealth index and knowledge index of
adopters are significantly lower than non-adopters. However, the adaptive capacity index
of adopters (0.35) is significantly higher than that of non-adopters (0.33), so technology,
infrastructure, and social networks offset the deficits in the wealth and knowledge indices
of adopters. However, the adaptive capacity index does not offset the natural disaster
and climate change index. Hence, there is a significantly higher IPCC-LVI for adopters
(0.12) than for non-adopters (0.10). Crop rotation makes farmers’ livelihoods more vul-
nerable to climate change because farmers in spatiotemporally climate-change-exposed
agroecosystems prefer crop rotation, and their adaptive capacities in terms of technology
adoption, wealth, knowledge, infrastructure, and social networks do not offset exposure to
climate change.

Among several problems with land degradation, low organic matter content is the
major one [78]. Compost adopters have a higher ecosystem sensitivity index, which shows
that compost is an important organic fertilizer because of its nutrient content and diverse
effects on soil fertility and crop productivity, while non-adopters have a lower agricultural
sensitivity index. This suggests that the adoption of compost improves soil structure,
resulting in greater resistance to erosion, improved water infiltration, and increased water
holding capacity, which results in improved crop yield [17]. Hence, adopters of compost
have a significantly higher sensitivity index (0.38) than non-adopters (0.36) (p < 0.01)
because of the higher ecosystem sensitivity of the agroecosystems. In terms of adaptive
capacity, adopters of compost have significantly lower wealth and infrastructure indexes
than non-adopters. However, the adaptive capacity index of adopters of compost (0.34) is
significantly higher than non-adopters (0.32) (p < 0.01). Hence, there is a significantly lower
IPCC-LVI for adopters (0.11) than for non-adopters (0.12) (p < 0.01). Thus, the adoption of
compost significantly reduces livelihood vulnerability to climate change.

Farmers adopt row planting not only to reduce seed rates but also to allow more
spacing between seedlings, to permit easy weeding, and to reduce competition between
seedlings [79], which increases productivity and reduces vulnerability to climate change.
The study shows that adopters of row planting have a lower natural disaster and climate
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change exposure index than non-adopters. This suggests that adopters of row planting
live in less climate-change-exposed agroecosystems than non-adopters. Adopters also
have a higher ecosystem sensitivity index but a lower agricultural sensitivity index than
non-adopters. This suggests that the higher ecosystem sensitivity of adopters of row
planting is offset by good crop yield. However, due to the higher ecosystem sensitivity of
the agroecosystem, adopters of row planting have a significantly higher sensitivity index
(0.38) to climate change than non-adopters (0.34) (p < 0.01). In terms of adaptive capacity,
though adopters of row planting have significantly lower wealth and knowledge than
non-adopters, the overall adaptive capacity index of adopters of row planting is higher
(0.34) than that of non-adopters (0.32) (p < 0.01). The IPCC-LVI result, on the other hand,
reveals that the agricultural livelihood vulnerability to climate change of adopters of row
planting (0.106) is significantly lower than that of non-adopters (0.123) (p < 0.01). Hence,
the adoption of row planting has the significant impact of reducing agricultural livelihood
vulnerability to climate change and enhances adaptation to climate change in smallholder
agriculture systems. This result concurs with studies such as [80] which reported that row
planting enhances food security and adaptation to climate change.

Soil and water conservation (SWC) techniques include soil bunds, stone bunds, bench
terraces, vegetative barriers, and tied ridges [81]. SWC adopters have significantly higher
natural disaster and climate change exposure indexes than non-adopters. This shows that
adopters of SWC are farmers who live in the lowland Abay gorge (AESZ1), the midland
sloping land (AESZ4), and the hilly and mountainous highland (AESZ5) agroecosystem
zones. Hence, the climate change exposure index of adopters (0.67) of SWC is significantly
higher than that of non-adopters (0.59) (p < 0.01). Although they have a marginally
significantly higher ecosystem index (0.32) than non-adopters (0.31) (p < 0.1), there is no
significant sensitivity index difference between adopters and non-adopters of SWC. In
terms of adaptive capacity, the innovation index of adopters of SWC is lower than that
of non-adopters. Hence, the IPCC-LVI result shows that adopters of SWC have higher
agricultural livelihood vulnerability to the climate change index (0.123) than non-adopters
(0.097) (p < 0.05). Thus, adopters of SWC are more vulnerable to climate change than non-
adopters. This result concurs with the finding that the effect of SWC on improving crop
yield is dependent on rainfall characteristics and types of crop, slope, and soil. Moreover,
the effect of SWC on crop yield is negatively correlated with rainfall for SWC techniques,
including level Fanya juu, graded soil bunds, stone bunds, and trash lines, which are the
main characteristics of the Choke mountain watershed [81,82].

Agroforestry is a climate-smart agriculture system that diversifies the environmental
and socioeconomic benefits of smallholder farmers sustainably, and agroforestry adopters
are thought to be more resilient to the increased intensity of extreme weather events caused
by climate change [23]. In this study, agroforestry adopters have a higher (0.67) climate
change exposure index than non-adopters (0.62) (p < 0.05). In terms of the sensitivity index,
they have a higher ecosystem index (0.35) and a lower agricultural sensitivity index (0.30)
than non-adopters. However, they have a significantly higher sensitivity index (0.384) than
non-adopters (0.365) (p < 0.05). In terms of adaptive capacity, they have higher technology
adoption (0.83) and lower wealth (0.61) and knowledge (0.75) indexes than non-adopters.
However, adopters of agroforestry have a significantly higher adaptive capacity (0.35)
index than non-adopters (0.33) (p < 0.01). Unfortunately, the IPCC-LVI result shows that
there is no significant difference between the livelihood vulnerability index of adopters and
non-adopters of agroforestry (Appendix A Table A1). This is due to the marginal adoption
of agroforestry as farmland border trees and homestead gardens, as well as wood lots,
rather than as an agricultural system that supports their livelihood.

3.2. Food Security and Adoption of CSA Innovations

From the total sample households, less than one-third (33 percent) of the households
were food secure (had an acceptable food consumption score), whereas more than two-
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thirds of the households were food insecure, with 46 and 21 percent of the households
having a borderline and poor food consumption score, respectively (Figure 2).
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Figure 2. Household food security status.

Smallholder farmers adopt CSA innovations for their different CSA benefits, either
for food security or climate adaptation or both. Table 3 shows that crop residue manage-
ment (positive) and SWC (negative) adoption have a significant relationship with the food
security status of the household (p < 0.01). Adopters of SWC have more poor food con-
sumption households than non-adopters, indicating that more SWC adopter households
are food insecure than non-adopter households, i.e., they lack daily staple and vegetable
consumption, as well as consumption of oil and pulses four times a week, whereas adopters
of crop residue management have more acceptable food consumption households than
non-adopters, indicating that they represent food-secure households with daily staple and
vegetable consumption, as well as consumption of oil and pulses at least four times a week.

Table 3. Relationship between food security and adoption of CSA innovation.

CSA Innovation
Adoption
Category

Food Security Status
Chi2

Poor Borderline Acceptable

Improved variety Adopter 17.8 43.4 38.8
2.6Non-adopter 22.1 46.9 31.0

Crop residue management Adopter 9.7 44.1 46.2
39.4 ***Non-adopter 30.3 47.4 22.4

Crop rotation Adopter 22.6 47.1 30.3
1.1Non-adopter 19.8 45.2 35.1

Compost Adopter 21.9 44.4 33.7
0.83Non-adopter 18.8 48.6 32.6

Row planting Adopter 18.9 46.3 34.8
3.14Non-adopter 26.7 44.6 28.7

Soil and water conservation (SWC) Adopter 30.8 42.5 26.6
27.9 ***Non-adopter 10.5 49.3 40.2

Agroforestry Adopters 17.2 49.4 33.3
0.97Non-adopters 21.7 44.9 33.3

Significance level: *** p < 0.01.

In terms of HDDS, adopters of SWC have the lowest (3.83), while adopters of agro-
forestry have the highest HDDS (4.43). Adopters of crop rotation, compost, crop residue
management, and row planting have a medium HDDS value, which shows that the dietary
diversity of adopters of these CSA innovations still needs improvement. For the diver-
sity and quality of food consumed in the last seven days, the seven-day-recall household



Sustainability 2022, 14, 16143 13 of 26

dietary diversity score (HDDS) was compared among the adopters and non-adopters of
specific CSA innovations. Hence, adopters of improved varieties (4.25) have a higher
HDDS than non-adopters (3.78); adopters of crop residue management (4.11) have a higher
HDDS than non-adopters (3.76); adopters of compost (4.07) have a higher HDDS than
non-adopters (3.60); adopters of row planting (4.06) have a higher HDDS than non-adopters
(3.45); and adopters of agroforestry (4.43) have a higher HDDS than non-adopters (3.80).
Thus, adopters of improved varieties, crop residue management, compost, row planting,
and agroforestry consume better-diversified diets of food than non-adopters (Figure 3).
Therefore, the adoption of these CSA innovations improves the food utilization component
of the food security of smallholder households. However, the effect of the adoption of CSA
innovation differs for different food security components. For instance, improved variety,
crop residue management, compost, and row planting have significant positive effects on
food availability and access to food security, while agroforestry has a significant positive
effect on food utilization of the food security component. Moreover, SWC negatively affects
the food availability and access component of food security.
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Figure 3. Food security of adopters of CSA innovations.

To reveal the effect of CSA adoption on the FCS, a simple mean comparison, along
with an independent t-test, was conducted between the adopters and non-adopters of
each CSA innovation. Table 4 shows that both adopters of improved varieties (40.6) and
non-adopters (37.1) have an acceptable food security status, with adopters having a signifi-
cantly higher FCS value than non-adopters with a positive effect of food security (p < 0.01),
which concurs with studies [38,62], which reported that improved varieties significantly
enhance household food security through the adoption of high-yield, improved wheat
varieties. Similarly, both adopters of row planting (38.9) and non-adopters (36.2) have an
acceptable food security status with a positive effect on food security (p < 0.05), which
concurs with the finding of [35], who reported that row planting enhances the food security
of adopters. Adopters of crop residue management have acceptable food security (42.2)
and a significantly higher FCS value than non-adopters, who have borderline food security
(34.7) (p < 0.01). Likewise, adopters of SWC have borderline food security (35.0) and a
significantly lower FCS value than non-adopters who have acceptable food security (41.0),
with a negative effect on food security (p < 0.01). This result concurs with the finding
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that the effect of SWC on improving crop yield was dependent on rainfall characteristics,
type of crop, slope, and soil. Moreover, the effect of SWC on crop yield was negatively
correlated with rainfall for SWC techniques, including level Fanya juu, graded soil bunds,
stone bunds, and trash lines, which are the main characteristics of the Choke mountain
watershed [81,82]. In general, improved varieties, row planting, and crop residue manage-
ment enhance food availability as well as the food access component of food security for
smallholder households, whereas, SWC reduces the food availability as well as the food
access component of food security for smallholder households.

Table 4. Comparison of food consumption score (FCS).

CSA Innovations
Food Consumption Score (FCS) Household Dietary Diversity

Score (HDDS)
Adopter Non-Adopter t Value Adopter Non-Adopter t Value

Improved varieties 40.6 (1.0) 37.1 (0.6) 3.0 *** 4.25 3.78 0.47 ***
Crop residue
management 42.2 (0.7) 34.7 (0.7) 7.3 *** 4.11 3.76 0.35 ***

Crop rotation 37.4 (0.9) 38.6 (0.7) 1.0 4.03 3.87 0.17
Compost 38.4 (0.7) 37.8 (0.9) 0.6 4.07 3.60 0.49 ***

Row planting 38.9 (0.6) 36.2 (1.1) 2.1 ** 4.06 3.45 0.58 ***
SWC 35.4 (0.8) 41.0 (0.7) −5.3 *** 3.83 4.01 0.18

Agroforestry 38.9 (1.1) 38.0 (0.6) 0.7 4.43 3.80 0.63 ***
Standard errors in parentheses: ** p < 0.05, *** p < 0.01.

3.3. GHG Emissions and Adoption of CSA Innovations

The descriptive statistics were calculated for the GHG sink as well as the GHG source
among CSA innovations. In the analysis, the five GHG influxes were calculated separately
and summarized. These GHG influxes were afforestation; annual agriculture; perennial
agriculture; livestock; input and investment. Hence, the GHG influxes were measured using
land use/land cover change proxy measures such as the planting of trees such as Eucalyptus
globulus, the annual crop land system, which includes the cropping system, improved
agronomic practices, improved nutrient management, no-till and residue retention, water
management, manure application, yield per hectare, the number of livestock, the types of
livestock, and the quantity of livestock products, liming, and fertilizer (UREA and UPS),
and energy consumption, i.e., consumption of wood fuel. These variables were used in the
analysis and describe the GHG emissions from each CSA innovation intervention area that
was measured using farm size (in ha), crop yield (qt/ha), the absolute number and types of
livestock, number of livestock products (milk and meat in tons), amount of lime use (in
tons), and amount of fire wood used (in tons/year) (Appendix A Table A2).

In terms of afforestation (wood lot), adopters of compost afforest the largest area (29 ha)
with Eucalyptus wood lot, while adopters of agroforestry afforest the smallest area (12 ha).
This is because farmers allocate their land for home gardens, and there is no extra area for
wood lot available. The productivity of each crop shows that adopters of row planting
have the highest yield for teff (47.8 qt/ha), maize (44.5 qt/ha), wheat (47.7 qt/ha), potato
(18.8 qt/ha), faba bean (9.1 qt/ha), and barley (9.3 qt/ha), while adopters of agroforestry
have the lowest productivity for teff (13.6 qt/ha), maize (14.6 qt/ha), wheat (16.5 qt/ha),
potato (6.1 qt/ha), faba bean (2.6 qt/ha), and barley (2.9 qt/ha). Livestock holding shows
adopters of row planting have the highest number of livestock and types among CSA
innovation adopters. In terms of farm output (milk and meat), adopters of row planting
(59 tons) have the highest output, while adopters of agroforestry have the lowest farm
output. This is due to the marginal adoption of agroforestry as farmland border trees
and homestead gardens, as well as wood lots, rather than as an agricultural system that
supports their livelihood.

Input and investment include the use of chemical fertilizer. Adopters of row planting
have the highest input use among CSA innovations. Energy consumption shows adopters
of row panting have the highest tonnage of firewood used in a year. Annual agriculture
and afforestation or wood lots are the two important sinks of GHG emissions, while
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livestock and input and investment are the two consistent sources of GHG emissions in the
smallholder farming system. The C sequestration and GHG emission potential of each CSA
innovation, however, differ, along with the GHG influxes. In terms of CSA innovations,
compost (−10.36 MtCO2e) and row planting (−8.87 MtCO2e) have the highest, while crop
residue management (−2.147 MtCO2e) has the least potential to sequester carbon dioxide
equivalent GHG emissions in 20 years (Figure 4).
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Whole-farm GHG balances were disaggregated into farm compartments (Figure 5).
In terms of biomass, all CSA innovations are sinks, and they have similar GHG sink
potential. Soil has the highest GHG sink potential, with the highest sink potential recorded
for compost and row planting adopters. The other source of GHG is enteric fermentation
(livestock), which mainly emits CH4; in this regard, row planting and SWC adopters are
the major emitters of GHG from enteric fermentation because they have a high density
of livestock and have the largest enteric fermentation emissions with mean values of
2.4 tCO2 eq ha−1 yr−1, while adopters of crop residue management have the lowest
enteric fermentation emission (1.8 t CO2 eq ha−1 yr−1). Carbon (CO2) and nitrous oxide
(N2O) emissions from inorganic fertilizer (UREA and NPS) application accounts show that
adopters of improved variety, row planting, SWC, and agroforestry are the biggest sources
of GHG emission in terms of input use.

C sequestration in soils and biomass growth, when combined, offsets 5 to 52 percent
of farm emissions. Woody biomass (above- and belowground) accounts for 5.1 percent
of C removals among farm components affecting C sequestration. Farmers who use row
planting and compost have the highest tree density and the highest C fluxes in above-
and belowground biomass, with 0.89 t CO2 eq ha−1 yr−1. The remaining 64–94% of total
farm GHG removals (5.7 t CO2 eq ha−1 yr−1) are accounted for by soil C sequestration.
Compost users who apply the most manure to their soils experience soil C sequestration
rates greater than 2.7 t CO2 eq ha−1 yr−1. Among cropping systems, wheat–maize registers
the highest rates of C sequestration (25% of soil removals), followed by teff–wheat (22%)
and potato–barley (20%).
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Total emissions per year and intensity per output were calculated for farm-level GHG
emissions. These two measurements show a difference in the levels of GHG emissions of
CSA innovations for adopters. Hence, adopters of compost and SWC have lower farm
GHG emissions per year than non-adopters. Similarly, crop residue management and
compost adopters have a lower intensity of GHG emissions (net GHG emissions per yield)
than non-adopters. Compost adopters have both lower gross emissions and net GHG
emissions per yield than non-adopters. As a result, crop residue management, compost,
and SWC are GHG emission sinks, and these CSA innovations can increase farm-level
carbon sequestration capacity (Table 5).

Table 5. Comparison of GHG emissions among CSA innovations.

CSA Innovations
GHG Emission (per ha per year) Net GHG Emission (per ha per year per yield)

Adopter Non-Adopter t Value Adopter Non-Adopter t Value

Improved varieties 3.35(0.3) 3.56(0.2) −0.5 2.2(0.2) 2.4(0.3) −0.8
Crop residue management 3.21(0.3) 3.75(0.2) −1.44 1.9(0.2) 2.7(0.4) −1.7 *
Crop rotation 3.12(0.3) 3.7(0.2) −1.5 2.0(0.3) 2.5(0.3) −1.0
Compost 3.0(0.2) 4.41(0.3) −3.5 *** 1.8(0.2) 3.2(0.5) −2.9 ***
Row planting 3.4(0.2) 3.81(0.4) 0.9 2.2(0.3) 2.7(0.5) −0.9
SWC 3.1(0.3) 3.88(0.2) −2.0 ** 2.0(0.3) 2.6(0.4) −1.5
Agroforestry 3.4(0.5) 3.5(0.2) 0.3 2.4(0.3) 2.3(0.3) 0.2

Standard errors in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

3.4. Impacts of Climate-Smart Agriculture Innovations: ESR Estimation Results

Research on impact evaluation usually faces two main challenges: establishment of a
viable counterfactual, attribution effect and addressing long, unpredictable lag times [41].
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The sample mean comparison shows the impact of CSA innovation on the three CSA pillars.
However, this naive comparison drives misleading conclusions because the approach does
not consider that the difference in the outcome may be caused by observable as well as
unobservable characteristics. Hence, the ESR model was used to prove that, indeed, the
adopters and non-adopters of specific CSA innovation have different outcome values,
taking into consideration the unobservable characteristics that may correlate. ESR was
conducted in a two-stage process, where the first stage models the adoption equation, and
the second stage models the effect of adoption on the outcome variable.

This paper focused on the impact of CSA innovations on the outcome variables
of livelihood vulnerability, food security, and farm GHG emissions. Hence, Column A
of Table 6 presents the true average adoption effects of CSA innovation on livelihood
vulnerability, food security, and GHG emission under actual adoption conditions. Column
B shows the counterfactual values of livelihood vulnerability, food security, and GHG
emission. Column C presents the effect of CSA innovation on livelihood vulnerability, food
security, and GHG emissions, computed as the difference between Columns A and B.

Table 5 shows that the adoption of improved varieties has lower livelihood vul-
nerability and GHG emission, with a higher food security status than actual as well as
counterfactual non-adopters. Hence, the adoption of improved varieties significantly re-
duces agricultural livelihood vulnerability to climate change, enhances food security, and
reduces GHG emissions. This finding concurs with [64,83–85], who reported that improved
varieties not only enhance productivity but also increase income and may effectively re-
duce food insecurity and poverty in the medium-to-long term [86]. Moreover, the finding
concurs with [20], which reported that adoption of improved variety, inter alia, reduces
livelihood vulnerability and manages risk more effectively for smallholder farmers so that
they can adapt to climate change and extreme weather events such as drought shock.

Adoption of crop residue management has higher livelihood vulnerability and higher
GHG emissions, i.e., maladaptation, with higher food security than actual and counterfac-
tual non-adopters. Adoption of crop residue management improves food security, concur-
rent with literature in Mozambique, which showed that crop residue management with
associated practices has significantly improved food security in Zimbabwe and Malawi [86]
but increased the agricultural livelihood vulnerability to climate change as well as, against
all odds, increased the GHG emission from smallholder farms. This finding is in line
with [87], who further reported that the adoption of crop residue management among other
innovations not only enhances food security but also is an effective strategy for improving
rural populations’ well-being. However, the maladaptation of crop residue management
comes from the competition of crop residue for livestock feed and fuel sources rather than
soil fertility management.

Adoption of crop rotation has lower agricultural vulnerability to climate change,
lower food security, i.e., maladaptation, and lower GHG emission than actual as well as
counterfactual non-adopters. Hence, the adoption of crop rotation reduces the agricultural
livelihood vulnerability to climate change and farm GHG emissions while reducing the
food security of smallholder agriculture households, which is maladaptation. Previous
findings [84] support this result, reporting that the adoption of crop rotation increases crop
revenue per hectare. Moreover, the 31-year data on crop rotation data [88] supported this
finding and reported that crop rotation, along with minimum tillage, increases yield in
hot and dry years, which is a highly likely scenario under future changes. Furthermore,
this finding is also consistent with [89], which reported that crop rotation not only reduces
the risk of pests and disease, which is the main cause of crop failure and reduced yield
in Africa due to projected climate change [2], but also suppresses weed infestation [90].
In addition, crop rotation and consumption of pulses are strongly directly correlated [91].
Furthermore, this finding supports the finding of [92], which reported that crop rotations
increase soil organic carbon in smallholder agriculture.
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Table 6. Average expected LVI, FCS, and GHG emission with adoption of CSA innovations.

CSA Innovations Livelihood Vulnerability Index (LVI) Food Consumption Score (FCS) Farm GHG Emission

Actual LVI If
Farm Households

Do Adopt (A)

Counterfactual LVI
If Farm Households

Do Not Adopt (B)

Adoption Effects on
LVI (C)

Actual FCS If Farm
Households Do

Adopt (A)

Counterfactual FCS
if Farm Households
Do Not Adopt (B)

Adoption Effects on
FCS (C)

Actual GHG If
Farm

Households Do
Adopt (A)

Counterfactual
GHG if Farm

Households Do Not
Adopt (B)

Adoption Effects on
GHG (C)

Improved variety 0.65(0.003) 0.69(0.002) ATT = −0.04 (0.004) *** 40.2(0.51) 28.2(0.5) ATT = 12.0 (0.7) *** 3.65(0.15) 5.6(0.21) ATT = −193 (0.25) ***
Crop residue
management 0.67(0.002) 0.63(0.002) ATT = 0.034 (0.004) *** 42.16(0.35) 15.31(0.44) ATT = 26.85(0.57) *** 3.2(0.19) −1.8(0.19) ATT = 4.95 (0.27) ***

Crop rotation 0.68(0.003) 0.72(0.003) ATT = −0.043 (0.004) *** 37.3(0.42) 38.75(0.38) ATT = −1.41 (0.56) ** 3.28(0.15) 4.7(0.21) ATT = −1.4 (0.26) ***
Compost 0.67(0.002) 0.71(0.002) ATT = −0.05 (0.003) *** 38.4(0.3) 23.7(0.42) ATT = 14.75(0.50) *** 3.11(0.14) 5.8(0.15) ATT = −2.68 (0.21) ***
Row planting 0.67(0.002) 0.72(0.20) ATT = −0.06 (0.003) *** 38.9(0.24) 37.1(0.31) ATT = 1.77 (0.39) *** 3.51(0.11) 4.57(0.15) ATT = −1.05 (0.19) ***
SWC 0.68(0.002) 0.72(0.002) ATT = −0.05 (0.003) *** 35.5(0.4) 33.75(0.26) ATT = 1.69 (0.52) *** 3.05(0.22) −2.14(0.13) ATT = 5.2 (0.18) ***
Agroforestry 0.67(0.005) 0.73(0.003) ATT = −0.06 (0.005) *** 38.75(0.67) 23.6(0.49) ATT = 15.11(0.83) *** 3.6(0.17) 7.5(0.13) ATT = −3.93 (0.36) ***

Standard errors in parentheses ** p < 0.05 and *** p < 0.01.
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Adoption of compost has lower agricultural vulnerability to climate change and GHG
emissions but higher food security than actual as well as counterfactual non-adopters.
Hence, the adoption of compost reduces the agricultural livelihood vulnerability to cli-
mate change and farm GHG emissions while enhancing the food security of smallholder
agriculture households. This finding concurs with several pieces of literature which re-
ported that manure, organic fertilizer, or compost enhances food security and reduces GHG
emissions [93–95].

Adoption of row planting has lower agricultural vulnerability to climate change
and GHG emissions but a higher FCS than non-adoption. Hence, the adoption of row
planting enhances food security while reducing the agricultural livelihood vulnerability
to climate change and GHG emissions from smallholder farms. Literature that examined
the impact of row planting on labor productivity showed that row planting significantly
increases the total labor requirement and allocation, resulting in a substantial drop in labor
productivity [96]. Row planting increases not only teff yield but also teff income, as well as
per capita food consumption [80,97–99].

Adoption of soil and water conservation measures such as soil/stone bunds has lower
livelihood vulnerability but higher food security and GHG emission, i.e., maladaptation,
than non-adoption. The adoption of SWC enhances food security and reduces agricultural
livelihood vulnerability to climate change but increased smallholder farm GHG emissions.
This finding backs up previous research that evaluated the impact of SWC practices in
Ethiopia and found that SWC practices are effective in reducing surface run-off and nutrient
loss, as well as controlling soil erosion [10,100,101]. However, studies have shown that the
impacts of SWC practices on crop yield and the economic viability of SWC practices are
inconsistent, and results are site specific [102]. Additionally, soil and stone bunds reduce
crop yield for the first few years [103,104] while increasing crop yield [105]. Soil and water
conservation improve crop productivity and crop yields on terraced fields for teff, barley,
and maize [106]. Although the literature on the impact of SWC on food security is limited,
a study in Eastern Ethiopia discovered that adopting soil and water conservation not only
positively impacts per capita food consumption expenditure and net crop value, but also
significantly reduces the likelihood of farmers being food insecure [107]. Adoption of
agroforestry has a lower LVI and GHG emission but a higher FCS than actual as well as
counterfactual non-adopters. Hence, the adoption of agroforestry reduces agricultural
livelihood vulnerability to climate change and enhances food security while reducing
smallholder farm GHG emissions.

Hence, a smallholder agriculture system can enhance food security, adapt to climate
change, or build resilience and reduce GHG emissions by implementing a variety of CSA
innovations such as sustainable land management (SLM), intercropping, crop rotation, soil
and water conservation, modern input use, and agroforestry on farm plots.

4. Conclusions

Climate-smart agriculture (CSA) innovations are essential for enhancing household
food security, reducing vulnerability, and reducing farm-level GHG emissions in the face of
climate change for a sustainable agricultural system. However, the empirical foundation for
understanding how farm households achieve these three major goals of the current climate
and development agenda, or the “triple benefit”, is far from being established. In this
paper, the effects of CSA innovations on the triple benefit were examined. An endogenous
switching regression model was used to explore a survey of 424 farm households and
1818 farm plots in the Blue Nile highlands of Ethiopia. Results showed that the adoption
of improved variety, compost, row planting, and agroforestry simultaneously delivers
the three CSA benefits of enhanced household food security, reduced vulnerability, and
reduced farm-level GHG emissions. Similarly, the adoption of crop rotation reduces liveli-
hood vulnerability and farm GHG emissions simultaneously. Soil and water conservation
measures, or adoption of stone/soil bunds on farm plots, meet the goal of climate change
adaptation as well as food security, as they enhance food security and reduce livelihood
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vulnerability simultaneously, whereas, the adoption of crop residue management meets
only the food security goals of CSA. Some of the CSA innovations, improved variety, com-
post, row planting, and agroforestry, provide farmers with the benefit of enhanced food
security and climate change adaptation and reduced GHG emission from farm plots, while
other CSA innovations, crop rotation and SWC, also deliver the two CSA pillars as they
provide farmers with either enhanced food security and/or reduced livelihood vulnerabil-
ity and/or reduced GHG emissions. Unfortunately, adopting crop residue management,
one of the recommended CSA practices in Ethiopia, does not deliver at least two of the
CSA pillars, which means it is not a CSA innovation. Farmers should be encouraged to
adopt improved variety, crop rotation, compost, row planting, soil and water conservation,
and agroforestry as the best portfolio of CSA innovation for highland smallholder agricul-
ture systems as these innovations reduce the trade-off and increase synergy among CSA
pillars and maintain agricultural sustainability in the face of climate change. Policies that
encourage simultaneous adoption of the CSA portfolio should be devised as incentives.
Competition surrounding crop residue utilization for soil fertility management and as a
livestock feed source should be resolved by encouraging farmers to plant more forage trees
on SWC structures, reducing the burden of crop residue as a livestock feed source.
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Appendix A

Table A1. Comparison among CSA innovations of major components of livelihood vulnerability.

CSA Innovations
Improved Variety Crop Residue Management Crop Rotation Compost

Adopter Non-Adopter t Value Adopter Non-Adopter t Value Adopter Non-Adopter t Value Adopter Non-Adopter t Value

Natural disaster 0.52 0.61 −3.7 *** 0.57 0.59 −1.2 0.62 0.56 3.1 *** 0.57 0.60 −1.2
Climate change 0.65 0.72 −3.7 *** 0.73 0.67 3.2 *** 0.75 0.67 3.9 *** 0.69 0.71 −0.7
Exposure index 0.58 0.67 −4.54 *** 0.64 0.63 −0.76 0.68 0.61 4.18 *** 0.63 0.65 −1.2
Ecosystem 0.34 0.31 3.3 *** 0.38 0.40 −2.3 ** 0.32 0.32 0.7 0.33 0.29 4.4 ***
Agriculture 0.3 0.35 −4.6 *** 0.33 0.34 −0.5 0.33 0.34 −1.4 0.31 0.37 −6.9 ***
Sensitivity index 0.38 0.37 1.66 0.36 0.38 −2.53 *** 0.37 0.37 0.2 0.38 0.36 2.96 ***
Wealth 0.71 0.62 6.9 *** 0.65 0.71 −5.25 *** 0.64 0.71 −4.7 *** 0.65 0.74 −6.7 ***
Technology/innovation 0.90 0.76 19.2 *** 0.81 0.80 0.5 0.81 0.80 0.7 0.82 0.79 3.0 ***
Infrastructure 0.16 0.15 0.4 0.15 0.16 −0.35 0.16 0.15 1.1 0.16 0.14 −2.1 **
Knowledge 0.75 0.79 −2.7 ** 0.77 0.78 −0.1 0.75 0.79 −2.2 ** 0.77 0.79 −1.8
Social network 0.74 0.75 −1.7 0.73 0.76 −2.7 ** 0.75 0.75 0.6 0.74 0.76 −1.4
Adaptive capacity index 0.36 0.33 5.66 *** 0.35 0.33 3.88 *** 0.35 0.33 3.44 *** 0.34 0.32 3.9 ***
IPCC-LVI = (E − AC) * S/100 0.09 0.12 −6.96 *** 0.106 0.112 −0.8 0.12 0.10 3.16 *** 0.106 0.115 −1.33

CSA Innovations
Row

Planting SWC Agroforestry

Adopter Non-Adopter t Value Adopter Non-Adopter t Value Adopter Non-Adopter t Value

Natural disaster 0.57 0.62 −1.9 * 0.63 0.53 4.4 *** 0.63 0.57 2.4 **
Climate change 0.68 0.76 −3.5 *** 0.73 0.66 3.55 *** 0.73 0.69 1.6
Exposure index 0.62 0.68 3.1 *** 0.67 0.59 4.98 *** 0.67 0.62 2.45 **
Ecosystem 0.33 0.27 7.9 *** 0.32 0.31 1.7 * 0.35 0.31 4.8 ***
Agriculture 0.32 0.39 −7.9 *** 0.33 0.34 1.2 0.30 0.34 −4.5 ***
Sensitivity index 0.38 0.34 4.61 *** 0.37 0.37 0.2 0.38 0.37 2.39 **
Wealth 0.67 0.72 −3.2 *** 0.67 0.69 1.15 0.61 0.70 −5.7 ***
Technology/innovation 0.82 0.76 5.1 *** 0.79 0.82 −3.4 *** 0.83 0.80 2.6 **
Infrastructure 0.16 0.14 1.5 0.16 0.15 −1.0 0.16 0.15 1.3
Knowledge 0.76 0.81 −3.1 *** 0.76 0.79 −1.9 * 0.75 0.78 −1.9 *
Social network 0.74 0.76 −1.6 0.74 0.75 −1.1 0.73 0.75 −1.7
Adaptive capacity index 0.34 0.32 2.87 *** 0.34 0.33 1.8 * 0.35 0.33 3.6 ***
IPCC-LVI = (E − AC) * S/100 0.106 0.123 −3.47 *** 0.123 0.097 2.2 ** 0.123 0.107 0.16

Significance level * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A2. Indicators of farm-level GHG emissions and adoption of CSA innovations.

Indicators Improved
Variety

Crop Residue
Management Crop Rotation Compost Row Planting SWC Agroforestry

Wood lot (in ha) 15 15 13 29 33 19 12
Area of teff (in ha) 154 243 197 323 361 253 107
Teff yield (in qt/ha) 21.1 27.8 20.7 42.0 47.8 26.8 13.6
Area of maize (in ha) 130 209 156 276 296 219 97
Maize yield (in qt/ha) 18.2 25.1 19.9 38.0 44.5 24.7 14.6
Area of wheat (in ha) 158 239 193 317 333 232 112
Wheat yield (in qt/ha) 22.2 27.3 22.1 41.5 47.7 26.2 16.5
Area of potato (in ha) 59 70 74 111 122 87 37
Potato yield (in qt/ha) 8.5 8.8 9.2 16.1 18.8 11.2 6.1
Area of faba bean (in ha) 28 37 31 50 54 40 17
Faba bean yield (in qt/ha) 4.5 4.7 4.6 8.1 9.1 5.1 2.6
Area of barley (in ha) 24 38 31 55 62 44 22
Barley yield (in qt/ha) 2.7 4.2 3.8 7.2 9.3 4.6 2.9
Dairy cattle (in number) 235 339 289 493 566 402 159
Other cattle (in number) 251 388 319 566 645 438 158
Sheep (in number) 304 480 398 760 883 607 203
Goat (in number) 60 63 50 94 109 60 37
Horse (in number) 44 86 60 113 129 101 28
Poultry (in number) 249 303 269 504 650 399 145
Milk (in tons) 7 15 9 20 20 15 6
Meat (in tons) 15 23 18 33 39 25 9
Lime (in ton) 15 22 19 34 34 192 10
UREA (in tons) 23.2 32.2 23.8 40.1 44.5 25.4 16.2
NPS (in tons) 51 61.2 44.5 93.8 103.8 48 45.1
Firewood (in ton) 489.9 716.0 584.7 1062.4 1192.5 803.4 363.5

References
1. UNFCC. Paris Agreement; UNFCC: New York, NY, USA, 2015.
2. Intergovernmental Panel on Climate Change. Africa. In Climate Change 2014—Impacts, Adaptation and Vulnerability: Part B: Regional

Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014;
pp. 1199–1266.

3. Bouroncle, C.; Imbach, P.; Rodríguez-Sánchez, B.; Medellín, C.; Martinez-Valle, A.; Läderach, P. Mapping climate change adaptive
capacity and vulnerability of smallholder agricultural livelihoods in Central America: Ranking and descriptive approaches to
support adaptation strategies. Clim. Chang. 2016, 141, 123–137. [CrossRef]

4. IPCC. Summary for Policymakers. In An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land
Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SRCCL); Cambridge University Press: Cambridge,
UK; New York, NY, USA, 2019.

5. Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96.
[CrossRef]

6. FAO. Climate-Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013.
7. Ermias, T.; Woldeamlak, B.; Uhlenbrook, S.; Wenninger, J. Understanding recent land use and land cover dynamics in the source

region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ.
2013, 165, 98–117. [CrossRef]

8. Gebremicael, T.G.; Mohamed, Y.A.; Betrie, G.D.; van der Zaag, P.; Teferi, E. Trend analysis of runoff and sediment fluxes in the
Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J. Hydrol. 2013, 482,
57–68. [CrossRef]

9. Simane, B.; Zaitchik, B.F.; Foltz, J.D. Agroecosystem specific climate vulnerability analysis: Application of the livelihood
vulnerability index to a tropical highland region. Mitig. Adapt. Strategy. Glob. Chang. 2016, 21, 39–65. [CrossRef] [PubMed]

10. Simeneh, D.; Fisseha, G. Perception of Farmers Toward Physical Soil and Water Conservation Structures in Wyebla Watershed,
Northwest Ethiopia. World J. Agric. Sci. 2016, 1, 57–63. [CrossRef]

11. Yibekal, T.; Chanyalew, A.; Getachew, E. Understanding the process of adaptation to climate change by small-holder farmers: The
case of east Hararghe Zone, Ethiopia. Agric. Food Econ. 2013, 1, 3. [CrossRef]

12. Melak, M.; Birgit, K. Food Insecurity in Ethiopia: Population, Food Production and Market. In Proceedings of the 32nd
International Conference of the System Dynamics Society, Delft, The Netherlands, 20–24 July 2014; pp. 1–29.

13. Bewket, W. Climate change perceptions and adaptive responses of smallholder farmers in central highlands of Ethiopia. Int. J.
Environ. Stud. 2012, 69, 507–523. [CrossRef]

14. Porter, J.R.; Soussana, J.-F.; Fereres, E.; Long, S.P.; Mohren, F.G.; Pandya-Lorch, R.; Peltonen-Sainio, P.; Rosswall, T.; von Braun,
J. European perspectives: An agronomic science plan for food security in a changing climate. In Handbook of Climate Change
and Agroecosystems: Global and Regional Aspects and Implications; World Scientific: Singapore, 2013; pp. 73–84. Available on-
line: https://books.google.com/books?hl=en&lr=&id=EmOes-iIaeAC&oi=fnd&pg=PA73&dq=%22climate+smart+agriculture%
22&ots=AQFL9ikdOb&sig=YyYWLlE5MRUoZ_6v2BL1EvQiIss (accessed on 27 December 2016).

15. Kerr, R.B.; Hasegawa, T.; Rodel, L. IPCC WGII Sixth Assessment Report: Food, Fibre and Ecosystem. Clim. Chang. 2022, 2022.

http://doi.org/10.1007/s10584-016-1792-0
http://doi.org/10.1007/s42398-019-00078-w
http://doi.org/10.1016/j.agee.2012.11.007
http://doi.org/10.1016/j.jhydrol.2012.12.023
http://doi.org/10.1007/s11027-014-9568-1
http://www.ncbi.nlm.nih.gov/pubmed/30197559
http://doi.org/10.5829/idosi.ajps.2015.7.3.12822
http://doi.org/10.1186/2193-7532-1-13
http://doi.org/10.1080/00207233.2012.683328
https://books.google.com/books?hl=en&lr=&id=EmOes-iIaeAC&oi=fnd&pg=PA73&dq=%22climate+smart+agriculture%22&ots=AQFL9ikdOb&sig=YyYWLlE5MRUoZ_6v2BL1EvQiIss
https://books.google.com/books?hl=en&lr=&id=EmOes-iIaeAC&oi=fnd&pg=PA73&dq=%22climate+smart+agriculture%22&ots=AQFL9ikdOb&sig=YyYWLlE5MRUoZ_6v2BL1EvQiIss


Sustainability 2022, 14, 16143 23 of 26

16. Martin, N.; Stefan, S.; Qaim, M. Knowledge-Based Agricultural Innovations in Asia: The System of Rice Intensification (SRI) in
Timor Leste, Pacific News. 2011. Available online: http://www.pacific-geographies.org/wp-content/uploads/sites/2/2017/06/
PN35_noltze.pdf (accessed on 7 September 2022).

17. Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by
Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. [CrossRef]

18. Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; Berg, J.V.D. Agro-ecological options for fall
armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive
pest. J. Environ. Manag. 2019, 243, 318–330. [CrossRef]

19. Thierfelder, C.; Chivenge, P.; Mupangwa, W.; Rosenstock, T.S.; Lamanna, C.; Eyre, J.X. How climate-smart is conservation
agriculture (CA)?—Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa.
Food Secur. 2017, 9, 537–560. [CrossRef]

20. Mutenje, M.J.; Farnworth, C.R.; Stirling, C.; Thierfelder, C.; Mupangwa, W.; Nyagumbo, I. A cost-benefit analysis of climate-smart
agriculture options in Southern Africa: Balancing gender and technology. Ecol. Econ. 2019, 163, 126–137. [CrossRef]

21. Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; A Minang, P.; Kowero, G. Agroforestry solutions to address food
security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [CrossRef]

22. Lasco, R.D.; Delfino, R.J.P.; Espaldon, M.L.O. Agroforestry systems: Helping smallholders adapt to climate risks while mitigating
climate change. WIREs Clim. Chang. 2014, 5, 825–833. [CrossRef]

23. Charles, R.; Munishi, P.; Nzunda, E.F. Agroforestry as Adaptation Strategy under Climate Change in Mwanga District, Kilimanjaro,
Tanzania. Int. J. Environ. Prot. 2013, 3, 29–38.

24. Amadu, F.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture
investments: Evidence from southern Malawi. Ecol. Econ. 2020, 167, 106443. [CrossRef]

25. Reppin, S.; Kuyah, S.; de Neergaard, A.; Oelofse, M.; Rosenstock, T.S. Contribution of agroforestry to climate change mitigation
and livelihoods in Western Kenya. Agrofor. Syst. 2020, 94, 203–220. [CrossRef]

26. Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A sustainable
environmental practice for carbon sequestration under the climate change scenarios—A review. Environ. Sci. Pollut. Res. 2017, 24,
11177–11191. [CrossRef] [PubMed]

27. Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable
intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [CrossRef]

28. Clay, N.; Zimmerer, K.S. Who is resilient in Africa’s Green Revolution? Sustainable intensification and Climate Smart Agriculture
in Rwanda. Land Use Policy 2020, 97, 104558. [CrossRef] [PubMed]

29. Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart
agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [CrossRef]

30. Bonetto, S.; Facello, A.; Cristofori, E.I.; Camaro, W.; Demarchi, A. An Approach to Use Earth Observation Data as Support to
Water Management Issues in the Ethiopian Rift. In Climate Change Adaptation in Africa: Fostering Resilience and Capacity to Adapt.
Climate Change Management; Leal Filho, W., Belay, S., Kalangu, J., Means, W., Munishi, P., Musiyiwa, K., Eds.; Springer: Cham,
Switzerland, 2016; pp. 357–374. [CrossRef]

31. Beyene, A.D.; Mekonnen, A.; Kassie, M.; di Falco, S.; Bezabih, M. Determinants of Adoption and Impacts of Sustainable Land
Management and Climate Smart Agricultural Practices (SLM-CSA): Panel Data Evidence from the Ethiopian Highlands. 2017.
Available online: https://www.efdinitiative.org/ (accessed on 7 September 2022).

32. Kombat, R.; Sarfatti, P.; Fatunbi, O.A. A Review of Climate-Smart Agriculture Technology Adoption by Farming Households in
Sub-Saharan Africa. Sustainability 2021, 13, 12130. [CrossRef]

33. FDRE. Ethiopia’s Climate Resilient Green Economy National Adaptation Plan; FDRE: Addis Ababa, Ethiopia, 2019.
34. Eshete, G.; Assefa, B.; Lemma, E.; Kibret, G.; Ambaw, G. Ethiopia Climate-Smart Agriculture Roadmap. 2020. Available online:

https://cgspace.cgiar.org/handle/10568/110993 (accessed on 13 September 2022).
35. Fentie, A.; Beyene, A.D. Climate-smart agricultural practices and welfare of rural smallholders in Ethiopia: Does planting method

matter? Land Use Policy 2019, 85, 387–396. [CrossRef]
36. Tesfaye, W.; Blalock, G.; Tirivayi, N. Climate-Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways.

Am. J. Agric. Econ. 2021, 103, 878–899. [CrossRef]
37. Simane, B.; Zaitchik, B.F.; Ozdogan, M. Agroecosystem Analysis of the Choke Mountain Watersheds, Ethiopia. Sustainability 2013,

5, 592–616. [CrossRef]
38. Cochran, W. Sampling Techniques. 1977. Available online: https://scholar.google.com.tr/scholar?q=sampling+techniques&

btnG=&hl=en&as_sdt=0,5#0 (accessed on 7 September 2022).
39. World Food Programme. Food consumption analysis—Calculation and use of the food consumption score in food security

analysis. In Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2008. [CrossRef]
40. Maxwell, D.; Vaitla, B.; Tesfay, G.; Abadi, N. Resilience, Food Security Dynamics and Poverty Traps in Northern Ethiopia. Analysis of

a Biannual Panel Data Set, 2011–2013; Feinstein International Center, Friedman School of Nutrition Science and Policy at Tufts
University: Boston, MA, USA, 2013.

41. Wekesa, B.M.; Ayuya, O.I.; Lagat, J.K. Effect of climate-smart agricultural practices on household food security in smallholder
production systems: Micro-level evidence from Kenya. Agric. Food Secur. 2018, 7, 80. [CrossRef]

http://www.pacific-geographies.org/wp-content/uploads/sites/2/2017/06/PN35_noltze.pdf
http://www.pacific-geographies.org/wp-content/uploads/sites/2/2017/06/PN35_noltze.pdf
http://doi.org/10.3390/agriculture11030192
http://doi.org/10.1016/j.jenvman.2019.05.011
http://doi.org/10.1007/s12571-017-0665-3
http://doi.org/10.1016/j.ecolecon.2019.05.013
http://doi.org/10.1016/j.cosust.2013.10.014
http://doi.org/10.1002/wcc.301
http://doi.org/10.1016/j.ecolecon.2019.106443
http://doi.org/10.1007/s10457-019-00383-7
http://doi.org/10.1007/s11356-017-8687-0
http://www.ncbi.nlm.nih.gov/pubmed/28281063
http://doi.org/10.1016/j.landusepol.2014.08.016
http://doi.org/10.1016/j.landusepol.2020.104558
http://www.ncbi.nlm.nih.gov/pubmed/32884163
http://doi.org/10.1016/j.cosust.2014.07.002
http://doi.org/10.1007/978-3-319-49520-0
https://www.efdinitiative.org/
http://doi.org/10.3390/su132112130
https://cgspace.cgiar.org/handle/10568/110993
http://doi.org/10.1016/j.landusepol.2019.04.020
http://doi.org/10.1111/ajae.12161
http://doi.org/10.3390/su5020592
https://scholar.google.com.tr/scholar?q=sampling+techniques&btnG=&hl=en&as_sdt=0,5#0
https://scholar.google.com.tr/scholar?q=sampling+techniques&btnG=&hl=en&as_sdt=0,5#0
http://doi.org/10.1017/CBO9781107415324.004
http://doi.org/10.1186/s40066-018-0230-0


Sustainability 2022, 14, 16143 24 of 26

42. Huang, J.; Nie, F.; Bi, J. Comparison of food consumption score (FCS) and calorie intake indicators to measure food security. In
2015 International Conference on Social Science, Education Management and Sports Education; Atlantis Press: Zhengzhou, China, 2015;
pp. 1152–1158. [CrossRef]

43. Aweke, C.S.; Hassen, J.Y.; Wordofa, M.G.; Moges, D.K.; Endris, G.S.; Rorisa, D.T. Impact assessment of agricultural technologies
on household food consumption and dietary diversity in eastern Ethiopia. J. Agric. Food Res. 2021, 4, 100141. [CrossRef]

44. Lovon, M.; Mathiassen, A. Are the World Food Programme’s food consumption groups a good proxy for energy deficiency? Food
Secur. 2014, 6, 461–470. [CrossRef]

45. WFP. Comprehensive Food Security & Vulnerability Analysis Guidelines; WFP: East London, South Africa, 2009; p. 27. [CrossRef]
46. Marivoet, W.; Becquey, E.; Van Campenhout, B. How well does the Food Consumption Score capture diet quantity, quality and

adequacy across regions in the Democratic Republic of the Congo (DRC)? Food Secur. 2019, 11, 1029–1049. [CrossRef]
47. FAO. Guidelines for Measuring Household and Individual Dietary Diversity; FAO: Rome, Italy, 2010.
48. Füssel, H.-M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Change

2007, 17, 155–167. [CrossRef]
49. Füssel, H.-M.; Klein, R.J. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Chang. 2006,

75, 301–329. [CrossRef]
50. Füssel, H.-M. Vulnerability of Coastal Populations. In Climate Change, Justice and Sustainability; Springer: Berlin/Heidelberg,

Germany, 2012. [CrossRef]
51. Hahn, M.B.; Riederer, A.M.; Foster, S.O. The livelihood vulnerability index: A pragmatic approach to assessing risks from climate

variability and change—A case study in Mozambique. Glob. Environ. Chang. 2009, 19, 74–88. [CrossRef]
52. Madhuri; Tewari, H.R.; Bhowmick, P.K. Livelihood vulnerability index analysis: An approach to study vulnerability in the context

of Bihar. Jàmbá J. Disaster Risk Stud. 2014, 6, 1–13. [CrossRef]
53. Dendir, Z.; Simane, B. Livelihood vulnerability to climate variability and change in different agroecological zones of Gurage

Administrative Zone, Ethiopia. Prog. Disaster Sci. 2019, 3, 100035. [CrossRef]
54. Maru, H.; Haileslassie, A.; Zeleke, T.; Esayas, B. Analysis of smallholders’ livelihood vulnerability to drought across agroecology

and farm typology in the upper awash sub-basin, Ethiopia. Sustainability 2021, 13, 9764. [CrossRef]
55. Colomb, V.; Touchemoulin, O.; Bockel, L.; Chotte, J.L.; Martin, S.; Tinlot, M.; Bernoux, M. Selection of appropriate calculators for

landscape-scale greenhouse gas assessment for agriculture and forestry. Environ. Res. Lett. 2013, 8, 15029. [CrossRef]
56. Srinivasarao, C.; Sudha Rani, Y.; Girija Veni, V.; Sharma, K.L.; Maruthi Sankar, G.R.; Prasad, J.V.N.S.; Prasad, Y.G.; Sahrawat, K.L.

Assessing village-level carbon balance due to greenhouse gas mitigation interventions using EX-ACT model. Int. J. Environ. Sci.
Technol. 2016, 13, 97–112. [CrossRef]

57. Kebede, A.T.; Graaff, J.; Kassie, M. Household-Level Determinants of Soil and Water Conservation Adoption Phases: Evidence
from North-Western Ethiopian Highlands. Environ. Manag. 2016, 57, 620–636. [CrossRef]

58. Abate, T.; Shiferaw, B.; Menkir, A.; Wegary, D.; Kebede, Y.; Tesfaye, K.; Kassie, M.; Bogale, G.; Tadesse, B.; Keno, T. Factors that
transformed maize productivity in Ethiopia. Food Secur. 2015, 7, 965–981. [CrossRef]

59. Kindie, T.; Kassie, M.; Cairns, J.E.; Michael, M.; Stirling, C.; Abate, T.; Prasanna, B.M.; Mekuria, M.; Hailu, H.; Rahut, D.B.; et al.
Potential for Scaling up Climate Smart Agricultural Practices: Examples from Sub-Saharan Africa. In Climate Change Adaptation in
Africa; Springer: Cham, Switzerland, 2017; pp. 185–203. [CrossRef]

60. Mihretie, A.A.; Misganaw, G.S.; Siyum Muluneh, N. Adoption Status and Perception of Farmers on Improved Tef Technology
Packages: Evidence from East Gojjam Zone, Ethiopia. Adv. Agric. 2022, 2022, 1–15. [CrossRef]

61. Di Falco, S.; Veronesi, M.; Yesuf, M. Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from
Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [CrossRef]

62. Heckman, J.; Navarro-Lozano, S. Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice
Models. Rev. Econ. Stat. 2004, 86, 30–57. [CrossRef]

63. Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289.
[CrossRef]

64. Carter, D.; Milon, J.W. Price Knowledge in Household Demand for Utility Services. Land Econ. 2005, 81, 265–283. [CrossRef]
65. Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in

Ethiopia. Food Policy 2014, 44, 272–284. [CrossRef]
66. Thierfelder, C.; Rusinamhodzi, L.; Setimela, P.; Walker, F.; Eash, N.S. Conservation agriculture and drought-tolerant germplasm:

Reaping the benefits of climate-smart agriculture technologies in central Mozambique. Renew. Agric. Food Syst. 2016, 31, 414–428.
[CrossRef]

67. Teklewold, H.; Mekonnen, A.; Kohlin, G.; Di Falco, S. Does adoption of multiple climate-smart practices improve farmers’climate
resilience? Empirical evidence from the nile basin of Ethiopia. Clim. Chang. Econ. 2017, 8, 1750001. [CrossRef]

68. Teklewold, H.; Gebrehiwot, T.; Bezabih, M. Climate smart agricultural practices and gender differentiated nutrition outcome: An
empirical evidence from Ethiopia. World Dev. 2019, 122, 38–53. [CrossRef]

69. Turmel, M.-S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis.
Agric. Syst. 2015, 134, 6–16. [CrossRef]

70. Jaleta, M.; Kassie, M.; Erenstein, O. Determinants of maize stover utilization as feed, fuel and soil amendment in mixed
crop-livestock systems, Ethiopia. Agric. Syst. 2015, 134, 17–23. [CrossRef]

http://doi.org/10.2991/ssemse-15.2015.296
http://doi.org/10.1016/j.jafr.2021.100141
http://doi.org/10.1007/s12571-014-0367-z
http://doi.org/10.1016/S0169-8141(08)00187-X
http://doi.org/10.1007/s12571-019-00958-3
http://doi.org/10.1016/j.gloenvcha.2006.05.002
http://doi.org/10.1007/s10584-006-0329-3
http://doi.org/10.1007/978-94-007-4540-7
http://doi.org/10.1016/j.gloenvcha.2008.11.002
http://doi.org/10.4102/jamba.v6i1.127
http://doi.org/10.1016/j.pdisas.2019.100035
http://doi.org/10.3390/su13179764
http://doi.org/10.1088/1748-9326/8/1/015029
http://doi.org/10.1007/s13762-015-0788-z
http://doi.org/10.1007/s00267-015-0635-5
http://doi.org/10.1007/s12571-015-0488-z
http://doi.org/10.1007/978-3-319-49520-0_12
http://doi.org/10.1155/2022/6121071
http://doi.org/10.1093/ajae/aar006
http://doi.org/10.1162/003465304323023660
http://doi.org/10.1177/1536867X0400400306
http://doi.org/10.3368/le.81.2.265
http://doi.org/10.1016/j.foodpol.2013.09.012
http://doi.org/10.1017/S1742170515000332
http://doi.org/10.1142/S2010007817500014
http://doi.org/10.1016/j.worlddev.2019.05.010
http://doi.org/10.1016/j.agsy.2014.05.009
http://doi.org/10.1016/j.agsy.2014.08.010


Sustainability 2022, 14, 16143 25 of 26

71. Tittonell, P.; Gérard, B.; Erenstein, O. Tradeoffs around crop residue biomass in smallholder crop-livestock systems—What’s next?
Agric. Syst. 2015, 134, 119–128. [CrossRef]

72. Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in
smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Change 2013, 80, 525–540. [CrossRef]

73. Golabi, M.H.; Denney, M.J.; Iyekar, C. Use of Composted Organic Wastes as Alternative to Synthetic Fertilizers for Enhancing
Crop Productivity and Agricultural Sustainability on the Tropical Island of Guam. In Proceedings of the 13th International Soil
Conservation Organisation Conference, Brisbane, Australia, 4–8 July 2004; pp. 1–6. Available online: http://tucson.ars.ag.gov/
isco/isco13/PAPERSF-L/GOLABI.pdf (accessed on 7 September 2022).

74. Eshete, Y.; Alamirew, B.; Bishaw, Z. Yield and Cost Effects of Plot-Level Wheat Seed Rates and Seed Recycling Practices in the
East Gojam Zone, Amhara Region, Ethiopia: Application of the Dose–Response Model. Sustainability 2021, 13, 3793. [CrossRef]

75. Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan
Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [CrossRef]

76. Kato, E.; Ringler, C.; Yesuf, M.; Bryan, E. Soil and water conservation technologies: A buffer against production risk in the face of
climate change? Insights from the Nile basin in Ethiopia. Agric. Econ. 2011, 42, 593–604. [CrossRef]

77. Teklewold, H.; Mekonnen, A.; Kohlin, G. Climate change adaptation: A study of multiple climate-smart practices in the Nile
Basin of Ethiopia. Clim. Dev. 2019, 11, 180–192. [CrossRef]

78. Khatri-Chhetri, A.; Aryal, J.J.P.; Sapkota, T.T.B.; Khurana, R. Economic benefits of climate-smart agricultural practices to
smallholder farmers in the Indo-Gangetic Plains of India. Curr. Sci. 2016, 110, 1251–1256. [CrossRef]

79. Ng’ombe, J.N.; Kalinda, T.H.; Tembo, G. Does adoption of conservation farming practices result in increased crop revenue?
Evidence from Zambia. Agrekon 2017, 56, 205–221. [CrossRef]

80. Makate, C.; Makate, M.; Mango, N.; Siziba, S. Increasing resilience of smallholder farmers to climate change through multiple
adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. J. Environ. Manag. 2019, 231, 858–868.
[CrossRef]

81. Mango, N.; Siziba, S.; Makate, C. The impact of adoption of conservation agriculture on smallholder farmers’ food security in
semi-arid zones of southern Africa. Agric. Food Secur. 2017, 6, 4–11. [CrossRef]

82. Bazzana, D.; Foltz, J.; Zhang, Y. Impact of climate smart agriculture on food security: An agent-based analysis. Food Policy 2022,
111, 102304. [CrossRef]

83. Gaudin, A.C.M.; Tolhurst, T.N.; Ker, A.P.; Janovicek, K.; Tortora, C.; Martin, R.C.; Deen, W. Increasing Crop Diversity Mitigates
Weather Variations and Improves Yield Stability. PLoS ONE 2015, 10, e0113261. [CrossRef]

84. Brouder, S.M.; Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping
review of the evidence. Agric. Ecosyst. Environ. 2014, 187, 11–32. [CrossRef]

85. Mashingaidze, N.; Twomlow, S. Weed Growth and Crop Yield Responses to Tillage and Mulching under Different Crop Rotation
Sequences in Semi-Arid Conditions, Soil Use. 2017. Available online: http://onlinelibrary.wiley.com/doi/10.1111/sum.12338/
full (accessed on 24 April 2017).

86. Nyanga, H. Food Security, Conservation Agriculture and Pulses: Evidence from Smallholder Farmers in Zambia. J. Food Res.
2012, 1, 120. [CrossRef]

87. Ngwira, A.; Sleutel, S.; de Neve, S. Soil carbon dynamics as influenced by tillage and crop residue management in loamy sand
and sandy loam soils under smallholder farmers’ conditions in Malawi. Nutr. Cycl. Agroecosyst. 2012, 92, 315–328. [CrossRef]

88. Al-Sari, M.I.; Sarhan, M.A.A.; Al-Khatib, I.A. Assessment of compost quality and usage for agricultural use: A case study of
Hebron, Palestine. Environ. Monit. Assess. 2018, 190, 223. [CrossRef]

89. Warnars, L.M.E.; Hivos. Bioslurry: A supreme fertilizer Positive effects of bioslurry on crops. In Proceedings of the Practitioners’
Track, IFOAM Organic World Congress 2014, ‘Building Organic Bridges’, Istanbul, Turkey, 13–15 October 2014; pp. 13–15.

90. Teshome, A.; de Graaff, J.; Ritsema, C.; Kassie, M. Farmers’ Perceptions about the Influence of Land Quality, Land Fragmentation
and Tenure Systems on Sustainable Land Management in the North Western Ethiopian Highlands. Land Degrad. Dev. 2014, 27,
884–898. [CrossRef]

91. Vandercasteelen, J.; Dereje, M.; Minten, B.; Taffesse, A.S. Labour, profitability and gender impacts of adopting row planting in
Ethiopia. Eur. Rev. Agric. Econ. 2018, 45, 471–503. [CrossRef]

92. Ayal, M.; Negash, R.; Abebe, A. Determinants of Adoption of Teff Row Planting Practice: The Case of Baso Liben Woreda, East
Gojjam Zone, Amhara Region, Ethopia. Int. J. Curr. Res. Acad. Rev. 2018, 6, 16–22. [CrossRef]

93. Negash, W. Effect of Row Spacing on Yield and Yield Components of Teff [Eragrostis tef (Zucc.) Trotter] Varieties in Gonji Kolela
District, North Western Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 35–43.

94. Tamirat, N. Impact Analysis of Row Planting Teff Crop Technology on Household Welfare:A Case Study of Smallholder Farmers
of Duna District in Hadiya Zone, Ethiopia. J. Econ. Sustain. Dev. 2020, 11, 4–9. [CrossRef]

95. Teshome, A.; Rolker, D.; de Graaff, J. Financial viability of soil and water conservation technologies in northwestern Ethiopian
highlands. Appl. Geogr. 2013, 37, 139–149. [CrossRef]

96. Moges, D.M.; Taye, A.A. Determinants of farmers’ perception to invest in soil and water conservation technologies in the
North-Western Highlands of Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 56–61. [CrossRef]

97. Adimassu, Z.; Langan, S.; Johnston, R.; Mekuria, W.; Amede, T. Impacts of Soil and Water Conservation Practices on Crop Yield,
Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis. Environ. Manag. 2017, 59, 87–101. [CrossRef]

http://doi.org/10.1016/j.agsy.2015.02.003
http://doi.org/10.1016/j.techfore.2012.08.007
http://tucson.ars.ag.gov/isco/isco13/PAPERSF-L/GOLABI.pdf
http://tucson.ars.ag.gov/isco/isco13/PAPERSF-L/GOLABI.pdf
http://doi.org/10.3390/su13073793
http://doi.org/10.1016/j.agwat.2018.05.016
http://doi.org/10.1111/j.1574-0862.2011.00539.x
http://doi.org/10.1080/17565529.2018.1442801
http://doi.org/10.18520/cs/v110/i7/1251-1256
http://doi.org/10.1080/03031853.2017.1312467
http://doi.org/10.1016/j.jenvman.2018.10.069
http://doi.org/10.1186/s40066-017-0109-5
http://doi.org/10.1016/j.foodpol.2022.102304
http://doi.org/10.1371/journal.pone.0113261
http://doi.org/10.1016/j.agee.2013.08.010
http://onlinelibrary.wiley.com/doi/10.1111/sum.12338/full
http://onlinelibrary.wiley.com/doi/10.1111/sum.12338/full
http://doi.org/10.5539/jfr.v1n2p120
http://doi.org/10.1007/s10705-012-9492-2
http://doi.org/10.1007/s10661-018-6610-x
http://doi.org/10.1002/ldr.2298
http://doi.org/10.1093/erae/jby001
http://doi.org/10.20546/ijcrar.2018.610.003
http://doi.org/10.7176/jesd/11-5-02
http://doi.org/10.1016/j.apgeog.2012.11.007
http://doi.org/10.1016/j.iswcr.2017.02.003
http://doi.org/10.1007/s00267-016-0776-1


Sustainability 2022, 14, 16143 26 of 26

98. Adimassu, Z.; Mekonnen, K.; Yirga, C.; Kessler, A. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the
central highlands of Ethiopia. Land Degrad. Dev. 2014, 25, 554–564. [CrossRef]

99. Kassie, M.; Köhlin, G.; Bluffstone, R.; Holden, S. Are soil conservation technologies “win-win?” A case study of Anjeni in
the north-western Ethiopian highlands. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2011; Volume 35,
pp. 89–99.

100. Vancampenhout, K.; Nyssen, J.; Gebremichael, D.; Deckers, J.; Poesen, J.; Haile, M.; Moeyersons, J. Stone bunds for soil
conservation in the northern Ethiopian highlands: Impacts on soil fertility and crop yield. Soil Tillage Res. 2006, 90, 1–15.
[CrossRef]

101. Adgo, E.; Teshome, A.; Mati, B. Impacts of long-term soil and water conservation on agricultural productivity: The case of Anjenie
watershed, Ethiopia. Agric. Water Manag. 2013, 117, 55–61. [CrossRef]

102. Sileshi, M.; Kadigi, R.; Mutabazi, K.; Sieber, S. Impact of soil and water conservation practices on household vulnerability to food
insecurity in eastern Ethiopia: Endogenous switching regression and propensity score matching approach. Food Secur. 2019, 11,
797–815. [CrossRef]

103. Makate, C. Effective scaling of climate smart agriculture innovations in African smallholder agriculture: A review of approaches,
policy and institutional strategy needs. Environ. Sci. Policy 2019, 96, 37–51. [CrossRef]

104. Deichert, G.; Gedamu, A.; Nemomsa, B. Role of Sustainable Land Management (SLM) in Adapting to Climate Variability
Through Agricultural Practices—Experiences from Ethiopian Highlands. In Climate Change Adaptation in Africa; Springer: Cham,
Switzerland, 2017; pp. 475–492. [CrossRef]

105. Jirata, M.; Grey, S.; Kilawe, E. Ethiopia Climate-Smart Agriculture Scoping Study; FAO: Addis Ababa, Ethiopia, 2016.
106. Tsige, M.; Synnevåg, G.; Aune, J.B. Gendered constraints for adopting climate-smart agriculture amongst smallholder Ethiopian

women farmers. Sci. Afr. 2020, 7, e00250. [CrossRef]
107. Asmare, F.; Teklewold, H.; Mekonnen, A. The effect of climate change adaptation strategy on farm households welfare in the Nile

basin of Ethiopia. Int. J. Clim. Chang. Strategy Manag. 2019, 11, 518–535. [CrossRef]

http://doi.org/10.1002/ldr.2182
http://doi.org/10.1016/j.still.2005.08.004
http://doi.org/10.1016/j.agwat.2012.10.026
http://doi.org/10.1007/s12571-019-00943-w
http://doi.org/10.1016/j.envsci.2019.01.014
http://doi.org/10.1007/978-3-319-49520-0_29
http://doi.org/10.1016/j.sciaf.2019.e00250
http://doi.org/10.1108/IJCCSM-10-2017-0192

	Introduction 
	Methodology 
	Study Area 
	Measurements 

	Results and Discussion 
	Livelihood Vulnerability and Adoption of CSA Innovations 
	Food Security and Adoption of CSA Innovations 
	GHG Emissions and Adoption of CSA Innovations 
	Impacts of Climate-Smart Agriculture Innovations: ESR Estimation Results 

	Conclusions 
	Appendix A
	References

