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Abstract: Oases regime shifts in the context of integrated water resource management have a sig-
nificant impact on ecosystem functions and services and affect regional sustainable development
and human wellbeing. Taking the Linze Oasis in the middle reaches of the Heihe River as a case
study, we evaluated the regime shifts of the oases over the past 30 years from the two perspectives of
scale and structure, considering the structural diversity index (H), water savings (Cn), productivity
(WP), and other indicators. Furthermore, the driving factors of the socio-hydrological processes and
the corresponding effects of the regime stages were discussed. The results indicate that the oases
expanded concurrently with the increase in the regional water consumption from 1.09 × 108 m3 to
1.93 × 108 m3. The production of low-water-consumption and high-yield crops was found to be the
main cause for the oases structure’s adjustment. The regime shifts in the oases comprised three main
stages from 1990 to 2020, based on the interaction of socio-ecological elements. Water management
policies promoted the regime shift process, while economic factors determined the long-term shifts.
The improvement in water-saving practices driven by economic benefits is an effective way to realize
the sustainable development of the Hexi oases.

Keywords: oases economy; regime shifts; water management policies; water savings;
water productivity

1. Introduction

Regime shifts refer to significant and persistent changes in the structure and function of
ecosystems or socio-ecological systems that substantially affect relevant ecosystem services.
They are considered a critical perspective from which to examine and evaluate the evolution
and elasticity of systems [1,2]. The risks faced by the oases water resources in the arid
region of northwest China have increased with rising climate change and human activity,
especially in the agricultural oases of the Hexi Corridor [3,4]. Since the implementation of
integrated water resources management (IWRM) in 2000, the oases have had a significant
impact on the regional social ecosystem [5,6]. Identifying the regime shifts, as well as
their dominant drivers and specific effects, is of critical significance to the sustainable
development of arid areas [7].

In general, regime shifts are cumulative changes caused by drivers within ecosystems
or by human and natural disturbances [2,8,9]. Current studies on regime shifts are mainly
focused on the identification and analysis of their driving mechanisms. Their influencing
factors, cascades within and across scales, and the reciprocity of shifts have also attracted
attention [2,10]. Climate change and agriculture-related activities have significant effects
on a variety of regime shifts in integrated socio-ecological systems [1]. As for the oases
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dominated by agricultural irrigation in the middle reaches of the Heihe River, IWRM and
the agricultural planting structure play a significant role in promoting the regional water
resource balance [11]. Taking these factors into account can effectively strengthen the
coupled human–water systems involved in sociohydrological processes [12].

The ecological and economic development of oases in northwest China is driven
by the area’s limited water resources [13,14]. The ecological constraints on economic
development are enhanced with the expansion of oases and populations [13–15]. IWRM
has been implemented to control the water system in order to reach the desired outcomes
for society and the environment. It is of great significance to determine the appropriate
hydrologic and ecological thresholds for the water security of river basins [16,17]. The ‘2000
water distribution’ policy has had significant effects on the balance of the water resources
in the Heihe River basin [18,19]. To facilitate the restoration of the ecological environment,
the water distribution was supplemented with 109 m3 from the Zhengyi Gorge in 2020,
which increased the water stress in the middle reaches of the Heihe River. The regime shifts
of the oases continue to adapt to the regional water distribution. The coordination of the
water distribution is critical for the management of the oases in the middle reaches [20].

Moreover, the efficient utilization of water resources is significant for the stability of
the oases in the middle reaches [21] and could alleviate a series of social and environmental
challenges caused by water shortages [22,23]. The quantitative description of the state
of water systems is part of the research in the field of socio-hydrology [24]. Agriculture
accounts for more than 80% of the water consumption in the oases in the middle reaches
of the Heihe River basin [25], and crops are considered a measure of both economic
benefits and water constraints [11]. Meanwhile, assessing the effects of water savings and
productivity is critical to the evaluation of water policies [26]. Many water efficiency studies
at different scales have indicated that evapotranspiration (ET) is an effective supplement to
traditional water resource management [20,27,28] and provides a basis for improving the
WUE [29]. Although macroscale estimates based on remote sensing [21,30] are not sufficient
to estimate the water consumption of the highly spatially heterogeneous crop structures in
the Hexi oases [31], crop statistics based on the ET within a reasonable irrigation system
are an effective method for calculating the total water consumption [32]. Consequently,
water resource management and its economic benefits, as well as other feedback, mutually
depend on the socio-ecological systems of the oases in the middle reaches to generate a
balance. The systematic establishment of oasis regimes is vital to the realization of the
sustainable development of the oases.

Accordingly, we selected the Linze Oasis, a typical middle reaches Oases in the Heihe
River basin, as the research area in this study. We investigated the quantitative relationship
between the ecosystem and society from a sociohydrological perspective [33], as well as
the impact of water resource utilization on agricultural development. Furthermore, we
conducted these investigations in terms of scale and structure for the years 1990 to 2020
(i.e., before and after the implementation of water distribution policies in the Heihe River
basin) to reveal the regime shifts and cascading effects in the oases associated with policy,
economic, and other factors. This study aimed to provide a scientific basis for decision
making regarding the sustainable development of oases in arid regions, as well as to
enhance our ability to address climate change and other systematic risks.

2. Material and Methods
2.1. Study Region

The Linze Oasis is located in the desert oases transition zone (100◦06′04′′~100◦09′53′′ E,
39◦19′07′′~39◦24′40′′ N) in the middle part of the Hexi Corridor of northwest China, repre-
senting a major part of the middle reaches oases (Ganzhou, Linze, and Gaotai) (Figure 1).
The Linze Oasis serves as a critical area in the Hexi Corridor for agricultural produc-
tion, with its favorable water and heat conditions. It is in a typical zone of the arid
subtype of a temperate continental climate, and its potential evapotranspiration ranges
from 1900 to 2088 mm, far exceeding its average annual precipitation of 124 mm [34,35].



Sustainability 2022, 14, 16309 3 of 13

Agricultural irrigation accounts for over 95% of its total water use [25], to which surface
water contributes the majority, and groundwater contributes the rest. The Heihe River and
one of its immediate tributaries, the Liyuan River, have been confirmed as the main water
source for irrigation. The Hexi Corridor has the most competitive seed production in China,
with its advantageous location and natural conditions. Since 2005, the proportion of corn
seed production areas has been stable, at above 70% [11].
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2.2. Data and Data Processing

The data of the structure and output of the crops in Linze Oasis from 1990 to 2020
were taken from the County Statistical Yearbook, and we followed the classification of
the statistics. The food crops primarily comprised wheat, corn, etc., and the cash crops
largely included vegetables, beet, cotton, oils, chrysanthemum (stevia), etc. Moreover, its
fruits (e.g., jujubes and fruiters) were classified into the forestry rather than the planting
category, and these did not have a large impact on the regional water resource. The price
of the main crops was defined by the price-guaranteed contracts and the purchase prices
that were uniformly converted into 1990 prices. The information on the water distribution
and corresponding irrigated area in Linze Oasis came from the Water Authority and its
divisional water management offices. The water consumption in the middle reaches for
the field measurement of crops in the growing season was obtained from the National
Field Scientific Observation and Research Station for the Linze Farm Ecosystem of the
Chinese Academy of Sciences (Table 1), which was consistent with the water requirements
at sufficient irrigation conditions [36]. The details are listed in Table 1.

Table 1. The water consumption of the crops in the Hexi oases.

Crops
Food Crops Cash Crops

Wheat ¬ Field Corn ¬ Seed Corn  Vegetables  Oil Crops  Beet ¬ Cotton ¬ Stevia *

ET (mm) 435 656 671.2 674 377.3 677 675.5 589.5

Note: The water consumption of regional crops ¬ (Cheng et al., 2014) [26]  (Ji et al., 2005) [37]. * The water
consumption of stevia within the growth period is 10% less than that of corn seed.
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2.3. Methods

An interpretive framework based on the interaction between social and ecological
elements is a specific evaluation system for the research on regime shifts [1,38]. There are
two aspects within this that determine whether or not a regime shift has taken place: one is
the relationship between the social and ecological systems, and the other is the degree of
influence of each component of society and ecology [7]. The identification of the transitions
depend on the statistical analysis of long-term sequences [39]. In this study, the mentioned
framework was established for the scale (crop area and water consumption) and the
structure (crop structural diversity, water savings, and productivity) to identify the regime
shifts in oases, as well as the intervals between the shifts with different dominant drivers in
accordance with the changes in the interaction between these social and ecological elements.

2.3.1. Water Consumption of Crop Farming

There is critical significance for the increase in WUE for irrigation with crop require-
ments [32]. Based on the long-term stability of cultivation and field management, the water
consumption of crops during the growing season remains stable, consistent with the crops’
water requirements [36]. The equation is written as follows:

Wn =
m

∑
i=1

ETi·Sn (1)

where ETi denotes the water use of the crop ith during the growing season; Wn represents
the total WU in the nth year (m3); and Sn expresses the sown area of the crop in that
year (hm2).

2.3.2. Analysis of Crop Farming Restructuring

The diversity index (H) indicates the diversity of the regional ecological structures
primarily through the energy (resources) flows [40,41]. The diversity of the systematic
structures of ecosystems can be set with the proportion of the actual water consumption of
each crop. The equation is expressed as follows [42]:

H = ∑
i
[Pi· ln Pi] (2)

where Pi denotes the proportion of the water consumption of the crop ith to the total. The
larger the H, the more diversified the crops will be, and the more even the WD will be and
vice versa.

2.3.3. Effects of Crop Farming Restructuring on Water Savings

It is practical to evaluate the WUE of agricultural water in consideration of the recycling
of the irrigation return flow [20]. The changes in water consumption, ∆Wn, are useful to
compare the crop restructuring to regional water savings in different years [43,44]. The
equation is written as follows:

∆Wn = Wn −W ′n (3)

where Wn and W ′n express the total and unadjusted water consumption of crops in the nth
year, respectively. To remove the effect of area changes, W ′n is obtained as follows:

W ′n =
m

∑
i=1

(ETi·Sn·P′ i) (4)

where Sn represents the area of the crop in the nth year (hm2); and P′ i expresses the
proportion of the area of the crop i in the reference year (1990). When the changes in the
water consumption ∆Wn = 0, this means that the regional water savings are not affected by
the crop restructuring; ∆Wn < 0 represents that the crop restructuring is positive for water
savings and vice versa.
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2.3.4. Effects of Crop Farming Restructuring on Water Productivity

The evaluation of water efficiency has shifted from a single indicator to an integrated
evaluation characterized by the combination of efficiency and profit [45]. Water productivity
(WP) is the ratio of the net benefits from agricultural systems to the amount of water used
to produce those benefits [46], characterizing the relationship between output (material
and economic output) and water usage (volume, value) [47,48]. The equation is expressed
as follows:

WP =
Y

WU
(5)

where WU represents the water consumption of the crop (m3); Y represents the yield of the
crop (e.g., physical yield and economic yield). The physical WP is defined as the ratio of
the agricultural output to the amount of water consumed, and the economic WP is defined
as the value derived per unit of water used in agriculture for nutrition, welfare, and the
environment [46]. It is more convenient to use the economic yield as the benchmark for the
comparison of the WP among crops.

3. Results
3.1. Regimes at the Oases Scale

For the middle reaches dominated by irrigated agriculture, the crop area and the
water consumed are effective in indicating the changes in the scale of the oases as shown
in Figure 2. The area of crops increased from 1.71 × 104 hm2 in 1990 to 1.98 × 104 hm2

in 2010 and further increased by 88.90% to 3.23 × 104 hm2 in 2020; the water consumed
increased from 1.09 × 108 m3 to 1.93 × 108 m3, correspondingly. Specifically, the water
consumed by food and cash crops increased from 0.89 × 108 m3 and 0.20 × 108 m3 in
1990 to 1.65 × 108 m3 and 0.28 × 108 m3 in 2020, respectively. In addition to the increased
fluctuation at the beginning of the implementation of the water distribution policies in 2000,
the proportion of the water consumption of food crops has stabilized at more than 70%.
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3.2. Regimes in the Structures of the Oases

Structural optimization within the water constraints is vital for regime shifts in oases.
For the middle reaches, with agricultural water accounting for over 95%, the regime shifts
can be analyzed based on the structural diversity of crops and its effect on the regional
water savings and productivity.

3.2.1. Structural Diversity of Crops

The crop structures between 1990 and 2020 are characterized as shown in Figure 3.
Before the implementation of the water distribution policy in 2000, the overall structural
diversity of crops increased from 0.69 in 1990 to 0.89 in 2001, where the food crops showed
a slight increase from 0.42 to 0.57. After that, the area of crops rapidly increased from
0.34 × 104 hm2 in 2001 to 1.46 × 104 hm2 in 2009. Meanwhile, the overall H significantly
decreased from 0.89 to 0.35; in particular, that of the food crops decreased from 0.37 to
0.16. Furthermore, the overall structural diversity rose to 0.55 in 2020 with the structural
optimization of the crop, to a certain extent. The cash crops have shifted from being
diversified, with the H decreasing from 0.73 to 0.21 in 2020, in which vegetables and
chrysanthemum crops accounted for 80% and 15% of the total in 2015, respectively.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. Structural diversity of the crops in Linze Oasis. 

3.2.2. Changes in Water Savings 
Taking 1990 as the reference year, the crop restructuring between 1990 and 2020 

caused characteristic changes in the total 𝛥𝑊𝑛, following a “rapidly rising–relatively sta-
ble–rapidly rising” pattern (Figure 4). Before 2000, 𝛥Wn > 0 and reached 0.076 × 108 m3 
from 1990 to 2020. In this period, the conventional mode of high WU cultivation, which 
was dominated by corn with banding, showed a negative effect on water savings. After 
2000, 𝛥Wn < 0 between 2001 and 2015, which indicates that the crop restructuring had a 
significant positive effect on water savings. During the initial implementation of the policy 
between 2000 and 2003, 𝛥Wn decreased to 0.25 × 108 m3, accounting for 20% of the total 
water consumption in 2000. However, there was an opposite effect on water savings com-
pared with the structure of crop farming after 2015. 

Figure 3. Structural diversity of the crops in Linze Oasis.



Sustainability 2022, 14, 16309 7 of 13

3.2.2. Changes in Water Savings

Taking 1990 as the reference year, the crop restructuring between 1990 and 2020 caused
characteristic changes in the total ∆Wn, following a “rapidly rising–relatively stable–rapidly
rising” pattern (Figure 4). Before 2000, ∆Wn > 0 and reached 0.076 × 108 m3 from 1990 to
2020. In this period, the conventional mode of high WU cultivation, which was dominated
by corn with banding, showed a negative effect on water savings. After 2000, ∆Wn < 0
between 2001 and 2015, which indicates that the crop restructuring had a significant positive
effect on water savings. During the initial implementation of the policy between 2000 and
2003, ∆Wn decreased to 0.25× 108 m3, accounting for 20% of the total water consumption in
2000. However, there was an opposite effect on water savings compared with the structure
of crop farming after 2015.
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3.2.3. Changes in Water Productivity

The prices in this section were uniformly converted into the fixed prices from 1990 to
eliminate the effects of inflation and fluctuation. The outputs of the total crops increased
from RMB 0.88 × 108 to 4.33 × 108 in the period 1990–2020, and the unit of water pro-
ductivity increased from 0.94 to 2.10 RMB/m3 correspondingly. The water productivity
steadily increased to 1.32 RMB/m3 before 2000. Notably, the water productivity during
the crop restructuring experienced a “rapidly rising–fluctuating” effect (Figure 5), which
significantly increased after the 2000 policy implementation. The water productivity be-
tween 2000 and 2007 had a rapid increase of 86% from 1.32 to 2.45 RMB/m3 and a further
decrease to 1.96 RMB/m3 in 2013. It is noteworthy that the water productivity during the
crop restructuring kept fluctuating between 2.00 and 2.45 RMB/m3 after 2014.
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4. Discussion

Water policies and economic factors commonly expedited the regime shifts in the Hexi
oases. The shifts and their dominant drivers are further discussed and incorporated with
the interactions among the socio-ecological elements.

4.1. Regime Shifts in Oases and their Dominant Drivers

The Linze Oasis has experienced three regimes from 1990 to 2020 based on the in-
teraction between the social and ecological elements. Before the implementation of the
2000 water policy, crops with high water consumption were planted under the conditions
of adequate irrigation. The scale and structure of the oases were relatively stable in this
period (Figure 6, Regime 1). The pressure on ecological protection has increased with the
continuous increase in the production of water [23,49]. It is of great significance for water
security to identify the reasonable threshold of the watershed hydrology and ecosystem
within the river basin [16,17]. On the one hand, the crop areas of the oases decreased by
0.19 × 104 hm2, and the water consumption correspondingly decreased from 5.45 × 108 m3

to 4.55 × 108 m3. On the other hand, the conventional structure of “wheat–field corn” was
replaced by a seed corn structure with corresponding changes in arable land, crop rotation,
market, etc. The water policy was the dominant driver of the rapid regime changes in the
scale and structure of the oases between 2000 and 2002. It was effective in alleviating the
seasonal insufficiency of irrigation through reasonable crop restructuring and the temporal
coupling of regional water demands and different crops [50].

Crop restructuring can be recognized as feedback to the pursuit of economic ben-
efits within the water resource constraints [11]. Different crops significantly impact the
hydrology and water balances, especially the WUE, due to their significant differences
in field management, planting patterns, irrigation, and so on [51]. The Linze Oasis main-
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tained a stable period of adjustment between 2003 and 2010 after the implementation of
the water distribution policy in 2000 (Figure 6, Regime 2). Not only the water savings
but also the positive profits in the water-saving process are matters for water resource
management [52]. The effect of crop restructuring on the regional ecology based on its
comparative advantages and market demand has gradually been emphasized. Meanwhile,
farmers have a weak resistance to market risks and choose crops with relatively high yields
and low risks [53]. Low-water-consumption and high-yield crops are the main causes of
structural change. Additionally, a series of policies, such as irrigation management, land
standardization, water rights and price reforms, and ecological compensation [54], have
encouraged the concentration of regionally advantageous crops. As a result, the seed corn
rapidly increased to 1.46 × 104 hm2, accounting for 75% of the total area in 2009. The
structure dominated by seed corn has effectively promoted water savings and productivity
simultaneously and eliminated the negative effects of the implementation of rigorous water
resource management.
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Generally, the transformation of institutions and policies had significant effects in a
certain period. The homogenization of crops reduced the ability to resist the influence of
market saturation and increased the potential risk, resulting in a continuous decline of
agricultural water productivity in the oases after 2007. Therefore, two main shifts were
obvious to reverse the tendency after 2010. Firstly, enlarging the crop areas was a priority
to increase income, since the water productivity decreased. The scale of the oases had a
significant expansion in the period 2010–2012. In addition, the saved water resources with
the increased WUE were further returned to agriculture to support the oases’ expansion in
the Hexi Corridor [5]. Considering that the water resources are the main limits for regional
oases, an appropriate scale of oases is essential to maintain the sustainable development of
the regional ecological economy [55]. However, the expansion of the oases scale did not
effectively reverse the decline in water productivity in this process (Figure 6, Regime 3). The
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adjustments in the structure were the cause of the regime shifts from 2014 to 2017, especially
the economic crops (e.g., vegetables, stevia, etc.), which were introduced to mitigate the risk
of the monotony, resulting in significant fluctuations in water efficiency and a significant
increase in water consumption. The scale (2010–2012) or structural (2014–2017) shifts, with
an obvious bouncing back of the total water consumption and water savings in succession,
further show that economic factors have significantly driven the regime shifts in the oases
after 2010 within the context of water resource management. It should be emphasized
that cash crops, mainly vegetables, are greatly affected by the market, and their water
consumption increased during the same periods, resulting in significant fluctuations in
water productivity in 2018–2020 (Figure 6, Regime 4).

4.2. Effects of Policies and Economic Factors on Oases Regimes

The oases regime shifts had no significant effect on water savings during 2000–2020,
and the fluctuation in the water productivity corresponded to the adjustment in the struc-
ture, which indicates that economic factors, rather than policies, were the dominant factors
for the regime shifts in the long-term development of the oases. Improving economic bene-
fits associated with water savings is the basis of oasis sustainability [22] and can alleviate
a series of social and environmental issues within the constraints of water resources [23].
Productivity on the basis of water savings is a priority to retain agricultural oases on a
larger scale [52].

In addition, integrated water resource management aims to increase the WUE, includ-
ing the transmission and terminal-field water efficiency [45]. Specifically, the “integrated
regulation and discharge” policy has increased the efficiency of the water distribution, and
the infrastructure construction has increased the transmission efficiency [56]. Consequently,
the terminal water consumption in Linze Oasis remained stable at 2.5 × 108 m3, while the
irrigation water decreased from 5.45 to 4.55 × 108 m3 during the same time. The overall
and terminal-field efficiency increased from 50 to 58% and 78%, respectively. Moreover, the
saved water resources with the increased WUE were further returned to the agricultural
system [5], which were effective to reduce the fluctuation in the cascading effects on the so-
cial ecosystem. Nonetheless, considering the frequent transformation between the surface
and groundwater in the middle reaches of the Heihe River basin [57,58], the water-saving
measures will increase the complexity of the regional hydrologic processes [59] and further
affect the regime shifts of the Heihe oases to a certain extent.

5. Conclusions

The middle reaches of the Heihe oases have experienced a long-term dynamic process
over the past 30 years. The expansion of crop areas has significantly increased the water
consumption during the shift periods. Reducing the high-water-consumption areas mod-
erately at the edge of the oases is of great significance to the sustainable development of
agricultural oases. Moreover, the adjustment in the structure of crops was the main cause of
the regime shifts for the agricultural oases, which significantly affected the regional water
savings and productivity.

The regime shifts in the middle reaches of the Heihe oases were recognized as a factual
response to the water policies and economic benefits. The integrated water management
expedited the regime shifts in the oases, while the economic factors dominated the shifts
over the long term. Specifically, the water policy in 2000 effectively promoted the regime
shifts of the whole oases. The shifts in scale (2010–2012) and structure (2014–2017) were
temporary adjustments of the sustainable development with multiple drivers.

To summarize, the water-saving effect driven by the improvement of economic ben-
efits is of great significance to the sustainable development of the middle reaches oases.
Improving water productivity is the dominant direction of the sustainable development of
oases under climate change. Moreover, the water consumption of the main crops varies
in different years with climate change, which will have a potential impact on the regional
water balance in the long term.
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