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Abstract: Due to the large growth in the number of cars being bought and sold, used-car price
prediction creates a lot of interest in analysis and research. The availability of used cars in developing
countries results in an increased choice of used vehicles, and people increasingly choose used vehicles
over new ones, which causes shortages. There is an important need to explore the enormous amount
of valuable data generated by vehicle sellers. All sellers usually have the imminent need of finding a
better way to predict the future behavior of prices, which helps in determining the best time to buy
or sell, in order to achieve the best profit. This paper provides an overview of data-driven models
for estimating the price of used vehicles in the Croatian market using correlated attributes, in terms
of production year and kilometers traveled. In order to achieve this, the technique of data mining
from the online seller “Njuškalo” was used. Redundant and missing values were removed from the
data set during data processing. Using the method of supervised machine learning, with the use of a
linear regression algorithm for predicting the prices of used cars and comparing the accuracy with
the classification algorithm, the purpose of this paper is to describe the state of the vehicle market
and predict price trends based on available attributes. Prediction accuracy increases with training the
model with the second data set, where price growth is predicted by linear regression with a prediction
accuracy of 95%. The experimental analysis shows that the proposed model predicts increases in
vehicle prices and decreases in the value of vehicles regarding kilometers traveled, regardless of
the year of production. The average value of the first data set is a personal vehicle with 130,000 km
traveled and a price of EUR 10,000. The second set of data was extracted 3 months after the previously
analyzed set, and the average price of used vehicles increased by EUR 1391 per vehicle. On the other
hand, average kilometers traveled decreased by 8060 km, which justifies the increase in prices and
validates the training models. The price and vehicle type are features that play an important role in
predicting the price in a second-hand market, which seems to be given less importance in the current
literature of prediction models.

Keywords: prediction; machine learning; used vehicles; regression; classification

1. Introduction

With the rapid development of the Internet and technologies, people are increasingly
engaging in online shopping. Online shopping has a vital role in our daily lives due
to the associated low cost, high convenience, ease of use, and other such advantages.
Consequently, many types of retail websites, such as OLX and eBay, are available in the
online market. In particular, the past decades have seen rapid growth in second-hand
consumption across many global markets as a result of the booming collection of used and
unwanted products. Pricing is not only a science but also an art that requires statistical
and experimental formulas to create a profile for both the brand and product in the market.
Fathalla et al. [1] proposed one of the main challenges faced by retailers, which is pricing.
Today, the automotive industry is considered one of the backbones of the economy, and
cars are called the “industry of industries” in developed countries. Lower inventory and
longer vehicle retention in production and ownership, respectively, should lead to lower

Sustainability 2022, 14, 17034. https://doi.org/10.3390/su142417034 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142417034
https://doi.org/10.3390/su142417034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8675-5778
https://doi.org/10.3390/su142417034
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142417034?type=check_update&version=1


Sustainability 2022, 14, 17034 2 of 17

prices in the used-car sector in the second half of 2022 according to the Vehicle Remarketing
Association (VRA). The used-car sector in the Republic of Croatia was at its peak of sales in
2019. However, the general economic picture is deteriorating and could degrade quickly
during the second half of 2022, and this is likely to have an impact in all ways, but most
of all on consumer confidence, with the cost of living crisis becoming acute [2]. This will
have a direct impact on the market, as many private car owners would choose to keep
their existing vehicle for longer as their personal finances are affected, which is likely to
cause demand to soften. This decrease in demand could also be accompanied by a further
decline in vehicle supply, driven by a new vehicle market that is not really improving in
terms of the number of units available because, although the semiconductor situation is
starting to ease, new factors, such as the situation in Ukraine, have emerged. Manufacturers
that have been able to deliver new cars in large quantities over the past 2 to 3 years have
often differentiated themselves from the traditionally dominant players in the market. The
mix of brands and models on some websites is noticeably different than it was before the
COVID-19 pandemic. A recent study in the United Kingdom shows that from April to May
of 2022, used-car prices decreased by 1.4% and are now 0.1 percentage points lower than at
the beginning of January 2022. The average used-car value fell in September 2021 from a
high of GBP 12,000 to GBP 8,552 in April 2022. Values leveled off over the first four months
of 2022, with lead prices moving from 99% in January to 94.8% in April [2]. According
to the data of the Croatian Vehicle Center in Figure 1, it is evident that the sale of used
vehicles exceeded the number of new vehicles sold after 2014. Likewise, after 2019, a total
decline in new car sales was recorded [3].

Figure 1. Number of new and used sold vehicles in the Republic of Croatia.

The majority of sales contributing to the ownership of private cars, due to affordability
and economy, falls on the used-car sector. To accurately predict the prices of used cars in the
future, experts and their knowledge are needed when making decisions, due to the nature
of the dependence of the price of a vehicle on various factors and features in the market.
Authors [4] used a multiple linear regression model to predict the prices of new and second-
hand vehicles, for which the data set is in a tabular form. Yang et al. [5] proposed a model
for predicting vehicle prices based on product images only by using a custom convolutional
neural network (CNN) architecture. Authors in [6,7] used sentiment analysis and machine
learning for predicting stock prices. Kalaiselvi et al. [8] developed pricing analytics for
smartphones by using a multilayer feed-forward neural network. Ahmed et al. [9] used a
data set of tabular data and images to address house price prediction using support vector
regressor (SVR) and neural network (NN) models. Moreover, the authors in [10] present an
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approach to identify the segment of recreational trips implemented within the bike-sharing
system based on popular clusterization algorithms. The authors developed subroutines for
cleaning the raw data obtained from GPS trackers. By using the purified data on the numeric
parameters of trips in a bicycle-sharing system, the clustering model identifies such a cluster
that represents recreational trips. The use of the proposed approach is demonstrated on
the example of data obtained from the bike-sharing system in the city of Krakow, Poland.
More recently, the authors in [11] exploit unique feature of the bike-sharing system, such as
stopovers—short, non-traffic-related stops made by cyclists during their trips. The price
prediction of second-hand items has not been widely addressed. Only a few studies have
addressed the price prediction of used products in a specific domain, specifically, the price
prediction of second-hand cars [12]. Furthermore, Chen et al. [13] conducted an empirical
investigation and compared two techniques, namely linear regression and random forest.
This shows that the latter is the best algorithm for dealing with complex models with a
large number of variables and data. However, it lacks a clear benefit when dealing with
effortless models with fewer variables. The mean error of the sample data fluctuates around
0.3. It can be seen that the existing used-car price prediction methods are not ideal, so
it is necessary to find a reasonable, efficient, scientific, and accurate method. Artificial
neural networks (ANN), fuzzy logic systems (FLS), and evolutionary algorithms (EA) are
the most quickly emerging fields in computing intelligence, and they can be used to solve
a variety of prediction and optimization challenges [14–16]. A back-propagation neural
network (BPNN) is a typical ANN that does not rely on any empirical formula and can
automatically generate rules to existing data to obtain the intricate patterns of the data,
which is suitable for building multi-factor non-linear forecasting models, such as those for
used cars. Wu et al. [17] compared a BPNN for used-car price prediction with the proposed
ANFIS (adaptive neuro-fuzzy inference system). The results showed that when three
feature variables are input, the prediction accuracy of the BPNN is lower than the latter.
Zhou [18] introduced the BPNN to establish an evaluation model, reducing the subjectivity
and randomness amid the valuation process. It showed that the price evaluation predicted
by the BPNN is closer to the actuality, with a maximum error of 3.04%, indicating the
reliability and applicability of the model. In order to standardize the evaluation standards
of used-car prices and improve the accuracy of used-car price forecasts, the linear correlation
between vehicle parameters, vehicle conditions, and transaction factors and used-car price
was comprehensively investigated, and grey relational analysis was applied by [19] to
filter the feature variables of factors affecting used-car prices; furthermore, the traditional
BP neural network was also optimized by combining the particle swarm optimization
algorithm. To the best of the authors’ knowledge, state-of-the-art methods have limited
work for predicting the prices of second-hand products based on machine learning methods.
In addition, a method to predict second-hand product prices by using statistical-based
approaches and time series models has not been established yet. ML-based methods
address only a certain product, while no effort has been made for developing a generic
model that can predict the price for a set of different product types. Furthermore, most of
the existing second-hand price prediction methods used the textual attributes of products
and do not focus on the visual features and condition of the product. However, the price
prediction models of second-hand products should rely on product images in addition to
textual data [1].

The prices of used cars are not constant on the market, so both buyers and sellers need
an intelligent system that will enable the effective prediction of prices on the market and
the correct price according to vehicle classification. In such a system, a major limitation
is the collection of data that contain the most important elements, namely: (1) year of
car production, (2) motor type, (3) condition, (4) kilometers traveled, (5) horsepower,
(6) number of doors, and (7) mass of the car. It is clear that the price of the product is
affected by the listed features; however, unfortunately, information about these features is
not always available [20]. Since this research is primarily focused on the Croatian market,
the data were extracted from the most common seller of used vehicles, namely “Njuškalo”.
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The attributes extracted from the raw data are: manufacturer, model, year of manufacture,
kilometers traveled, and selling price [21]. It is necessary to pre-process and transform the
collected data into an appropriate format before it is directly fed into the data mining model.
As a first step, the data set was analyzed statistically in order to establish which parameters
have the greatest correlation. Features are selected and extracted using a correlation matrix.
To build an efficient model, the most relevant features were retained, namely vehicle price,
kilometers traveled, year of manufacture, and the classification variable of the vehicle
manufacturer. The goal of this paper is to predict the prices of used cars in the Republic of
Croatia using data mining techniques, collecting data from websites for the sale of used
cars, and analyzing the various aspects and factors that lead to the actual estimation of
the price of a used car. This enables consumers to check the actual value of their car—or
desired car.

2. Applied Methods of Machine Learning

The advantage of machine learning (ML) is the ability of a computer to learn without
explicit instructions using mathematical models and processed data. Artificial intelligence
is a subset of machine learning. The data are analyzed using pattern identification algo-
rithms, which are then used to create predictive models. Similar to a human, the conclusions
of machine learning enable accurate prediction with as much data and experience as possi-
ble. With machine learning, the model can adapt to situations where data are constantly
changing or coding a solution is not feasible.

Categories of machine learning [22]:

• Supervised (classification and regression);
• Unsupervised (clustering and association);
• Semi-supervised;
• Reinforcement.

Supervised and unsupervised learning are common types, while reinforcement learn-
ing is a sequential decision-making technique. To date, a computer cannot yet make a
decision without training [22]. The word "supervised" comes from the word supervisor,
which means teacher or expert. In this case, the class label will be categorized or predicted.
During the training of the algorithm, the correct answers were already marked with the
corresponding class labels. Support vector machines (SVM), random forest trees, and
decision trees are commonly used algorithms for supervised machine learning [23]. Unsu-
pervised learning occurs when the input data have no class labels. In order to classify data,
it is necessary to model the underlying structure of the data. There are two main types:
clustering and association. Well-known unsupervised algorithms are K-means clustering
and affinity propagation [24].

2.1. Data Processing

The data are collected from the retail web portal Njuskalo.hr [21]. The following
attributes are stored for each used car: manufacturer, kilometers traveled, selling vehicle
price, and year of production. Since manual data collection is a time-consuming task,
especially when there are numerous records for processes, a web scraper was created as a
part of this research to perform data mining automatically, thereby reducing data collection
time. Web scraping is a well-known technique for extracting information from a web page
and storing the data in a local file or database. Web scrapers are programmed for specific
websites and can mimic regular users and their website browsing. This research does not
include vehicles manufactured before 2010. After the raw data were collected and stored in
a local database, the following steps were implemented through this research (Figure 2).



Sustainability 2022, 14, 17034 5 of 17

Figure 2. Flow diagram of the proposed methodology.

Some vehicles are labeled “sold” and are excluded from the data set. We also excluded
ads that do not contain useful information for prediction; more precisely, if there are too
many characters in the name, it is not possible to extract the manufacturer or model of the
vehicle. Such ads affect the character length of the entire database, so they are removed.
On the other hand, these data do not significantly affect the overall result because a total of
12 examples were thrown out from the database. The next step is a graphical representation
(Figure 3) of the relationship between the price of the vehicle and the kilometers traveled in
order to identify vehicles that deviate from the limits (outliers).

Figure 3. The relationship between the price of the vehicle and the kilometers traveled.

Two outliers are visible from the graph:

- Porsche 911 GT3 4.0 manual, 510 horsepower, 2021;



Sustainability 2022, 14, 17034 6 of 17

- Mercedes-Benz C-class 180, 2011, for which the kilometers traveled, under the assump-
tion of error, were entered in the amount of over 2 million.

According to the data trained in the regression learner tool (Matlab), the results are
not correct due to the large deviation of a few outliers, and a more detailed analysis is
not possible until vehicles with a value above EUR 300,000 and 1,000,000 km traveled are
excluded. In the initial analysis, price-drop predictions occurred, and the classification
of vehicles by manufacturer is incorrect (the actual Audi class is predicted in the Aston
manufacturer class). After processing the data and removing outliers, the final number of
vehicles in the database is 4388. This data set in Table 1 was retrieved on 30 May 2022.

Table 1. Overview of data set attributes.

Attribute Min Max Average

Price [EUR] 1000 232,000 17,490.72
Km traveled 1 515,000 133,622.5

Numbers of vehicles in the data set—4388. Number of different manufacturers—44.

From Figure 4, it can be seen that the most represented vehicle manufacturers are:

1. Volkswagen;
2. BMW;
3. Audi;
4. Renault;
5. Mercedes-Benz.

Figure 4. Distribution of the number of vehicles in the data set classified by the manufacturer.

The SAS Studio (OnDemand for Academics) program was used for the analysis and
description of the variables. Figure 5 shows the percentage of vehicles from the data
set according to kilometers traveled. The highest percentage of 12.61% refers to vehicles
with kilometers traveled between 140,000 and 150,000 km. The largest number of vehicles
was produced in 2017, more precisely 13.26% of vehicles from the set. For most vehicles,
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the warranty expires after 5 years, so the sellers decide to replace the vehicle before the
warranty period expires. More than half of the used vehicles, 51.55% of them, are in the
price range of up to EUR 10,000. The normal distribution defines a probability density
function of the price for the continuous random variable. The random variables, which
follow the normal distribution, are ones whose values can assume any known value in a
given range. In that manner, kilometers traveled can predict the price range of the used
vehicle [25].

Figure 5. Distribution of the vehicle share by kilometers traveled and price.

Figure 6 shows vehicles in relation to vehicle price and kilometers traveled, classified
by the manufacturer. The shades are arranged from red representing Abarth to dark blue
representing Volvo (alphabetically).

Figure 6. Vehicle classification by the manufacturer.

2.2. Analysis of Model Residuals

Linear regression [26] is a regression model that assumes a linear relationship between
the independent variable (X) and the target class, which is the dependent variable (y). With
this model, the target class is derived from a linear combination of the input variables.
Based on the number of variables, it can be single linear regression or multiple linear
regression. Linear regression has an Equation (1) of the following form:

ŷ = a + bX (1)

where y is the predicted dependent variable, X is the independent variable, the slope of
the line is b, and a is the intercept. Residuals (errors) represent the difference between the
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predicted and actual results of the observed data set. The display of vehicle price and
kilometers traveled grouped by the manufacturer is shown by box plots in Figures 7 and 8,
and the manufacturers are selected from the average in order regarding the highest value:

- By price: BMW, Mercedes-Benz, Porsche;
- By kilometers traveled: Mercedes-Benz, BMW, Škoda, Volkswagen.

According to the number of vehicles and the price, the data according to the manu-
facturer are expected. As for the kilometers traveled, there is a special emphasis on the
manufacturer Škoda, because the vehicles maintain a constant acceptable price and their
service life exceeds the vehicles that are in the price class above (Mercedes-Benz, BMW and
Volkswagen).

Figure 7. Box plot of the vehicle price according to the manufacturer.

Figure 8. Box plot of kilometers traveled by manufacturer.
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At any time in the independent variable X, the values must be fairly close to the line
and evenly distributed with only few outliers. A histogram of the residuals (errors) in the
model can be used to check whether the values are normally distributed. If the residuals are
distributed around zero, as can be seen in Figure 9, this means that the model’s prediction is
not random [27]. Another method to check is to make a graph of the prediction in relation to
the residuals and determine whether the points are evenly distributed around the axis [28].

Figure 9. Distribution of difference between the kilometers traveled and the price of the vehicle.

In Figure 10, shades of red show the vehicle manufacturer that has the highest price
regarding the year of production and kilometers traveled. If it is distributed for each
observed year, the following manufacturers had the highest price in terms of kilometers
traveled and age:

- 2010 Volkswagen;
- 2011–2013 BMW;
- 2014 Volkswagen;
- 2015 Audi;
- 2016 Audi and Mercedes-Benz;
- 2017–2018 BMW;
- 2019 BMW, Audi, and Mercedes-Benz;
- 2020 Porsche and BMW;
- 2021 Mercedes-Benz;
- 2022 BMW (according to available data for half of the year).

The average median value of the entire set of data in paired profiles is a used vehicle
with 133,000 km traveled that is priced just under EUR 10,000. Another graphic representa-
tion that shows the distribution of model parameters is the Q-Q plot in Figure 11, and with
such representation, it can be concluded that the data do not behave according to a normal
distribution, but according to a regression model.
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Figure 10. Heatmap of all parameters grouped by manufacturer.

Figure 11. Matched values and difference of price and kilometers traveled.

2.3. Processing and Analysis of the Second Data Set

In order to show the trend of price movements, and to predict the results of the change
in the situation in the used-vehicle market, the second set of data was extracted 3 months
after the previously analyzed set. This set also does not show vehicles older than 2010, and
the number of vehicles is 4322 after removing two outliers that reach a price above EUR
232,000. Although the time gap is only 3 months, the changes in the sets are visible, so
the average price of used vehicles increased by EUR 1391 per vehicle. On the other hand,
average kilometers traveled decreased by 8060 km, which justifies the increase in prices.
The following Table 2 lists the attributes for the second set of data and compares them with
the first set. The increases are also visible in Figure 12, where the percentage of vehicles
in the lower price range is 5% lower and the distribution of kilometers traveled is skewed
towards smaller values.
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Table 2. Overview of second data set attributes.

Attribute Min Max Average

Price [EUR] 1500 232,000 18,882.5
Km traveled 1 375,000 125,562.3

Numbers of vehicles in the data set—4322.

Figure 12. Distribution of the vehicle share by kilometers traveled and price.

3. Model Prediction by Linear Regression

The behavior prediction of the variables in relation to the dependent variable of the
vehicle price is shown and trained through all regression models (train–regression—all
linear). The parameters are inserted into the regression learner model and the validation
is grouped into five classes (five-fold cross-validation). The first iteration uses the first
class (fold validation) to test the model, while the remaining classes are used to train the
model. The second iteration uses the second overlay as the test set and the remaining
classes as the training set. This process is repeated until each of the five classes is used as
a test set. This method enables the automatic learning of all regressors, and the choice of
the best solution is based on the smallest mean square error (RMSE—root mean square
error) or mean absolute error (MAE—mean absolute error) [29]. Linear regression is a
commonly used machine learning and statistical algorithm for predictive analysis. In that
way, linear regression shows the relationship between a single dependent variable and how
it changes according to multiple independent variables [30]. Decision tree is a supervised
machine learning technique that builds a regression or classification model. It uses a tree-
like structure where leaf nodes are outcomes. All other nodes except leaf nodes are called
decision nodes, where further division is performed depending on categorical questions
(true/false). The goal of a decision tree is to create a model that can be used to predict the
value of a target variable by learning simple decision rules from the loaded data. Random
forest is a learning method that uses multiple decision trees to create a classification or
regression model. A random forest consists of a large number of decision trees working
together. Each individual tree predicts the value of the target class, and their predictions
are combined to produce an even more accurate prediction. Random forest is a supervised
machine learning algorithm that can solve classification and regression problems. It is the
most widely used algorithm that comes under supervised learning, and it is based upon
the concept of ensemble learning [4]. An additional method for validating the trained
data, support vector machines (SVM), is used to predict the price of used cars with higher
accuracy than regression models, such as multiple and multivariate regression [31]. The
best R2 score and RMSE by regressors are listed in the following Table 3.
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Table 3. Regression analysis validation results.

Model R2 Value RMSE MAE

Linear regression 0.95 2104.7 1373.2
Random forest 0.24 14,627 7946.5

SVM 0.59 9173.9 5950.2

According to the trained data, Figure 13 shows the results of a significant drop in prices,
partly due to the increase in kilometers driven and the age of the vehicle. Therefore, the
response variable is the predicted vehicle price, while the explanatory variable is kilometers
traveled per observation. Predictions would be more accurate if the variables, such as drive
type, vehicle condition, horsepower, number of doors, and car weight were also included
for used vehicles. Considering the state of the market, inflation, the lack of materials for
the production of new vehicles, the reduced number of available used vehicles, and the
instability of the price of gas products, the prices of vehicles will certainly increase.

Figure 13. Prediction of vehicle price using decision tree regressors.

When it is assumed that a strong rise in prices will condition further price movements,
the actual and predicted situation can be compared if it is assumed that prices will rise
linearly in the next period, which can be seen in Figure 14.

With SVM, the predicted price for every observation has a decreasing predicted value,
which can be seen from Figure 15, where blue observations are the actual selling prices and
yellow are the predicted prices for every model of the vehicle. For further research and
newer data sets, using the variance inflation factor (VIF) is proposed, which quantifies how
much the variance is inflated due to the collinearity of regressor matrix columns. Iteration
entry in the output vector is the variance inflation factor for the i th predictor, which
indicates how much the variance of the i th predictor is inflated due to collinearity [32].
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Figure 14. The relationship between the predicted price movement and the actual price of the
vehicles.

Figure 15. Predicted vehicle prices according to the number of observations using SVM (support
vector machines).

4. Discussion

In this paper, a model was trained with two data sets of used cars for the price
prediction and classification of vehicles from the online retail web page “Njuškalo”. Various
statistical tools were used to analyze the data set, including the SAS program for parameter
explanation and correlation, and Matlab Regression Learner for training. The effectiveness
of regression analysis results always relies on the various conditions related to the nature
of the data features that we enter into the model.

Therefore, it is necessary to check in advance whether the regression assumptions are
violated before making any decision about the usefulness of the regression model. The
most common regression assumptions that are not resistant to violation are [31]:
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- No multicollinearity: predictor variables are not highly correlated with each other.
- Linearity: there must be a linear relationship between the predictor variables and the

target variable (vehicle price and kilometers traveled).
- Normality: the residuals of the model follow a normal distribution (Figure 9).
- Homoscedasticity: this assumes that the errors are constant across the values of the

independent variables (Figure 16).

Figure 16. Graph of the residuals of the data set according to the year of production and the number
of observations.

The initial results show a drop in vehicle prices with respect to the trained parameters
and a prediction accuracy of 21.9 %, which confirms other works predicting the prices of
used vehicles in European countries. It is important to note that the mentioned works and
trained data are in the period of stability of the market supply of energy products. Prediction
accuracy increases with training the model with the second data set, where price growth is
predicted by linear regression with a prediction accuracy of 95%. The proposed model was
also validated with the 5- and 10-cross-fold validation method. The experimental analysis
shows that the proposed model is incorporated as an already optimized model, and with
all the regressors used, an increase in prices and a decrease in the value of kilometers
traveled are predicted, regardless of the year of production. The average value of the data
set is a personal vehicle with 130,000 km traveled and a price of EUR 10,000. To compute
the price for vehicles, there are platforms that can compute a linear regression model
that defines a set of input variables. However, it does not give details as what features
can be used for specific types of vehicles for such predictions. In this study, important
features for predicting the price of used cars were taken into consideration when describing
the actual state of the Croatian second-hand vehicle market. The authors in [12] use the
Kaggle data set to perform the price prediction of a used car. The author evaluates the
performance of several classification methods (logistic regression, SVM, decision tree, Extra
Trees, AdaBoost, random forest) to assess the performance. Among all these models, the
random forest classifier proves to perform the best for the prediction task. This work uses
five features (brand, power, kilometer, selling Time, vehicle age) to perform the classification
task after the removal of irrelevant features and outliers from the data set, which gives an
accuracy of 83.08% on the test data. However, the difference lies in the inclusion of a few
more relevant features in the prediction model, such as the price of the car and vehicle
type. These two features play an important role in predicting the price of a used car, which
seems to be given less importance in their research. In addition to this, the range of features,
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including year of registration, power, and price, seems to be narrowed down, meaning
the test data set gives less accuracy. Therefore, the item quality score and the forecasted
minimum and maximum prices are combined to provide the item’s final predicted price.
Using a data set taken from a website for second-hand vehicles, the proposed method of
combining the predicted car quality score with the forecasted minimum and maximum
price outperforms the other models in all of the used accuracy metrics with a significant
performance gap.

5. Conclusions

The price prediction of second-hand items has not been widely addressed, which was
the main motivation for this research, as various sellers generate the price of the vehicle
mainly by the manufacturer brand. Only a few studies have addressed the price prediction
of used products in a specific domain, specifically, the price prediction of second-hand
cars [1,12]. In this paper, the proposed approach uses exploratory data analysis along with
features extracted from actual and historical attributes to predict the future behavior of the
used-cars market. The prediction model uses supervised machine learning techniques and
validation methods regarding statistical outputs.

To summarize,

• Data were collected from an online seller of used cars and important features were
identified that reflect the price;

• Non-available values and entries were removed, and we discarded features not rele-
vant for the prediction of the price;

• Supervised ML techniques applied in first data set and validation was compared with
the price prediction outputs of the second data set regarding important features;

• The predicted model has the highest accuracy with linear regression where main
features (price and model) are available.

This is performed by considering different types of vehicles, their usage condition,
and prices. Furthermore, different techniques for numeric data pre-processing as well as
text analysis for handling the unstructured data are considered. The competitive advantage
of second-hand market trend prediction achieved by data mining and analysis includes the
optimal price for the vehicle observations, avoiding misclassification and risks along with
improving the customer’s awareness of the market, leading to accurate buying decisions.
Future research will apply additional data sets extracted over the next two quarters, using
data mining, machine learning techniques, and model validation with different methods for
optimization. For this, it is necessary to extract additional variables related to the condition
of the vehicle and the drive type. The increased interest in used vehicles can change the
perception of vehicle valuation and price prediction; furthermore, the application machine
learning methods have a great influence for various applications. Likewise, one of the
important aspects of car ownership is the shift of the automotive industry toward electric
vehicle (EV) production. The automotive sector is the main employer in Europe, directly
employing more than 2.8 million people. However, little is known about the effects that
this structural transformation of the automotive industry will have on vehicle markets and
the labor market, especially in the area of information and communication technology. The
growing influence of the electric vehicle market is also present on Njuškalo webpage, where
in the first set of data there are over 1100 such passenger vehicles, and after a three-month
period, that number is 317 available electric vehicles for sale, which shows the expanding
amount of sold EVs. A framework for analyzing vehicle market trends using digital data
needs to be developed and applied to the case of the electric vehicle industry because of
the different features that generate the price, which is initially higher than for conventional
vehicles. Furthermore, the locations and number of available charging stations in Croatia
are currently limited.
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Acknowledgments: Special thanks to Jure Aleksić for their assistance in data acquisition and technical
support in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VRA Vehicle Remarketing Association
CNN Convolutional Neural Network
SVR Support Vector Regressor
NN Neural Network
ANN Artificial Neural Networks
FLS Fuzzy Logic Systems
EA Evolutionary Algorithms
BPNN Back-Propagation Neural Network
ANFIS Adaptive Neuro-Fuzzy Inference System
ML Machine Learning
SVM Support Vector Machines
RMSE Root Mean Square Error
MAE Mean Absolute Error
EV Electric Vehicles

References
1. Fathalla, A.; Salah, A.; Li, K.; Li, K.; Francesco, P. Deep end-to-end learning for price prediction of second-hand items.

Knowl. Inf. Syst. 2020, 62, 4541–4568. [CrossRef]
2. de Prez, M. Used car market to soften in second-half of 2022. General News, 31 May 2022.
3. Statistics. Vehicle Center Croatia. Centar za vozila Hrvatske—Statistika, 2022. Available online: https://cvh.hr/gradani/tehnicki-

pregled/statistika/ (accessed on 30 May 2022).
4. Noor, K.; Jan, S. Vehicle Price Prediction System using Machine Learning Techniques. Int. J. Comput. Appl. 2017, 167, 27–31.

[CrossRef]
5. Yang, R.R.; Chen, S.; Chou, E. AI Blue Book: Vehicle Price Prediction Using Visual Features. arXiv 2018, arXiv:1803.11227.
6. Khedr, A.E.; S.E.Salama.; Yaseen, N. Predicting Stock Market Behavior using Data Mining Technique and News Sentiment

Analysis. Int. J. Intell. Syst. Appl. 2017, 9, 22–30. [CrossRef]
7. Shastri, M.; Roy, S.; Mittal, M. Stock Price Prediction using Artificial Neural Model: An Application of Big Data. ICST Trans.

Scalable Inf. Syst. 2018, 19, 156085. [CrossRef]
8. Kalaiselvi, N.; Aravind, K.; Balaguru, S.; Vijayaragul, V. Retail price analytics using backpropogation neural network and

sentimental analysis. In Proceedings of the 2017 Fourth International Conference on Signal Processing, Communication and
Networking (ICSCN), Chennai, India, 16–18 March 2017; pp. 1–6.

9. Ahmed, E.; Moustafa, M. House price estimation from visual and textual features. 2016, arXiv:1609.08399 .
10. Naumov, V.; Banet, K. Using Clustering Algorithms to Identify Recreational Trips within a Bike-Sharing System. In Reliability and

Statistics in Transportation and Communication; Springer: Cham, Switzerland, 2020. [CrossRef]
11. Banet, K.; Naumov, V.; Kucharski, R. Using city-bike stopovers to reveal spatial patterns of urban attractiveness. Curr. Issues Tour.

2022, 25, 2887–2904. [CrossRef]
12. Pal, N.; Arora, P.; Sundararaman, D.; Kohli, P.; Palakurthy, S.S. How much is my car worth? A methodology for predicting used

cars prices using Random Forest. arXiv 2017, arXiv:1711.06970.
13. Chen, C.; Hao, L.; Xu, C. Comparative analysis of used car price evaluation models. AIP Conf. Proc. 2017, 1839, 020165. [CrossRef]
14. Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping

using optimized PSO-ANN technique. Eng. Comput. 2019, 35, 967–984. [CrossRef]

https://github.com/Bookwa/Used_Vehicles_HR
https://github.com/Bookwa/Used_Vehicles_HR
http://doi.org/10.1007/s10115-020-01495-8
https://cvh.hr/gradani/tehnicki-pregled/statistika/
https://cvh.hr/gradani/tehnicki-pregled/statistika/
http://dx.doi.org/10.5120/ijca2017914373
http://dx.doi.org/10.5815/ijisa.2017.07.03
http://dx.doi.org/10.4108/eai.19-12-2018.156085
http://dx.doi.org/10.1007/978-3-030-44610-9_14
http://dx.doi.org/10.1080/13683500.2021.2011841
http://dx.doi.org/10.1063/1.4982530
http://dx.doi.org/10.1007/s00366-018-0644-0


Sustainability 2022, 14, 17034 17 of 17

15. Nilashi, M.; Cavallaro, F.; Mardani, A.; Zavadskas, E.; Samad, S.; Ibrahim, O. Measuring Country Sustainability Performance
Using Ensembles of Neuro-Fuzzy Technique. Sustainability 2018, 10, 2707. [CrossRef]
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