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Abstract: With the development of wind resources under flat terrain, wind farms in extreme wind
conditions are developed, and the size of the WT’s rigid-flexible coupling components increases.
Therefore, accurately understanding the load characteristics and transmission mechanism of each
component plays an important scientific role in improving the reliability of WT (WT) design and
operation. Through the collation and analysis of the literature, this review summarizes the research
results of large-scale WT load under source–grid coupling. According to the classification of sources,
the variation characteristics of different loads are analyzed, and different research methods for differ-
ent loads are summarized. In addition, the relative merits of the existing improvement schemes are
analyzed, and the existing problems are pointed out. Finally, a new research idea of ‘comprehensively
considering the coupling effects of source and network factors, revealing WT load characteristics and
transmission mechanism’ is summarized. This paper provides important implications for the safety
design and reliable operation research of large WTs with complex terrain.

Keywords: wind WT; load characteristics; complex wind conditions; power grid; multi-factor
coupling; complex terrain

1. Introduction
1.1. Research Background

Renewable energy continued to grow strongly and, of which, wind recorded its
biggest annual increase ever, with 93.6 GW of new wind capacity installed worldwide [1].
837 GW of WT capacity was installed worldwide, and the world wind capacity was
1,532,000 GWh in the year, with global installed wind capacity almost quadrupling from a
decade ago [2,3]. With the falling price of wind power generation equipment, the large scale
of WTs is beneficial to the rise in efficiency of wind energy conversion [4]. Flat terrain with
abundant wind resources is an ideal site for wind farm exploration [5], which has relatively
simple flow field distribution and stable wind speed and, therefore, the power generation
and load of WTs are stable and balanced. However, the ideal area is limited [6]. With the
increasing demand for clean energy, the development of wind resources and wind farm
exploitation gradually turns to offshore and complex terrain [7]. Most complex terrains,
such as mountains and hills, are also rich in wind resources. However, in fact, the wind
profiles of these terrains are more complex, which results in complicated and changeable
load characteristics of WTs and, meanwhile, the increased size of the WT exacerbates the
dynamic load characteristics with the rigid-flexible coupling. Some WTs in complex terrain
are faced with extreme wind conditions, resulting in large differences in power output and
load characters compared to WTs on flat terrain. Simultaneously, due to the increase in
tower height, rotor diameter, and the expansion of sweep area, the load on WTs is also
larger and more complex, which will directly affect the operating life and the smoothness
of the power output [8].
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With the enlarged capacity of the large wind farms connected to the grid side, WTs
in wind farms also suffering from the effects come from the grid side. For example, the
voltage drop of the power grid causes the electromagnetic torque at the generator to
fluctuate violently, resulting in dynamic load. The dynamic load is transmitted forward
through the transmission system and then affects some positions of WT, such as the spindle
and blades [8,9], resulting in additional torque or stress on the transmission system. The
simulation result of Marcus et al. shows this phenomenon—that the generator torque
shows higher dynamic behavior, and the load on the gearbox increases [8].

For a WT operating on a large scale wind farm in complex terrain, the working
conditions of WTs are complicated, which is shown in Figure 1.
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Figure 1. Working conditions for WT on a large-scale wind farm under complex terrain.

As indicated in Figure 1, a wind power generation system is complex, including the
wind source, the neighboring WTs, and the grid side [10]. In the power transfer chain of
‘the wind source—rotor of WT—drive system—generator—grid side’, the load of the power
transfer chain is complicated, which need to be evaluated accurately. In the non-uniform
flow field, the aerodynamic torque generated from the interaction of the rotor and wind
is transmitted backwards through the hub spindle [11], while the electromagnetic torque
of the generator affected by the transmission system would transmit forward through the
transmission system caused by the impact of the grid side. The coupling effects of the double
variable excitation from both the wind source and gird increases the complexity of the load
characteristics of the WT and the degree of non-linearity in the transmission process.

Accurate evaluation of wind resource distribution and WT load characteristics in
complex terrain is one of the key technologies for developing wind farms in complex
terrain, which is highly related to the power efficiency and WTs’ reliability. Research with
different study objects and parameters related to the WT’s load was conducted.

1.2. Literature Review
1.2.1. Literature Review of the Source Side

For the wind source side, as shown in Figure 1, the flow field in front of the WT
is affected by wind shear [12], turbulence [13], wake flow [14], terrain [5], atmosphere
mixed [15], etc. Wind shear affects the WT’s power loss, the wake variation, as well as the
load and service life. Kretschmer et al. [12] noted that the fatigue load on the bending of
root blades was affected by wind shear during stable wind conditions, but it was more
affected by turbulence during unstable or neutral wind conditions. Turbulence intensity
is the main factor influencing the fatigue load of WTs. Higher turbulence intensity and
greater turbulence fluctuation will lead to higher fatigue load [13]. In addition, the higher
the height, the greater the wind speed. The size and single WT rated capacity of horizontal
axis WT also increase [15].

The increase in WT rotor diameter and hub height will also increase the influence of
flow structure in boundary layer [16], which has higher turbulence intensity. Turbulence
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and the random wind load are also affected by the wake of other WTs [17]. As indicated
in Figure 2, the WT’s wake can be separated in the near wake region and the far wake
region [17]. The near wake region is characterized by double-Gaussian velocity deficit
and strong shear [18], while the far wake region is characterized by Gaussian velocity
deficit and Gaussian-shaped shear [19]. With the continuous mixing of high velocity
atmosphere outside the wake region, the wake velocity increases with the flow direction
until the recovery of incoming flow state [20]. The distance between WTs should be selected
according to the characteristics of each zone so as to minimize the interaction between WTs.
Moreover, the vibration state of the transmission system and gearbox of WT in complex
terrain is greatly related to the coupling effect of terrain and wake [21]. The failure rate
of aerodynamic components and the transmission system of WT remains high [22]. A
probability density function operated in sites with a complex terrain of model WT, which
manifested that the WTs need better control systems and robust structures to reduce failure
rate [13]. The aforementioned studies present examples for the influences on the WT’s
load coming from the single parameters of wind resources listed in Figure 1. However,
the coupling of two or more factors would lead to more complex WT load characteristics,
especially with the temporal and frequency variation of the WT’s powering conditioning
system been considered. To study the load characteristics and transmission process of
WT under dual source–grid variable excitation in complex terrain more accurately, more
comprehensive and accurate ‘source’ side flow field boundary conditions, such as the
comprehensive consideration of the above five incoming conditions, are essential [23,24].
Meanwhile, the research of load characteristics excited on the grid side is in progress.
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Figure 2. Wake structure and partition behind single WT.

1.2.2. Literature Review of the Grid Side

For the grid side, WT is a complex mechanical and electrical system integrating
machinery, electronics, and electricity. Their operating characteristics are closely related
to the characteristics of the power grid. With the increasing installed capacity of clean
energy in the power generation system, the electric power generated by WTs with the
intermittence, fluctuation, and characteristics of randomness will have an adverse impact
on the safe and stable operation and dispatching of power grid [25]. Moreover, whether the
wind power can be connected to the power grid smoothly after large-scale development
also depends on whether the power system has sufficient peak shaving capacity [26].
The moment carrying capacity of the WT’s tower would be dramatically reduced during
extreme wind conditions [27,28]. The failure of the grid side not only affects the torsional
load of transmission system, but also affects the mechanical dynamic load of other coupling
components, such as blades and towers [29]. Voltage drop will directly act on the generator
terminal voltage, leading to a significant increase in voltage and current in the rotor
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circuit, causing WT speed mutation and the electromagnetic torque of the generator drastic
fluctuations [30], thus making impacts on the drive system. During the voltage drop,
the output power of the WT will be unbalanced, which will also produce additional
torque or stress on the transmission system [31]. With the large-scale development of
WTs in complex terrain and the increasing requirements of wind–grid connection, WT
load characteristics under dual source–grid variable excitation in complex terrain become
more complicated. Therefore, comprehensive summaries and analysis of the large-scale
WT’s load characteristics excited under multifactor coupling the wind and grid in complex
terrain play a critical scientific role in providing adequate information to researchers in
related fields, which helps the development of this topic and, furthermore, improves the
reliability of WT design and operation and also promotes the efficient and safe application
of wind energy.

1.3. Innovation Points and Paper Structure

The innovation points of this paper are, therefore, as follows: (a) state-of-art research
on large-scale WT’s load characteristics are reviewed. (b) The influencing parameters,
such as wind and grid, are concluded. (c) The types and transmission process of load are
summarized. (d) The normal research methods on this topic were studied. (e) A novel
research method for WT’s load characters of dual source–grid excitation is extracted.

The structure of this review is as follows: firstly, the load excitation of source side
is summarized in Section 2. Closely followed, the load excitation of the grid side is
summarized in Section 3. Besides, the multi-factor coupling of WTs is introduced in
Section 4. Discussion and conclusions are presented in the last section.

2. WT’s Load Excitation of the Source Side
2.1. Research Status of Source Side Load

There are many studies on the load characteristics of WT under single wind condition
on the “source” side, and there are also studies involved in the study of WT load caused
by the grid impact on the “grid” side. Unfortunately, the WT load characteristics based
on flow field characteristics of complex terrain and its transfer mechanism under the cou-
pling of dual source–grid variable excitation have not been revealed. Simultaneously, the
bidirectional transfer law of dual excitation in the energy chain of the rotor–transmission
system–generator–grid is ambiguous. Meanwhile, there were many research achievements
on load characteristics of WTs considering only source side, the grid side, or complex
terrain [32]. Nevertheless, the existing research cannot take a more global approach to
comprehensively introduce these problems. Most studies only consider the effect of a single
factor, but the WT operating in complex terrain is affected by dual source–grid variable exci-
tation and transference. With the development of wind farms and the increasing flexibility
of WTs in complex terrain, the research on load characteristics and transfer mechanism
of WTs in heterogeneous flow field needs to be further studied [33]. In particular, rotor
torque and tangential force as intermediate parameters of rotor load transfer backwards,
and excitation variation characteristics pose a severe challenge to the performance of trans-
mission system. Coupled with the increasing requirements of the wind–grid connection,
accurate understanding of load characteristics and the transmission mechanism of each
component play a significant part in improving the reliability of WT design and operation.
It is requisite to deeply deliberate on the load characteristics of WT under dual source–grid
variable excitation in complex terrain.

Therefore, to review the large-scale WT’s load characteristics excited by the wind and
grid under multifactor coupling in complex terrain plays a scientific part in improving the
design and operation of WT reliability. Detailed analysis and conclusions of research on
the WT’s load characters come from the wind source and are presented below.

The flow field is mostly regarded as quasi-steady [34]. At present, the research on load
excitation of large-scale WT includes shear wind, turbulent wind, wind speed disturbance,
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yaw wind, yaw shear wind, crosswind, and wake [35–37]. The commonly used research
methods are numerical calculation and experiments of wind tunnels and wind farms [38].

As shown in the Figure 3a, the evolution of offshore WT size is moving towards the
large-scale. As shown in Figure 3b, the average single capacity of newly installed WTs
in China has continued to increase over the years. The large-scale WT is conducive to
reducing the cost per kilowatt hour. However, with the increased size of WT such as rotor
diameter and tower height, the research based on steady flow is also emerging.
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According to different research positions, load characteristics focus on blade and wind
rotor, wind rotor and tower rigid-flexible coupling system, transmission system, as well as
the whole WT. Wind farms in extreme wind conditions are being developed [4]. However,
extreme wind conditions pose a significant threat to the structural integrity of large WTs.
WTs are required to withstand multiple and intense load [41], and the load of standing
and random wind may cause colossal damage to internal gear transmission system and
the blade [42]. The variation of blade vibration increases with the increase in load WT.
The general characteristics of blade vibration change increase with the increase in voltage
drop amplitude [43]. All these put forward new requirements for the stable operation and
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security of WTs. How to ensure the structural strength reliably and economically is one
of the key technical problems to be solved for the development of WTs on a larger scale.
Researchers at home and abroad have been exploring and researching constantly in this
field. Therefore, they have made plenty of significant studies and valuable achievements.
KC et al. [13] established small WT simulation and concluded that WTs operating in the
complex environment more possibly have more extreme events caused from larger load
fluctuations. In KC experiments, adding a normal turbulence model and ground roughness
to flat terrain becomes complex terrain. Furthermore, scholars also add slope as a feature
of complex terrain. As the output power of the WT increases, the structure size increases.
The structural flexibility of WT rotor blades, support towers, and other elastic components
increases, and the dynamic interaction between elastomers may be significant [44,45]. To
quantify this interaction, Tien et al. [46] built a test rig to conduct ultimate load tests, which
exposed blades to high-intensity cycles to simulate the 20-year life expectancy of WTs.
Concurrently, the load of WT can be reflected by deflection, such as the deflection of blades,
which reflects the linear distribution of the span of the aerodynamic load [47].

In order to measure the blade deflection accurately, Yongfeng et al. [48] has set up
an effective spatial displacement measurement mathematical model on the basis of the
geometric transformation method, which can calculate simultaneously the accurate deflec-
tion change in three directions. Cazzulani, G et al. [49] monitored the load of WT blade
model based on optic fiber sensor. This method can obtain the estimated value of wind
load in wind tunnel experiments, thus allowing the optimization of WT control system.
Ekry et al. [50] established a WT magnetic levitation system for WT for aeroelastic numer-
ical simulation, which is helpful to reduce WT’s load came from vibrations. In order to
reduce the operating cost and improve the reliability of WT operation, a load monitoring
system consisting of inertial measurement WT is proposed by Wiens et al. [51] to track
blade motion at full operation and estimate load. By extracting the ultimate working load to
analyze the ultimate strength of WT hub, Zhao et al. [52] researched the sensitivity analysis
of the hub’s ultimate strength to the mutative load, which provides instructed recommen-
dations for lightweight design and strength safety assessment of the hub. In general, the
larger the WT, the more complex the wind conditions and the load characteristics.

Main Sources and Influencing Factors of WT Load

The aerodynamic force acting on the rotor is the main power source of the WT, and it is
also the main load source of each component. In addition to aerodynamic load, the other
main loads received by WT blades in the operating process of the WT are gravity load and
inertial load. The wind power generation system is a complex cycle of strong nonlinear,
strong coupling, and time-varying multi-body system factors. The load characteristic is
very complex. Excessive load can lead to strong vibration of the WT. In addition, excessive
noise [53] will also cause mechanical fatigue damage to components. At the same time, WTs
will affect the machine running performance, which will be serious when they act on parts
due to fatigue and fracture. On the other hand, the vibration of mechanical parts will also
cause the fluctuation of output power and reduce the output power quality of the WTs [54].

WT load is varied in form and complex in source. As in Figure 4, according to the
time-varying characteristics of load, it can be divided into five types, namely, stable load,
cyclic load, random load, transient load, and resonant excitation load [55]. In the design
of WT parts, two loads should be considered: fatigue load and ultimate load [56]. Load
can also be classified by source into gravity, inertial, and aerodynamic load, operational
load, and other load. The most important are the first three types [57]. These loads have
different properties and can be divided into periodic load, static load, steady load, pulse
load, transient load, resonant induced load, and random load.
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Considering the dynamic characteristics of the upper drive system, tower, and cou-
pling, the dynamic load is more complicated. The size and characteristics of the rigid-
flexible coupling components of the WT increase, which makes the load more complex.
Contrasted with the conventional linear dynamic model, the rigid-flexible coupling effects
of WTs is considered in the non-linear coupling dynamic model [58]. Therefore, vibration
and deformation are considered, and they are more in line with the engineering reality.
Most of the studies on the flow field changes of complex terrain under the coupling effects
of the above-mentioned are considered at the level of qualitative analysis. However, the
non-linear coupling relationship needs further quantitative research.

Uncertainty of wind–climate parameters affects the WT fatigue load [59]. Excessive
wind load may lead to the damage of WT transmission chain components and brake system
and generator bearings. In addition, abrupt changes in grid dispatching may lead to WT
flying accidents, and the accident may lead to blade fracture or WT tower collapse [60].
When the wind speed is larger than the tolerance limit, the WT will often respond to
extreme wind conditions by full feathering or even shutting down. WT influences flow
field through the rotor and near wake. However, the load influencing depends on the
frequency characteristics of the grid to a certain extent. Wind farms in extreme wind
conditions and complex terrain are developed. The load influencing factors and cases are
very important in improving the reliability of WT [61].

IEC 61400-1, the WT design specification, as a standard, defines a set of load design
conditions suitable for the design and analysis of onshore WTs, which can basically classify
and describe the conditions. By subdividing wind speed, abnormal or normal, transport,
partial fatigue safety, ultimate strength, global positioning, and other factors can influence
the operation result. The standard describes the load design conditions and has great
versatility [62].

Studies on the main sources and influencing factors of WT are extensive. In particular,
most scholars regard fatigue and aerodynamics as the most complex and related to power
output and WT safety, so the current research focuses on the two important parts of fatigue
load and aerodynamics load [63,64].

2.2. WT Fatigue Load Caused by Source Side Excitation

Cyclic force is a cause of fatigue failure. Each rotation of the WT generates forces
that is in complete opposition to the gravity of the low-speed axis and blade, as well as
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cyclic load outside the plane of the rotor caused by wind shear, turbulence, yaw error,
and shaft tilt. Although the peak value of cyclic load is far less than the safety load, the
damage caused by fatigue load cannot be ignored [63]. Severe fatigue failure may result in
catastrophic and irreparable damage [65]. Therefore, the design of many WT components,
such as gearboxes [66], depends on fatigue load. However, the fatigue analysis of WT
cannot be carried out by using simple symmetric cyclic load, but it should consider various
effects comprehensively. The unstable conditions, such as sudden changes of incoming
flow, correspond to greater turbulent fluctuations and higher turbulence intensities, which
also lead to further fatigue load [67].

To calculate the fatigue load of WT [68], finite element analysis software was used to
determine the fatigue load and observe the parts of the blade that are easily damaged [69].
Combined with material cycle life and blade load spectrum corresponding to the S–N curve,
the Palmgren-Miner linear fatigue accumulation damage theory and Rain flow counting
method were applied [70]. Besides, the WT load analysis software GH Bladed was used to
select the turbulent model of anisotropy to simulate the fatigue condition, and the blade
fatigue load was obtained through dynamic simulation. It is also an efficient method to
substitute the fatigue damage surveyed into the probability density evolution equation
to calculate the fatigue damage probability density by Rain flow counting method [71].
In addition, Table 1 shows the summary of scholars’ research and main contributions to
fatigue load in chronological order.

The large capacity WT impeller will rotate 108 times in its 20-year life, ordinarily on
complex terrain. Usually, the stress value of N = 108 cycles is taken as the material fatigue
limit. The WT blade is made of fiberglass composite material. The fatigue curve of fiberglass
composite material is an approximately straight line with regards to coordinates, and there
is no obvious fatigue limit. Aerodynamic force, inertia force, gravity of blades, and the
tower will produce coupled vibration, bearing combined load, longitudinal, transverse,
and shear strains in different areas of the blade and under different load conditions [72].
Fatigue failure produced by these forces and strains is one of the main forms of WT blade
failure, and fatigue failure often occurs at the blade root. It has actual design needs to
establish a reliable wind speed model to estimate the fatigue load of blade root and provide
a simple and reliable design method. In the process of WT operation, once the blades fail
and fracture, the whole generator will be destroyed [72]. Coupled with the large-scale
development of wind farms under extreme conditions, the constant change of wind speed
and direction leads to the constant change of the mean and amplitude of fatigue load
of WTs [73,74], and the fatigue resistance of blades becomes particularly important [75].
Ensure that the structural strength exceeds the stress caused by the applied fatigue load, so
that the blade in the life cycle of safe operation [76].

Table 1. Information obtained of research on fatigue load.

Researchers Year Object Analytical Method Consideration Main Contribution

Pehlivan [77] 2021
Main load-bearing

frame of a
500 kW WT

Conducted stress
analysis with finite

element method

Fatigue life design,
manufacturing, and

implementation process

Determined the fatigue
and ultimate load of the

main load-bearing
frame.

Jian [78] 2021 Blades, hub, and
tower of 1.5 MW WT

Rain-flow counting
method and

data-driven method

Impact of the grid side
and the damage

equivalent load datasets

Put forward a
data-driven method for

fatigue load under
active power regulation

Tian [67] 2018 A stationary and
rotating model WT

Simulated the change
of dynamic wind load
under wind tunnel test

conditions

In the neutral
atmospheric boundary

layer

Turbulence intensity
dominated the fatigue

load of WT.
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Table 1. Cont.

Researchers Year Object Analytical Method Consideration Main Contribution

Toft [59] 2016

A framework
considering the
uncertainty of
fatigue load is

proposed

Structured a
probabilistic

framework for the
reliability level of

fatigue load
assessment

Speed-up factors, local
wind measurements,
and distance between

the WT and the
measuring position

In the structural
reliability analyses,
uncertainty of wind
climate parameters

produced fatigue load
usually accounts for

10–30%

Nejad [79] 2015
Multiple

transmission system
of 5 MW WT

Comparing the fatigue
damage

Onshore WT or
offshore WT

The main bearing carries
axial fatigue load that

supports more damage
in floating than

onshore WT.

Vassilopoulos
[80] 2010 Blades of modern

WTs

Fatigue load
prediction, random

nature of the applied
load

Random nature of the
applied loading patterns,

various material
properties

Developed reliable
fatigue damage progress
models and exploration

of fatigue failure by
stochastic simulation

Kong [81] 2005
A 750 KW class

horizontal axis WT
system

Design and strength
verification

Load cases specified at
the GL regulations and

international
specification

Designed a structure of
medium scale composite

WT blades made by
E-glass/epoxy

2.3. WT Aerodynamic e Load Caused by Source Side Excitation

Aerodynamic load, produced by air flow and its interaction with blades and towers, is
the source of almost all load and the most important part on WT [82]. The load influenced
by the wind conditions of the rotor, the structural and aerodynamic characteristics of the
WT, the operating conditions and other factors. In the ideal process of rotation, the plane
is subjected to periodic and volatile aerodynamic load. However, affected by turbulence
caused by wind shear and wake, the aerodynamic load felt by the rotor varies with time
and space [82]. The asymmetry of incoming wind by wind shear makes the rotor subjected
to unbalanced aerodynamic load and the interaction between the rotor rotating surface
and the wake makes the aerodynamic force of the rotor more complicated. In the interior
of complex terrain, the turbulence intensity in the fan zone of wake caused by the wake
effect is coupled with the complex atmospheric environment, and the aerodynamic load
distribution of WTs in the downstream becomes more complex [14]. WTs affect the flow
field through the rotor and near wake. Turbulence will increase the aerodynamic load of
local blades and the holistic load of rotor, and the fluctuating transmission of WT load will
cause periodic exciting force to other components [83]. The coupling of these factors also
makes the overall load of WT more complicated.

Under unsteady aerodynamic load in the actual wind field, because of the blade flexi-
bility and extreme aerodynamic load, in some cases, WT will generate acoustic noise [84],
and the blade will even incur large deformation. On the basis of normal vertical wind
shear, extreme wind shear can cause changes in wind speed at different points in the rotor
plane, usually leading to maximum load on blade section and extreme deformation of
blade tip. Aerodynamic models of the full geometry of WTs are needed to optimize its
aerodynamic characteristics.

2.3.1. Study Models for Aerodynamic Problems Study Methods

The aeroelastic response of a WT is calculated using models that increase its complexity
and fidelity [85]. To clarify the effect of flow conditions on WT flow field characteristics
and aerodynamic load of WT, the accuracy of the numerical calculation model and method
needs to be verified [86]. The mathematical model of complex terrain flow field coupling
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atmospheric environment, terrain factors, and WT operation conditions needs to be paid
attention to. The WT aerodynamic calculation model can be divided into the following three
types: the computational fluid dynamics (CFD) model, the blade element and momentum
(BEM) model, and the free vortex wake (FVW) model [87].

Due to the complexity and calculation amount of CFD, analysis can give detailed
information about the three-dimensional flow field and aerodynamic performance of the
WT [88]. However, because the multi-scale nature of the flow field needs to be considered
in the three-dimensional CFD analysis of the WT, it has a large amount of calculation.
Although BEM analysis is fast in computation, it needs a lot of operation experience to be
modified [89,90]. In addition, the CFD model has preferred flexibility in the blade shape
and rotation, as well as in the presence of the tower and nacelle [91].

The blade element momentum method (BEM), which combines the momentum theory
and blade element theory and considers the effects of tip loss, stall correction, cascade
effect, clearance correction and yaw angle [91], can correctly calculate the aerodynamic
performance of the rotor [92], so it has been widely used in WT design and aerodynamic
calculation. In addition, the structural parameters of wind shear, yaw, rotor, and WT
installation parameters are also considered. Under dynamic conditions, particularly, the
dynamic inflow and dynamic stall must be considered [93].

CFD analysis and BEM analysis are used to study aerodynamic problems together.
Bangga et al. [94] evaluated the ability of CFD and BEM analysis to predict blade load of
2.3 MW WTs, and the results showed that the CFD and BEM analyses were in acceptable
agreement with the experimental data, not only based on average load level, but also
in terms of load fluctuation. The difference between the simulated data of CFD and
BEM analysis and the measured wind shear and turbulence is less than 10%. Another
aerodynamic simulation was accomplished using CFD model based on the finite volume
method. Abbaspour et al. [95] indicated that the CFD model can predict the exact geometry
with a high precision. Gao et al. [82] analyzed the load of a large capacity WT based on
the BEM model, which can help to evaluate the range of turbulence scales that can affect
the performance of WT. The aeroelastic response of a 2 MW WT with a rotor diameter of
80 m and interaction phenomena was considered by the use of an accurate unsteady fluid–
structure interaction coupling, wherein the BEM model displays, in general, an excellent
agreement with CFD model in obtaining the average quantities [85]. It can be seen that
the BEM models were used for preliminary estimation, and then the WTs’ design was
optimized and completed by the detailed simulation of the CFD model [89].

The free vortex wake (FVW) model simulated the attached vorticity of blades in
the three-dimensional flow field as concentrated linear vorticity and surface vorticity,
and combined with the trailing vortex model, the aerodynamic performance of WTs
was analyzed [96]. The three-dimensional flow field information on the blade surface
can be calculated, and more importantly, the model does not need too long of a calcu-
lation time [64]. To a large extent, the three-dimensional flow field calculation of WTs
is simplified, and the computational efficiency of aerodynamic performance of WTs is
improved [97]. However, due to the simplification of the CFD/BEM model, the distribution
of load on blade surface and the development characteristics of wake are difficult with
regards to accurately calculating and characterizing the three-dimensional surface element
model of the vortex method. By comparison, the FVW method can obtain satisfactory
unsteady aerodynamic load while the amount of calculation is appropriate. Therefore, the
FVW method is adopted for contemporary simulations on WT aeroelastic performances.
Tang et al. [63] coupled the FVW with the multi-body dynamic method to establish a fast
aeroelastic method. Besides, The FVW code wake-induced dynamics simulator is often
used to predict the aerodynamic load and wake evolution of offshore floating WTs [98].

The advantage and disadvantage of the three models is compared in Table 2.
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Table 2. Comparison of the advantages and disadvantages of the CFD, BEM, and FVW models.

Model Classification Point

CFD
Advantage

1. Give detailed information about the three-dimensional flow field and aerodynamic
performance of the WT [88].

2. Better flexibility in the blade shape and rotation or the presence of the tower
and nacelle [91].

Disadvantage
1. Having a large amount of calculation.
2. Needing a lot of operation experience to modify it [89,90].

BEM

Advantage

1. Calculating the aerodynamic performance accurately of the rotor [92].
2. Considering the influence of many factors, such as stall correction, tip loss, cascade effect,

clearance correction, and yaw angle [99].
3. The computation is low.

Disadvantage

1. Oversimplification leads to an inability to effectively fit the actual situation [89].
2. Under dynamic conditions, the dynamic inflow and dynamic stall must

be considered [93,94].
3. The blade load cannot be calculated effectively when the wind is not uniform or the pitch

angle is not the same in the plane of the rotor.

FVW
Advantage

1. Could obtain satisfactory unsteady aerodynamic load while the amount of calculation is
appropriate. WT aerodynamic performance calculation efficiency is high [100].

2. Appropriate simplification allows FVW to fit the actual situation [97].
Disadvantage 1. Mainly for the aerodynamic performance of WTs, poor treatment for other aspects [101].

The simulation results obtained by the above research methods are usually verified by
wind tunnel and wind field experiments [102]. Table 3 shows a summary of key information
in chronological order obtained by experimental research by wind tunnel and field. The
experimental data are compared with the simulated data to verify the correctness of the
proposed theory.

Table 3. Experimental research by wind tunnel and wind field.

Researchers Year Experimental Type Research Purpose Main Contribution

Florian [103] 2022 Wind tunnel
experiment

To demand well defined
closed-loop dynamics to

withstand cumulative load
over the whole lifetime

Used viewer design and a
linear-matrix-inequalities-based
control to run a variable-pitch,

variable-speed WT in a wind tunnel
experiment at repeatable various
inflow terms while relying on a

derived wind speed estimate

Chenzhi Qu [104] 2022 Wind field experiment To determine the direction and
value of yaw misalignment

A data-driven calibration method is
established and verified

in the experiment

Fontanes [105] 2021 Wind field and
laboratory experiment

Examined the electrostatic
polarization of electrically

isolated WT blades under the
effect of fair-weather

electric fields

When the blade is immersed in a
strong electric field, the charge control

system neutralizes the potential
gradient at the root of the blade

Kan [106] 2020 Wind field experiment

To obtain the parameter
concerning the potential power

output of a WT and a wind
farm comprised of a specified

number of WTs before
installing the WTs

The theoretical distribution of whole
farm power is obtained by considering

the correlation between the wind
speed and WT availability
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Table 3. Cont.

Researchers Year Experimental Type Research Purpose Main Contribution

Wei Tian [67] 2019 Wind tunnel
experiment

Dynamic wind load acting in
the atmospheric boundary

layer is investigated

More than 90% of the mean and
fatigue wind load are caused by the

rotating rotor of WT

Qing’an Li [107] 2017 Wind field experiment
Study the effects of wind shear

and turbulence intensity on
WT wake characteristics

As the turbulence intensity increases,
the maximum velocity deficit in the
wake decreases. Meanwhile, as the

wind shear index increases, the
maximum velocity deficit in the

wake increases

Arslan Salim [108] 2017 Wind tunnel
experiment

The wake behind a WT
positioned on an escarpment is
studied in wind tunnel using
particle-image velocimetry

Five different escarpment models
were studied, focusing on the
sensitivity of WT wake to the

geometric details of the terrain

Jaeha Ryi [109] 2014 Wind tunnel
experiment

Development of cost-effective
and low noise WT rotor

A prediction method for estimating
the noise generated by full-size WT
rotors with both a two-dimensional

section of the blade and a small-scale
rotor is discussed

Porté-Agel [110] 2011 Wind field experiment

Accurate prediction of
atmospheric boundary layer
flow and its interactions with

WTs and wind farms

Proposed a large-eddy simulation
framework and verify its degree

of accuracy

Migoya [111] 2007 Wind field experiment

Derive and verify the
relationship among the power
output, the wind velocity, and

wind characteristics
in each WT

The wind characteristics of the
measurement situation, the wind

speed, the nacelle anemometer, and
the power production of each WT

are given

2.3.2. Study of the Effect of Complex Flow Field on the Aerodynamic Load of WT

Flat terrain has few wind resources and is almost completely exploited, so that the
development direction of wind resources gradually turns to complex terrain [112]. When
the WT works normally in the actual terrain, affected by the terrain, ground roughness,
temperature and the wake of front and rear, the atmospheric environment is in a turbulent
state, and the WT will be affected by turbulence when working in the turbulent atmo-
spheric environment [113]. With the increase in terrain complexity, wake width variation
increases, and velocity deficit exhibition becomes more complex [114]. It is very important
to understand the unsteady flow around the horizontal axis of the WT and even the whole
flow field. Atmospheric stability affects tower and rotor load [12]. However, the flow
around a WT is inherently unsteady [115]. When the rotor bears the unbalanced wind
load, such as wind shear, it will increase the overturning moment, which will affect the
adaptability of WT to a certain extent. On the basis of normal vertical wind shear, extreme
wind shear can cause changes in wind speed at different points in the rotor plane, usually
leading to the maximum load on blade section and extreme deformation of blade tip, and
wind shear can be divided into positive and negative directions. The extreme operational
gust severely affected all the performance parameters of the WT [4].

Wake effect results in fatigue that is larger in horizontal axis WT blades. The fatigue
induced by wake has important impacts on the lifespan and efficiency of the whole wind
farm [116]. In order to investigate the wind conditions of downstream WT, considerable
efforts have been made to optimize the wake model by the relevant personnel. Starting from
the initial one-dimensional Jensen wake model, scholars gradually introduced and added
parameters, such as wind shear or vorticity [14], and fitted the wind speed curve to super-
Gaussian function [116,117] or double Gaussian function [18], and they finally obtained
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two-dimensional [14], or even three-dimensiona [33], wake models. The characteristics and
expressions of the four typical wake models are shown in Table 4.

Table 4. Summary of typical wake models.

Wake Model Characteristic Expression

Jensen model [118] Top-hat shape;
far wake region u∗ = uhub

[
1− (1−

√
1− CT)/(1 + kx/r0)

2
]

3DJG model [33] Gaussian shape;
far wake region


u(x, y, z) = uhub

[(
z+zhub

zhub

)α
− Ce

− y2

2δ2
y

]

C = 4ar0
2

√
2πδzrz

e
− z2

2δ2
z +

a
∫ r0
−r0

((
z+zhub

zhub

)α
−1
)

dz
rz

3DEG model [19]
Elliptical Gaussian shape;

far wake region


u(x, y, z) = u0

(
z
z0

)α
− Ce

−( y2

2σ(x)z2 +
(z−h0)

2

2σ(x)z2 ) −
2a

s

Sr1

∆udA

πryrz

C = u0

(
1−

√
1− CTr2

0
2σ(x)yσ(x)z

)
σy/D = kyx/D + εy, σz/D = kzx/D + εz

3DJGF model [119]
Double-Gaussian shape;

full wake region



u(x, y, z) = uhub

( z+zhub
zhub

)α
− C

 e
− (y+ymin)

2

2σ2
y +e

− (y−ymin)
2

2σ2
y

2


C = 4ar0

2
√

2πσzrz
e

y2
min
2σ2

y

 e
− (z+zmin)

2

2σ2
z +e

− (z−zmin)
2

2σ2
z

2

+

e
y2

min
2σ2

y
a
∫ r0
−r0
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zhub

)α
−1
)

dz
rz

As shown in Figure 5, The engineering wake model is becoming closer and closer to
the measured results.
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Figure 5. Comparison of wake model prediction results and experimental data on wake centerline in
the range of x = 0~5D [119].

Results from interactions between turbulence with the highly three-dimensional flow
on blades and the inflow conditions, the field is very complex [4,94,120]. WTs are sub-
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ject to instantaneously varying load due to wind turbulence [121]. Higher inflow tur-
bulence results in greater power fluctuation [36]. Due to the extreme wind shears, the
blades experience asymmetrical surface pressure variations [122]. Flow visualization
techniques with tufts and oil film methods are effective for investigating the stall flutter
of horizontal axis WTs, and they also offer a better understanding of the development
flow [123]. Meanwhile, Qing’an et al. [123] proposed a more exact visualization of flow
field and aerodynamic load on horizontal axis WTs in turbulent inflows. Furthermore,
extensive scientific studies show that the fatigue load of WT is increased by about 80%,
and the power loss caused by the wake to the downstream WT is about 40% [88,116,124].
Greco et al. [125] studied the performance of a large-scale WT in yawed flow and axial flow
investigated by a free-wake, unsteady three-dimensional aerodynamic model. Numerical
results concerning experiments and other comprehensively used methods show that the
panel method rotor aerodynamics were rigorous, thus avoiding time-consuming CFD
analysis. Hanssen-bauer et al. [126] developed an accurate and fast tool for simulating the
load and performance of WTs in the flow field by using the Mann model, a reduced order
model, as well as an inflow mode based on LES data. Macrí et al. [37] measured the load
variation on a downstream WT with unsteady aerodynamic load balance. Conti et al. [127]
combined measurements of nacelle-mounted LIDAR with wake of wind field reconstruc-
tion technique to improve the accuracy of WT load assessment under wake conditions.
Most of the above studies are simulation or wind tunnel tests, and the data obtained, such
as describing wind flow accurately through these methods, are helpful for the study of
wake and load. However, it is not realistic to solve the actual layout of wind farms through
these studies. The wind tunnel test is essentially a practical simulation. When optimizing
the positions of WTs in complex terrain, all optimization simulations require much time of
calculation for the wake low. Coupled with the wake interaction effect [127], those make
the design process for applying it to wind farms difficult.

2.3.3. Aeroelastic Phenomenon

The complexity of wind load enhances the complexity of aerodynamic characteristics
and affects the power output. The increasing size of the rigid-flexible coupling components
of WTs have been proposed [128], resulting in severe aeroelastic effects caused by the
interaction of elastic deflections, inertial dynamics, and aerodynamic load [129]. Meanwhile,
the aeroelastic phenomenon has a significant effect on the structural response and wake
distribution of WTs [64]. The induced velocity of blade deflection in the flatwise direction
further deviated the apparent wind speed experienced by the flexible blade, resulting in a
time lag between the prescribed motion and its aerodynamic load [130].

The performance of a flexible model is reduced due to the aeroelastic effects. Compared
to the rigid model, the attack angle of sections of the flexible model was lower. The
aeroelastic effects also lad to aeroelastic instability problems, such as flutter and edgewise
instability, which can be ruinous to the blades, or even the whole WT, when the size of
WT becomes larger and larger [86]. Fluid structure interaction also has critical influence
on aerodynamic load. Aerodynamic performances showed more asymmetry under the
combined effect of fluid structure and yaw coupling [47].

The main content of aeroelasticity is the unsteady interaction between structure, inertia,
and aerodynamic phenomena, which is beneficial to the design of anti-fatigue blades. Stall
flutter is an aeroelastic phenomenon that generates unwanted oscillatory load on WT blades.
Stall usually occurs at a high angle of attack [95]. Li et al. [131] presents an aeroelastic
model and simulated the effects under different stall conditions, and the control algorithm
of the stall flutter was investigated.

Horizontal WT mainly relies on blades to capture wind energy and convert it into
electricity [75]. One can reduce the cost per WT length of the blade by realizing adap-
tive load reduction of the blade through bending and torsional coupling control. One
can improve the aerodynamic damping in the blade face through a reasonable material
arrangement scheme to improve the blade reliability [132]. The design scheme of a flexible
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blade with pneumatic accessories can reduce the risk of blade stall and ensure the power
generation of the WT.

2.3.4. Optimization of Aerodynamic Characteristics

Wind farms in extreme wind conditions are developed, the size of rigid-flexible
coupling components of WTs has increased, and the requirements for wind–grid connection
have been improving. Optimization of aerodynamic characteristics plays a vital part in
improving the reliability of WT design and operation [129]. For example, blade optimization
can improve the power coefficient at the design tip speed ratio [133].

Akram et al. [134] analyzed the aerodynamic characteristics of an asymmetric WT
airfoil of NREL S809 by parameter and class shape transformation. The existing method
indicates that the optimized airfoil by class shape transformation is predicted, with 9.6%
for the lift coefficient and an increment of 11.8%, as well as desirable stability parame-
ters obtained for the design of WT blades, respectively. These characteristics dramati-
cally improve the optimization of aerodynamic characteristics. For variable-speed WTs,
Minghui et al. [135] proposed a multi-point aerodynamic design method with an objective
function that can approximate the wind energy capture efficiency, aiming at improving
closed-loop performance and better harmonizing static aerodynamic performance and the
maximum power point tracking dynamics, so as to obtain higher power generation of
variable-speed WTs.

Horizontal WT blade icing occurs in extreme wind conditions [136], which will ob-
viously affect the aerodynamic characteristics of WTs [137,138]. Icing transforms airfoil
profiles of the blades and exacerbates the aerodynamic performance of WTs, and is conse-
quently results in power production loss [139,140]. It is necessary to predict the icing shape
of the airfoil, to analyze the aerodynamic performance of airfoil, and to optimize the design
of the airfoil under icing conditions [141]. To study the mechanical behavior of ice thickness,
Lagdani et al. [142] suggest a numerical model to simulate 50 mm ice thickness located in
the tip of a horizontal axis WT blade. Yirtici et al. [138] proposed an optimized aerodynamic
shape of WT blades to minimize power loss due to icing. Xu Zhang et al. [143] developed a
WT blade suitable for ice and frost environment through blunt trailing edge optimization
design, which reduced the adverse effect of ice on aerodynamic characteristics.

3. WT Load of Variable Excitation of the Grid Side
3.1. The Effect of the Grid on WT Load

In the actual work, the wind–grid connection needs to control the overall voltage of
the wind farm, fully consider the basic conditions, and then adjust the voltage deviation of
the whole power grid system according to the actual power, so as to guarantee the reliable
operation of the whole voltage system [144]. To deal with the large-scale access of wind
power, it is a requirement to ensure that the WT is in normal state under extreme wind
conditions and grid dispatching conditions.

The power of WT and the power of grid load both have fluctuation characteristics, but
the actual operation experience shows that there is little correlation between the fluctuation
trends of the two [145]. The fluctuation of wind power will increase the power adjustment
burden of other generators in the power grid and affect the economy and security of other
conventional generators. For the load caused by power fluctuation, both sides of source
and grid must be considered, as they are the key to maintain the safe stability of the power
grid and to realize the optimal allocation of power resources.

With the massive consolidation of wind power, the power grid requests WTs to be
equipped with low voltage traversal function. That is, when the voltage of the grid side
has a large fluctuation or decreases to a certain value, the WT needs to be guaranteed
to operate without leaving the grid, and reactive power can be provided to sustain the
restoration of the grid [146]. Analyzing the dynamic performance of crowbar resistance
under symmetrical and steady-state grid disturbances, Gebru et al. [147] performed the
crowbar resistance conservation on the actual large wind farm to strengthening the low
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voltage traversal function. In the process of the low voltage ride through, the blade vibration
has obvious impact because the load oscillates. The vibration amplitude of blade flapping
direction is more obvious, and the load change of blade flapping direction will cause the
axial load change of the whole WT, affecting the safety and reliable operation of the WT.
Therefore, the requirement of the power grid for the low voltage traversal characteristics is
that the WT must operate under the power grid fault state. This poses a severe challenge to
the transmission system and even the whole system. To provide tendency and extent of the
occurrence of voltage sag anticipated to trigger WT disconnection and to accurately assesses
voltage sag condition at connection points of WT, Shakeri et al. [148] proposed an iteration-
based technique to calculate expected sag frequency with high accuracy considering low
voltage traversal characteristics for WT.

Severe power failure on the grid by extreme gusts will cause the blade bending
moment to reach the ultimate load. The power failure not only affects wind rotor speed and
variable blade angle, but also affects the load of the whole machine. As a result of power
failure, loss of power, or the quality of electricity, it does not meet the requirements. Thus,
the power grid side cannot work normally, so the generator side offs the load. This leads to
a rapid increase in the speed of the WT, and then the speed decreases with the increase in
the variable blade angle and the decrease in wind energy absorption by the rotor. It can be
seen that the moment of power fail has a great influence on the bending moment of blade
root, and certain strategies should be adopted in the design or actual operation to ensure
the safety of the WT under various possible conditions.

3.2. Review of the Grid Side Failure

Voltage drops when the power grid malfunctions, such as in single grounding short
circuits, two grounding short circuits, 2-phase short-circuits, or 3-phase short-circuits.
This will cause a sudden change of the rotor speed and the drastic fluctuation of the
electromagnetic torque of the generator, which will impact the mechanical parts, such as
the transmission system of the WT. Voltage drop will directly act on the generator terminal
voltage, leading to a significant increase in voltage and current in the rotor circuit, causing
the WT speed mutation and the electromagnetic torque of the generator drastic fluctuations
and impact on WT drive system. During the voltage drop, the output power of the WT
will be unbalanced, which will produce additional torque or stress on the transmission
system [31]. Meanwhile, the changes of electromagnetic torque and output power will also
act on the grid side in reverse. Under normal circumstances, even if the grid has a minor
fault, the WT may be disconnected from the power grid.

With the development of large-scale single WT, the torque of the transmission system
increases, and the dynamic load caused by transient faults of the power grid has an
increasing influence on the parts of WT. Meanwhile, the vibration problem of WT is
gradually more prominent. The WT must be connected to the grid for a period of time
under the voltage sag of the grid, and the WT can quickly recover to the normal working
state after the grid fault is removed [149]. However, in the transition process of power grid
voltage sag and recovery, the electromagnetic torque of the motor will fluctuate greatly,
which will inevitably bring about the oscillation of the torque after the fault process and
fault removal, and it may further impact the mechanical components, such as gear case,
affecting the operation and life of the WT [150]. At the same time, it may influence the
stability of generator output power and speed.

3.3. Effect of Grid Failure on WT Load

The dynamic characteristics of WT will affect the grid-connected quality of wind
power, and the interference and faults of the power grid will also affect the mechanical
and electrical components and mechanical components of wind power. When the grid side
runs normally, it has little influence on the source-side load, and the variation of the source
side load caused by the voltage sag of the grid can be recovered in a very short time. The
simulation analysis of Ying Ye et al. [151] expresses that 3-phase short-circuit happens on
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the grid side operations, which have less influence on the stabilization of doubly-fed WTs.
The changes in grid behavior are mainly reflected in the voltage, the power flow, and the
system frequency. The need load of WT is affected by the voltage sag, the variation of the
direction, and the value of load flow [152].

When the power grid disturbance or fault leads to the voltage sag of the wind farm
connection point, the WT can operate continuously in a certain range of voltage sag [153].
The transient component of the motor flux excited by the voltage sag of the power grid
causes the electromagnetic torque of the generator to oscillate and then causes the me-
chanical dynamic load response of the WT [154]. Due to the large inertia of WT impeller,
the impeller speed may not be affected [155]. However, the transient voltage sag rapidly
changes the blade tip acceleration, especially in the direction of shimmy, and increases the
mechanical fatigue load of blades, spindle components, and tower, while the shear force
of spindle and shear force in other directions of tower are not affected. At the same drop
depth, the greater the voltage value at the drop time, the greater the impulse current. After
the recovery of the transient voltage sag, mechanical parts need a long time to recover to a
stable condition because of the limitation of inherent damping [31]. The torque pulsation
caused by voltage sag will eventually produce mechanical fatigue load in mechanical
components and affect component life. Simulation results show that the rapid recovery
of voltage transient is helpful to alleviate the mechanical dynamic load of the WT. The
voltage sag of the power grid causes the imbalance between mechanical and electrical
power of WTs, which makes the load of WTs oscillate, and in serious cases, the WTs are cut
off. Therefore, the WT load-related test should also be carried out when the WT is tested at
low voltage.

When a power grid fault occurs, it will inevitably lead to the change of WTs on
stator current, rotor current, and speed. In order to calculate the maximum fault electric
present expressed of the rotor currents, L Yu et al. [156] introduced a direct method based
on space vector to acquire an exact representation of rotor electric currents as the time
function during the voltage failure. Extreme operating conditions even cause a loss of
connection between the source and grid. The load from sudden or continuous interruption
of electrical connection imposed on large offshore WTs may result in increased rotor speeds
or emergency shutdown [157]. In reference [155], a fixed-speed WT model was built to
conduct simulation research on the variable speed and rotor WT under power grid failure,
but there was no study on the actual commonly used WTs. For common WTs, scholars
have built a co-simulation model [158] based on FAST and MATLAB/SIMULINK software
to simulate the output speed of WT and the load of key parts in the case of power grid
failure. The simulation results show that permanent magnet synchronous generator is more
effective than the squirrel cage induction generator and the doubly fed induction generator
for low wind speed [159].

4. The Multi-Factor Coupling Effects on the WT’s Load Characteristics
4.1. Research Model of the Transmission Chain

The WT drive train is a complex multi-body coupling system, and its dynamics
characteristics have important effects on the stability and reliability of WT. In its life cycle,
WT is excited by complex wind load of random variation for a long time, which is the main
load source of the whole WT. These loads will be transmitted back to the transmission
system and even the generator through the main shaft. It means that WT load is transmitted
through both sides of the transmission chain under dual source–grid variable excitation.
It is known from the theory of classical mechanics that the rotor is subjected to both
aerodynamic torque and low speed shaft torque, resulting in the dynamic process of rotor
rotation. The dynamic process of generator rotation is produced by the resultant force of
load torque and high-speed shaft torque. As shown in Figure 6, the transmission chain of
WT is generally composed of blades, hubs, low-speed drive shafts, gearboxes, high-speed
drive shafts, and generators.
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4.1.1. The Multi-Mass Block Equivalent Model of WT

It is pointed out that all rotating shafting systems can use several mass blocks to
describe the physical parameters of the real system, and the more the number of mass
blocks and degrees of freedom, the greater the model precision [160]. For the multi-mass
block equivalent model of different research contents, the equivalent mass block is often
different. Some parts of the transmission chain are equivalent to mass blocks, and the
equivalent model of the mass block transmission chain of WTs is obtained [161]. Some
models also consider the flexibility of drive chain shafting. Considering the above factors,
the mass block model is widely used [162]. Typical research is reviewed and presented in
this paper.

The 1-mass block equivalent model takes the whole transmission chain of WT as a
rigid structure, which is equivalent to a mass block. In most cases, WT’s single-mass model
is used for controller design

The method of 2-mass block equivalent model could be used to equate the WT and
generator into two mass blocks and then connect the WT and generator through a gear case,
as in Figure 7a. The 2-mass block equivalent model also could equate the blade and hub to
one mass block and the gearbox and generator rotor to another mass block, as in Figure 7b.
The 2-mass block equivalent model can even equate the gearbox and generator as two mass
blocks, which are then connected behind the hub [163], as in Figure 7c. In the 2-mass block
model, the blades, hub, gearbox, and generator are equivalent in the mass block, and then
they are connected with the rest through a low/high-speed shaft. Vijay P. et al. [162] has
investigated a small-signal stabilization analysis for the WT system on the basis of the above
2-mass transmission train models and its joint model with thermal power integrated system.
Besides, by using the 2-mass model, an algorithm of adaptive backstepping has been
obtained to implement the progressive generator with speed tracking [164]. Muyeen et al.
showed that the dual-mass axis model was sufficient for transient stabilization analysis of
wind power generation system with reasonable accuracy [165].
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The commonly used 3-mass block model is used to separate the equivalent planetary
gear train from the generator module to form a 3-block model. A mass block represents the
WT, a mass block represents the planetary gear train module, and the last mass block is the
generator module. Another commonly used 3-mass block model considers blade flexibility
and low-speed shaft flexibility, and three mass blocks are used to represent the blade and
hub, low-speed shaft, and high-speed shaft, respectively [166]. This model may be more
suitable for short-time accurate harmonic evaluation on the grid side [167]. As shown
in Figure 8, there is also a 3-mass block equivalent model of 3 mass block transmission
chain for WT. Blades and hub, gear case, and alternator on the transmission chain are
three mass blocks. Considering more than one discrete mass modeling for the drive train,
M. Seixas et al. [160] constructed a model for offshore WT system by simulations with
1, 2, and 3-mass drive train modeling. Meanwhile, based on the 3-degrees-of-freedom
(3DOF) mathematical model, Jing et al. [168] established the simulation model of 3DOF
rigid-flexible coupling multi-body dynamics.
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The mass block model of the drive chain mostly focuses on the single wind condition
or the simple wind condition. However, the WT load in the unsteady and heterogeneous
flow field in complex terrain is less involved. In particular, the spindle torque and axial
thrust of the WT in the complex flow field will change with the rotation cycle and phase
angle of the blade and the uneven flow field in front of the rotor. This directly leads to the
unstable changes of shaft and gear, gear, and gear meshing in the transmission system of
the WT, which affects the operation stability of the transmission system.

4.1.2. Flexible Multi-Body (FMB) Model of WT

The FMB model of WT is also an effective method to study the transmission chain.
The dynamic characteristics parameters of components and the whole transmission system
is obtained by simulation analysis under the WT dynamic of the FMB model. Some
components in the transmission chain are made into flexible bodies by the finite element
method and by combining with the system by the multi-point constraint method, and the
multi flexible body dynamic model of transmission chain is obtained. Meanwhile, the
simulation of vibration characteristics was carried out so that the aerodynamic load and the
torque were applied to the structure of the rotor. Simultaneously, the deformation of the
structure also affected the load. Jiao He et al. [169] established a FMB dynamics model of a
floating WT in SIMPACK to control the structural vibration of the floating WT. Through
numerical simulation on dynamic response of the FMB model, Cheng et al. [170] ascertained
the need for modified structural components by monitoring multiple parameters of WT
tower/blade coupling structure under various operating conditions.

The transmission chain of WT contains many components, and the corresponding parts
will be flexible. Some of components have complicated structure and various materials,
which leads to a mesh quantity of the model that is so large that it is not conducive to
solving the calculation. The rigid/flexible body modeling mode and freedom selection of
each component are shown in the Table 5, according to GL2010.
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Table 5. Modeling standards of transmission components.

Component Rigid or Flexible Body Degrees of Freedom

Blade Flexible body 2
Hub Flexible body 6

Box of Gear case Rigid body 6
Planet carrier of Gear case Flexible body 6
Gear bearing of Gear case Flexible body 6

Gear of Gear case Rigid body 6
Coupling Rigid body 6

Generator rotor Rigid body 6
Generator stator Rigid body 6

Rack Flexible body 0

4.2. Control Strategy WT’s Load Reduction under Multi-Factor Coupling

Comprehensively considering the coupling effects of source and grid factors reveals
WT load characteristics and transmission mechanisms. In addition, when the actual wind
farm is connected to the grid, multi-factor coupling (source, wind rotor, main shaft, trans-
mission system, generator, and grid) will make the load of system and grid connection
frequency of the WT more complex. On the one hand, the increase in the proportion of
new energy generation will lead to the reduction of the power system inertia [171], thus
worsening the frequency stability of the power system [172]. On the other hand, under
multi-factor coupling, the WT can compensate the power system inertia decline by in-
ertia control. However, this inertial control often varies the generator torque of the WT
according to the system frequency, thus increasing fatigue load on the spindle. In order
to decrease the influence of inertia control on fatigue load of the WT, Wang et al. [173]
proposed a proportional-integral (PI) mitigation-based control solution, which improves
the inertia response capacity of WTs while vastly reducing the fatigue load of the main shaft.
Edrah M [174] evaluated the impacts of the inertia controller on the WT structure, and the
results show that the implementation of inertia controllers on the full-scale converter WT
can improve the inertia response, but will affect the dynamics of its blades, drivetrain, and
tower. Fortunately, these effects are controlled are have been shown to be smaller than the
effects caused by some grid faults.

The variation of the axial induction factor was controlled by varying the pitch angle
and other methods to improve the residual wind energy in the wake, as is a commonly
used method. Another method, active yaw control (AYC), has great potential in wind farm
power and load optimization [175]. The total power output can be augmented by installing
WTs upstream. The active control of WT is more consistent with the actual operation of
the wind field [176]. The wake can be offset by the yaw of upstream WT to improve the
output power of downstream WTs. Although the yaw of the upstream WT reduces its
own power, its wake offset can effectively improve the output power of the downstream
WT. Adaramola et al.’s [177] research shows that the yaw operation of the upstream WT
can change the distribution area of wake flow, reduce the influence of wake flow on the
downstream WT, and significantly improve the product power of the downstream WT. The
significant effect brought by this technical means is that the total product power of the
2 WTs can be increased by about 12%.

Speed and pitch angle can be considered in optimal control of wind farm under
wind power curtailment. When the rotor speed control can meet the demand of the wind
curtailment in the wind farm, the optimal speed control takes the maximization of the rotor’s
rotational kinetic energy as the goal to determine the active power regulation commands
for each WT, thereby reducing the wind energy loss. Camblong et al. [178] developed and
analyzed a linear quadratic gaussian controller, and they also used pitch angle and generator
torque as control parameters to control a WT electrical power and rotational speed. The
electrical power and rotational speed references are produced at higher control levels based
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on frequency changes and wind speed, thus reducing the drive fatigue load of the source
side and optimizing the grid primary frequency control of the grid.

5. Discussion and Conclusions

The excitation and mutual coupling from the wind source and grid make the WT’s
load characteristics more complex concerning the large-scale development of wind farms in
complex terrain and the improvement of wind–grid connection requirements. An accurate
understanding of the load characteristics of different parts of the WT and its transmission
mechanism between various parts is of momentous scientific significance to improve
the design and the practical operation reliability of various components of the WT. This
paper reviews the research status of WT’s load characteristics, motivated by the variable
parameters from both the source side and grid under complex terrain. For this purpose,
this paper summarizes the research achievements of WT load characteristics under dual
source–grid variable excitation on complex terrain. Firstly, according to the source side, grid
side, and transfer coupling, the different research models of diverse load are summarized,
and the characteristics and transfer mechanism of diverse load are analyzed. Moreover,
the variation characteristics of fatigue load and aerodynamic load are analyzed, and the
different research models of the load are summarized. Besides, the existing problems were
pointed out, and the advantages/disadvantages of the existing improvement schemes are
analyzed. Finally, the model of the transmission chain and control strategy are described
under multi-factor coupling. This review provides a theoretical foundation and indicates
directions for the safety design and reliable operation research of large WTs on complex
terrain, with crucial scientific significance.

The main conclusions are summarized as follows:

1. WT loads are varied in form and complex in source, and they can be divided into
different situations according to different classification standards. The classification
of load in this paper mainly has the following basis: the time-varying characteristics
of load, the design of WT parts, source of load, and property of load.

2. According to the source side, grid side and transfer coupling, the different research
models of diverse load were summarized, and the characteristics and transfer mecha-
nism of diverse load are analyzed.

3. Studies on the WT’s load characters considering single factors are abundant. However,
a WT operating on complex terrain is affected by dual source–grid variable excitation
and transference, which aggravated the complexities of the load. Meanwhile, most of
the studies are based on simulation or wind tunnel tests, which are not realistic to solve
the actual layout of wind farms through these studies. When optimizing the positions
of WTs in complex terrain, all optimization simulations require numerous times of
calculation for the wake flow. With the development of wind farms in complex terrain
and the increasing flexibility of WTs, the research on load characteristics and transfer
mechanisms of WTs in heterogeneous flow field needs to be further studied.

4. The dynamic characteristics of WT will affect the grid-connected quality of wind
power, and the interference and faults of the power grid will also affect the mechanical
and electrical components and mechanical components of wind power. The changes
of grid behavior are mainly reflected in the voltage, the power flow, and the system
frequency. In the transition process of power grid voltage sag and recovery, the
electromagnetic torque of the motor will fluctuate greatly, which will inevitably bring
about the oscillation of the torque after the fault process and fault removal, and it may
further impact the mechanical components, such as gear case, affecting the operation
and life of WT. However, at the same time, it may influence the stability of generator
output power and speed.

5. The commonly used model of the transmission chain with the multi-mass block
equivalent model and the FMB model was reviewed. However, the location of wind
field and the design of WT often pay more attention to the source side. To increase
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the power generation and reduce the load under multi-factor coupling, one needs
appropriate control strategies.

6. A new research idea of ‘comprehensively considering the coupling effects of source
and network factors, revealing WT load characteristics and transmission mechanism’
is summarized.

The above discussion and conclusions collated and analyzed the WT’s load character-
istics, excited by the wind and grid in complex terrain. These provide researchers in related
fields with coupled source–grid bipartite information, and that has an important scientific
role, which contributes to the development of this topic. Further, it improves the reliability
of WT design and operation, and, moreover, it promotes the efficient and safe application
of wind energy.
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