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Abstract: In order to adapt to ever-changing customer needs and satisfy them, good Business
Process Management (BPM) in Small and Medium-sized Enterprises (SMEs) is crucial. The target
group of this research is production SMEs whose BPM can be monitored respecting the values
of key performance indicators (KPIs). This paper shows how improving the performance of the
observed business processes can improve the level of customer satisfaction. This improvement should
lead to the sustainability of SMEs in the market. In this paper, evaluation of business processes
performance is defined as a multi-criteria decision problem. The relative importance of considered
KPIs and their imprecise values are described by linguistic expressions, which are then modeled by
triangular intuitionistic fuzzy numbers (TIFNs). Calculation of KPI weights is done by using the
fuzzy analytic hierarchy process (FAHP). Evaluation of BPM success is conducted respecting the
obtained KPI weights and KPI values. An optimal solution for BPM success improvement, respecting
customer satisfaction indicators, is calculated using the Artificial Neural Network (ANN) and Genetic
Algorithm (GA) approaches. By applying the proposed model, managers of production SMEs can
determine the management initiatives that will improve their business and the sustainability of
their companies.

Keywords: business process management; SME; customer satisfaction; fuzzy logic; TIFNs; AHP;
Artificial Neural Network; Genetic Algorithm

1. Introduction

Small and Medium-sized Enterprises (SMEs) present a driving force of economic
development in many countries. According to [1], SMEs represent 99% of all businesses in
the EU. In Serbia, this number is 99.8%, employing 2/3 of the total number of employees in
the non-financial sector and participating with 32.8% in the formation of gross domestic
product (GDP). However, the survival rate of SMEs is not high. In recent years, the number
of SMEs that have survived the first two years of business in Serbia is around 60% [2].
Production SMEs, which employ a vast number of people and significantly affect the
overall growth of the economy, are especially vulnerable. To ensure their survival in the
market, SMEs must successfully manage their business processes. It is very important that
these enterprises continually improve their business processes, which leads to improved
efficiency. The question is, what can help the managers of production SMEs in this situation?
As SMEs have limited resources, the answer lies in Business Process Management (BPM)
supporting models and software that would suit their needs. On the other hand, for the
survival and success of these enterprises in the market, their focus on meeting customer
needs is vital.

Until recently, organizations were concentrated only on the processes, focusing on how
they operate, neglecting that the customer and their interaction to business processes are
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important [3]. However, according to [4], identification, analysis, and control of processes
should be performed in convergence with customer experience, and not be addressed
independently. These authors suggest that to achieve a great customer experience, excellent
business processes are required. Convergence between these concepts may lead to many
benefits: designing of business processes that enable customer expectations fulfillment,
development of products and services that are needed by the customers, rational usage
of organizational resources, and more. According to [5], BPM is an important factor in
attaining high levels of customer satisfaction.

However, customer satisfaction is a complex issue [6]. According to [7], it refers to
the level of customer satisfaction with products and after-sales services as well as the
level of customer complaints. According to ISO 9000:2015 standard, customer satisfaction
is “customer’s perception of the degree to which the customer’s expectations have been
fulfilled” [8].

According to [9], customer satisfaction leads to their retention, and the transfer of
satisfaction information leads to the acquisition of new customers. In this way, there is also
an increase in market share and an increase in profitability because retaining customers is
drastically more cost-effective than replacing them. Generally, customer satisfaction is one
of the key indicators of business performance [10]. In a highly volatile market, such as the
current-day market, with many competing companies offering similar products, customer
satisfaction and loyalty are often seen as something that sets a company apart from the
competition and is a critical element of business strategy.

In the literature, most of the papers dealing with determining customer satisfaction
are related to service activities [6,11–18]. On the other hand, fewer papers focus on manu-
facturing companies [19–22], while a significant lack of literature has been noted regarding
the link between the performance of their business processes and customer satisfaction.

Based on a review of the literature related to BPM, theoretical foundations, and
empirical research related to the use of Artificial Neural Network (ANN) and Genetic
Algorithm (GA), an integrated conceptual model has been developed to guide this research.
The proposed model is used to find out whether it is possible to integrate ANN and GA to
determine optimal business performance values that would result in improved customer
satisfaction in certain business conditions.

ANN presents a powerful tool that can be used to model relationships in data sets
that are nonlinear and highly correlated. Like real biological neural networks, ANNs are
composed of interconnected, simple processing elements called artificial neurons. A neural
network is a connected set of neurons or nodes. Like biological neurons, each ANN neuron
receives input information, processes it, and delivers output information. The input can
be a rough set of data or an output from another neuron, and the output may be the final
result, or it may be the input for another neuron. In biological neurons and synapses,
there are synaptic connections of different strengths, and these strengths are represented in
the ANN neurons by the values of the weight coefficients. When processing information,
artificial neurons in the ANN perform simultaneously and collectively, with the ability to
learn, self-organize, and support robustness [23].

Since organizations always have to meet several different business goals, it is necessary
to compromise, make optimal decisions, and not jeopardize any of the set goals in such
situations. These goals can often conflict with each other, i.e., by reaching one goal an
organization may move away from reaching another goal, and vice versa. Examples
of conflicting goals are high quality and low cost, greater efficiency, and more excellent
reliability. Due to the possibility of considering many factors that influence decision-making,
a GA is a suitable method for finding optimal solutions. In the past few years, GA has
been among the most exciting optimization techniques within artificial intelligence since
modern technology has found a way to commercialize its application [24,25]. GA belongs to
stochastic methods for finding optimal solutions [26] and is characterized by a significantly
higher speed of finding solutions than classical methods and finding approximate optimal
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solutions in situations where classical methods cannot provide the precise optimal solution.
It is particularly suitable for solving multi-criteria optimization problems [27].

GAs are well-known methods for the efficient search of complex spaces. Combining
ANN for prediction and GAs to optimize business performance allows companies to
improve business process management while reducing costs and increasing customer
satisfaction. This approach gives SME managers important information regarding process
parameter values, which are needed under different business conditions and different
stages of the process to obtain the desired level of customer satisfaction indicators’ values.

This paper is organized in the following way. The literature review is presented
in Section 2, and the methodology and proposed algorithm are shown in Section 3. An
illustrative example is presented in Section 4, and conclusions are given in Section 5.

2. Literature Review

This manuscript attempted to show how improving the performance of the observed
business processes can improve the level of customer satisfaction. According to [28], the
BPM paradigm could be considered as an integral part of almost all essential quality man-
agement paradigms (TQM, Standardized Management Systems such as ISO 9001, Lean, Six
Sigma). These authors state that the integration of BPM into quality management systems
and tools enables the development of effective and efficient organizations. Since the BPM is
an integral part of the above-mentioned paradigms, we placed our focus on the connection
of BPM and one of the key principles of SMS ISO 9001, focus on customers’ satisfaction.

According to [28], the axis of the BPM philosophy and the implementation of its
principles is the satisfaction of customers’ needs. BPM assists managers of SMEs in achiev-
ing business objectives [29]. One of the most important business objectives is customers
satisfaction. Key performance indicators (KPIs) as measurable values demonstrate how
effectively a company is achieving key business objectives. Meaning that KPIs have crucial
importance in the measurement and determination of target values. It is clear that achiev-
ing the desired target value is not possible without effectively implementing BPM [30].
Improving business processes performance is possibly be accomplished by monitoring
and managing the KPIs of these processes [31]. Different studies are focused on business
process improvement based on KPIs during the BPM [32,33].

However, determining the relative importance and values of KPIs is a difficult task
because precise numbers cannot always present these variables. They often depend on the
experience and opinion of decision-makers, so there are uncertainties in their determination.
According to [34], uncertain and imprecise variables can be described by linguistic terms.
Modeling of these linguistic terms can be done by using the theory of fuzzy sets [35,36].
Many papers deal with the modeling of linguistic variables. While several authors use
type-1 fuzzy sets [37–40], other authors suggest using type-2 fuzzy sets [41–44] because of
a higher degree of freedom and flexibility. In the previous research, there are many papers
using intuitionistic fuzzy sets [45–47]. Although using intuitionistic fuzzy sets requires
complex calculation, the authors of these papers claim that they present a better way of
describing uncertainties that occur in modeling linguistic variables.

Different models for supporting BPM in SMEs have been developed in the previous
studies based on fuzzy sets. These models allow managers to make decisions more quickly.
In the paper [48], a fuzzy approach for evaluation of the quality of the purchasing process,
respecting weights and values of KPIs for defined process’ objectives, is presented. Using
this approach, managers can identify gaps between existing and target conditions of
process effectiveness, identify strengths and weaknesses, and improve purchasing process
performance. In the papers [49,50], fuzzy group decision-making problems for determining
the weights of identified quality KPIs for the manufacturing process were considered.
Ranking of manufacturing sub-processes and their KPIs was done by using a metaheuristic
approach. These mathematical models enable quality evaluation of a production process,
ranking, and optimization of KPIs using a GA. This approach enables managers of small
and medium enterprises to improve successfully the production process quality. The
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authors in [51] used modified fuzzy analytic hierarchy process (FAHP) to obtain the fuzzy
rank of business processes of a seaport. The assessment of the relative importance of each
pair of performances and their KPIs are stated as a fuzzy group decision-making problem.
The ranking of business processes is based on the overall preference index and the method
for comparing fuzzy numbers. In [52], the authors were solving the problem of assessment
and improvement of KPIs in the New Service Development Process. Determination of
KPIs’ weights was stated as a group decision-making problem. The ranking of KPIs
was performed by using the GA approach. Determination of the management initiatives
priority for the improvement of KPIs was based on fuzzy if-then rules and the single-
objective GA. This model enables identifying weak points in an enterprise and determining
corrective measures that should lead to the improvement of the process performance.
In [53], the authors developed a fuzzy model for ranking manufacturing sub-processes
in the automotive industry, respecting the sub-processes’ KPIs. This model, which uses
the fuzzy extended ELECTRE III method for ranking considered sub-processes, enables
improving quality management by assessing manufacturing sub-processes and their KPIs.

Mathematical models developed in all of these papers use triangular fuzzy numbers
to deal with uncertainties in the considered problems. On the other hand, according to
many authors [45,54], intuitionistic fuzzy sets present a better way to model linguistic
terms characterized by a degree of imprecision. These fuzzy sets [55] represent an extension
of classical fuzzy set theory. Their fundamental characteristic is the existence of the non-
membership function and the membership function instead of standard fuzzy sets. One of
the models for supporting BPM in SMEs, based on intuitionistic fuzzy sets, is shown in [56].
In that paper MCDM approach was used to rank production SMEs, respecting values
and weights of KPIs of the production process. Modified TOPSIS method with triangular
intuitionistic fuzzy numbers (TIFNs) was used while the benchmarking procedure was
proposed to identify weaknesses in performance management and to choose appropriate
improvement strategies. In [57] proposed model was extended to four processes, and a
software solution for dealing with this problem was shown, which significantly shortens
the time required to obtain a solution. In this paper, modeling of uncertainties is done
using TIFNs, while modern artificial intelligence techniques and approaches, like ANN and
GA, are used to establish a link between business processes performance in manufacturing
SMEs and customer satisfaction.

ANNs have proven to be a promising computing system in many forecasting and
business applications due to their ability to learn from data sets, their nonparametric na-
ture (i.e., no rigid assumptions), and their ability to generalize [58]. Their application is
widely used in business performance [59], most recent internet financing [60], performance
management [61], and online education and teaching evaluation system performance pre-
dictions [62]. The authors in [59] used ANN as the prediction system to predict e-business
performance for the Chinese service industry. In their study, for the backpropagation (BP)
ANN model, the inputs are the data of e-business performance measured by a five-point
Likert scale, and the expected outputs of training neural network come from cluster analy-
sis. The results showed that the prediction system is reliable and accurate; and that it can
be used for evaluating enterprise performance effectively. In [63], authors compared ANN
and multiple linear regression (MLR) prediction performance on reliability of accounting
information system as independent variables and business performance as a dependent
variable prediction model and revealed that in terms of predictive accuracy test, the ANN
has higher accuracy than regression analysis. In [60], the author presented the application
of the BP ANN method to analyze the risks of Internet finance in terms of market, law,
credit, personal information, and professional knowledge. The same authors stated that
BP ANN had an excellent prediction effect. According to [62], a combination of GA and
ANN has given good optimal results for social science research performance evaluation in
colleges and universities. Similar research was conducted in [61], where authors proposed a
performance index system for university social science research based on BP ANN and the
relevant theoretical knowledge. The presented BP ANN models have shown meager error
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value and good generalization abilities, which effectively demonstrates that the training
sample data can ideally fit the neural network simulation. In the same way, it shows that
the output value of the BP ANN can be very close to the input vector.

GA has been applied and provided acceptable optimal results in many problems: pro-
cess scheduling problems [64], system parameter determination problems [65], data mining
process optimization [66], and KPI value optimization [49,52]. In [64], authors proposed
a self-learning GA (SLGA) which adopts GA as the primary optimization method, with
its key parameters intelligently adjusted based on reinforcement learning (RL). The same
authors compared the learning effect and performance of SLGA in solving the Flexible Job
Shop Problem (FJSP) with other algorithms using two groups of benchmark data instances
with different scales. Their experiment results show that the proposed SLGA significantly
outperforms its competitors in solving FJSP. In [65], the GA-based two-step classification
method is proposed, which allows selecting the significant factors and adapting the model
itself to application in bankruptcy forecasting, improving the advantages and alleviating
the weaknesses inherent in standard classifiers enabling the business decisions to support
with higher reliability. In [66], new ensemble data mining techniques that involve an
adaptive neuro-fuzzy inference system (ANGIS) with GA for landslide spatial modeling
have been presented, showing that the proposed ensemble data mining techniques can
be applied for land use planning and management of landslide susceptibility and hazard.
Literature resources show that GA has its application in obtaining optimal values within
the production process KPIs, the ranking of KPIs, and provides the basis for successful
improvement of the production process quality [49,67]. Furthermore, the ranking and im-
provement of the new service development process KPI values problem could be stated as
a multi-criteria decision-making problem that the GA could solve [52]. It can be concluded
that GAs has provided scheduling, trend tracking, and finding optimal performance values
in various fields and that they can be used to find the optimal solution in many scientific
and industrial fields.

3. Methodology

This paper intends to assess optimal improvements for BPM in SMEs, which should
lead to increasing the level of customer satisfaction. In order to achieve this, KPIs for
each business process must be defined. Since there are no standards that define the most
appropriate KPIs for each business process, it is common practice to determine KPIs based
on the literature data and the results of good practice. The first issue that arises in this
problem relates to the assessment of the relative importance of KPIs. The second issue
relates to the determination of the KPIs’ values. The problem is significantly more complex
because the realistic assumption is that the considered variables are not measurable so
linguistic terms will describe them.

In this paper, linguistic variables are modeled using the TIFNs that belong to intu-
itionistic fuzzy sets [55]. Assessments of the relative importance of KPIs for each business
process are stated by fuzzy pair-wise comparison matrix, an analogy to Analytic Hierarchy
Process (AHP) method. According to [68], this method is very transparent and easy to under-
stand. The AHP method [69] has been widely used for various decision-making problems.
Its extensions have been applied in numerous papers, for example, FAHP with Triangular
fuzzy numbers, developed in [70] and used in [71,72]; FAHP with Trapezoidal fuzzy numbers
applied in [73,74]; FAHP with the interval type-2 triangular or trapezoidal fuzzy numbers
used in [75,76]; FAHP with TIFNs developed in [77] and used in [68,78–81], etc.

In this paper, to determine the weights of KPIs, decision-makers estimate the relative
importance of KPIs. Since the calculated weights of KPIs depend on the assessment of
decision-makers, it is very important that these decision-makers have sufficient knowledge,
such as quality management auditors, or managers with a lot of experience. They use
linguistic expressions modeled by TIFNs (Table 1), as shown in [57]. Domains of these
TIFNs are defined on the interval from 1 to 5. To determine the relative importance of KPIs,
value ‘one’ means equal importance, and value ‘five’ means extremely important.
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Table 1. Linguistic expressions for the relative importance of KPIs.

Relative Importance TIFN

Slightly more important Ã1 = {(1, 1.5, 2), ( 1, 1.5, 2.3)}
A bit more important Ã2 = {(1, 2, 3), ( 1, 2, 3.3)}

More important Ã3 = {(2, 3, 4), ( 1.8, 3, 4.2)}
Strongly more important Ã4 = {(3, 4, 5), ( 2.7, 4, 5)}

Absolutely more important Ã5 = {(4, 5, 5), ( 3.7, 5, 5)}

According to the conventional AHP method, consistency checking should be per-
formed, ensuring the entered data’s consistency. Since the problem analyzed in this paper
is a group decision-making problem, KPI weights are calculated using the fuzzy geometrical
mean method and then aggregated using the fuzzy averaging operator.

On the other hand, decision-makers (managers above all) of each SME involved
in determining optimal values of BPM success estimate KPI values for each business
process. The imprecisions related to the assessment of KPI values are described by linguistic
expressions modeled by TIFNs, as shown in Table 2, according to [57]. Domains of TIFNs
describing these imprecisions are defined on the interval from 1 to 9.

Table 2. Linguistic expressions for KPIs’ values.

Value of KPI TIFN

Very low value ṽ1 = {( 1, 1, 2), ( 1, 1, 2.3)}
Low value ṽ2 = {( 1, 2, 3), ( 1, 2, 3.3)}

Almost low value ṽ3 = {( 2.5, 3.5, 4.5), (2.3, 3.5, 4.7)}
Middle value ṽ4 = {(4, 5, 6), ( 3.8, 5, 6.2)}

Fairly high value ṽ5 = {( 5.5, 6.5, 7.5), ( 5.3, 6.5, 7.7)}
High value ṽ6 = {( 7, 8, 9), ( 6.7, 8, 9)}

Very high value ṽ7 = {(8, 9, 9), ( 7.7, 9, 9)}

Based on the aggregated weights and the estimated values of KPIs, current ratings of
BPM success at the level of each business process are calculated, as shown in Section 3.1.

When it comes to monitoring customer satisfaction, specific indicators also must be
defined, and in this paper, it is assumed that their importance is equal. This allows these
indicators to be observed and improved at once. In case the observed company has a desire
to observe and improve only one indicator, for example, which it considers to be the most
important at the moment, the input data for ANN and GA will contain only data for that
indicator. Their values are also estimated by decision-makers of each involved SME and
described by linguistic terms shown in Table 2.

Based on the calculated BPM success ratings, an ANN model is then developed
to predict the values of satisfaction indicators in a specific SME. A GA then uses the
trained ANN model to determine the BPM parameter values that would result in optimal
satisfaction indicator values obtained in various operating conditions.

GA optimizes goals using objective functions and constraints to find the optimal
solution in the domain of possible solutions. Objective functions and defined constraints
are usually in conflict, so solutions have acceptable values instead of optimal values for
all goals. Unlike the optimization of one objective function (single-criteria optimization),
with usually only one obtained optimal solution, in multi-criteria optimization, with more
target functions to be satisfied, the number of resulting solutions is significantly higher
(trade-offs). Multicriteria optimization consists of two phases. In the first phase, the given
target functions are optimized, and solutions are obtained in the form of a Pareto front
(set), while in the second phase, a decision is made on the specific solution to be selected
from the Pareto set. The Pareto set is a set of mutually non-dominant solutions, so the final
decision is up to the decision-maker. For Pareto solutions, the property is that they are
harmonized based on dominance. Dominance refers to the fact that some solution A is
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dominant over solution B, if it has a more optimal value concerning solution B for at least
one objective function, and it does not have a higher value for other objective functions.

Using the fuzzy algebra rules [82,83], ANN and GA approaches, the links between
BPM success and customer satisfaction indicators can be found. Based on that, the optimal
values for BPM parameters are determined while maximizing the values of customer
satisfaction indicators. Since ANN and GA are used in the proposed algorithm, the obtained
results largely depend on the number of observed SMEs and entered values. By determining
the gaps between current and optimal values of BPM success, the management team of
each SME can conclude which business process requires performance improvement.

3.1. The Proposed Algorithm

This section presents the 17-step procedure for evaluating optimal BPM improvements
in SMEs, respecting the values and weights of KPIs. The presented algorithm intends
to provide theoretical background for the development of software solutions. Using this
solution, SMEs could have tools for fast and efficient insight on their process as well as a
tool that will detect the major gaps between existing situations and optimal situations. This
will provide a useful tool to SMEs that was available, until now, only for the large systems.

Step 1. The fuzzy pair-wise comparison matrix of the relative importance of KPIs i, i’
on the level of each business process p are stated, based on the assessments of each expert q:[

w̃qp
ii′

]
; i, i′ = 1, . . . , I; p = 1, . . . , P; q = 1, . . . , Q (1)

Step 2. In order to check consistency, the defuzzification procedure is temporarily
applied [84]:

de f uzz
(

w̃qp
ii′

)
=

(
w̃qp

ii′1 + 2 ∗ w̃qp
ii′2 + w̃qp′

ii′3

)
+
(

w̃qp′

ii′1 + 2 ∗ w̃qp
ii′2 + w̃qp

ii′3′

)
8

(2)

Step 3. Consistency is performed according to the procedure presented in [69]. If the
consistency index of each given matrix is <10%, it is considered that the matrix is consistent,
and no corrections are necessary.

Step 4. Weights of each KPI i, at the level of each expert q and at the level of each
business process p are calculated using the methodology shown in [68]:

w̃qp
i =

m̃qp
i

∑I
i=1 m̃qp

i
(3)

where m̃qp
i is calculated as geometric mean:

m̃qp
i = I

√
w̃qp

i1 · . . . ·w̃qp
iI ; i = 1, . . . , I; p = 1, . . . , P; q = 1, . . . , Q; (4)

Step 5. By using the fuzzy averaging operator, aggregated values of the weights of
each KPI i, at the level of each business process p, are determined:

w̃p
i =

1
Q
·

Q

∑
q=1

w̃qp
i ; i = 1, . . . , I; p = 1, . . . , P; q = 1, . . . , Q; (5)

Figure 1 shows the steps of the proposed algorithm.
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Figure 1. Steps of the proposed algorithm.

Step 6. Using predefined linguistic statements, decision-makers within each enterprise
e estimate the fuzzy ratings of KPIs’ values for each process p, ṽep

i .
Step 7. Fuzzy ratings of values of KPIs are normalized using the linear normalization

procedure [85], for benefit-type and cost-type of KPIs, respectively:

r̃ep
i =

{(
vep

i1
v+3

,
vep

i2
v+3

,
vep

i3
v+3

)
,

(
vep

i1
′

v+3
,

vep
i2

v+3
,

vep
i3
′

v+3

)}
(6)

r̃ep
i =

{(
v−1
vep

i3
,

v−1
vep

i2
,

v−1
vep

i1

)
,

(
v−1
vep

i3
′ ,

v−1
vep

i2
,

v−1
vep

i1
′

)}
(7)

where: v+3 = max
{

vep
i3

}
, v−1 = min

{
vep

i1

}
, i = 1, ..., I; e = 1, ..., E; p = 1, ..., P.

Step 8. The weighted normalized fuzzy KPIs’ values, within the enterprise e, for each
process p, are calculated as:

d̃ep
i = w̃p

i ·r̃
ep
i ; i = 1, . . . , I; e = 1, . . . , E; p = 1, . . . , P (8)



Sustainability 2022, 14, 1697 9 of 22

Step 9. Fuzzy ratings of BPM success at the level of each business process p, for each
enterprise e, are calculated as:

Õep =
∑I

i=1 d̃ep
i

I
; i = 1, . . . , I; e = 1, . . . , E; p = 1, . . . , P (9)

Step 10. By using the defuzzification procedure (step 2 of the algorithm), scalar ratings
of BPM success (RBPMS) for each process within each enterprise are obtained:

RBPMSep = de f uzz
(

Õep
)

(10)

Step 11. Using predefined linguistic statements, decision-makers within each enter-
prise e estimate the fuzzy ratings of the indicators of customer satisfaction (ICS): ṽe

i ; i = 1, ...,
I; e = 1, ..., E.

Step 12. By using the linear normalization procedure (step 7 of the algorithm), these
ratings become comparable: r̃e

i ; i = 1, ..., I; e = 1, ..., E.
Step 13. By using the defuzzification procedure (step 2 of the algorithm), scalar ratings

of ICS, for each enterprise e, are obtained: RICSe
i ; i = 1, ..., I; e = 1, ..., E.

Step 14. Applying neural network to obtain optimization equations based on the scalar
ratings of the observed indicators’ values (RICS) as dependent variables and scalar ratings
of BPM success (RBPMS) as independent variables:

f ([RICS]IxE) = pureline
([

LW2,1
]

Ix10
x
(

tansig
(
[IW1,1]10xI

[
RBPMS1

]
IxE

+ [b1]10x1

))
+
[
b2
]

Ix1

)
(11)

where E represents the overall number of considered enterprises, I is the overall number of
ICS, while IW1,1, LW2,1, b1 and b2 present matrixes of the weights vectors and biases in the
two-layered neural network, respectively.

Step 15. Applying GA to obtain optimal RBPMS based on the equations derived from
the previous step and the desired level of observed customer satisfaction indicators:

max( f ([RICS∗]IxM)) = pureline
([

LW2,1
]

Ix10
x
(

tansig
(
[IW1,1]10xI

[
RBPMS1∗

]
IxM

+ [b1]10x1

))
+
[
b2
]

Ix1

)
(12)

where
[
RBPMS1∗]

IxM present the proposed optimal values in order to achieve desired
levels of [RICS∗]IxM and M presents the overall number of obtained optimal solutions.

Step 16. Determining the gaps between current and optimal RBPMS for each process
within the observed enterprise.

Step 17. Proposing optimal improvements for observed enterprise, based on the
ranking of gaps.

4. Illustrative Example

As well as in other countries of the world, manufacturing SMEs operating in Serbia
gain a significant role in the country’s economy. This is why the proposed algorithm’s
application is tested on data given from 30 manufacturing SMEs operating in this country.
These companies belong to the sector of the metal processing industry, which is very
important for the development of Serbia. In accordance with [57], four key business
processes for manufacturing SMEs which are observed in this paper are: (1) purchasing
process, (2) production process, (3) marketing and sales process, and (4) after-sales service
process. In compliance with the existing literature and the results of good practice, KPIs for
each of these processes (Table 3) were determined.
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Table 3. KPIs of observed business processes [57]. Sources from the one of the author’s dissertation.

Purchasing Production Marketing and Sales After-Sales
Service Process

i = 1 % of complete orders

Number of complaints
due to

non-compliance/total
number of complaints

(in %)

% of realization of sales
plan (quantity)

% of complaints resolved
in time

i = 2 % of late purchases % of product
incompetence % of offers completed % of complaints approved

i = 3 % inconsistent quality % of production plan
realization (quantity) % of late deliveries % of recurring complaints

i = 4
Non-compliance

costs/total procurement
costs (in %)

% of the cost of scrap
% of marketing

campaigns that did not
start in time

% of phone calls
answered in time

i = 5 Time from procurement
request to contract signing

Time of unplanned
delays/total production

cycle time

Completeness of market
research information

i = 6
Market research

costs/total marketing and
sales costs

On the other hand, the observed indicators of customer satisfaction, determined in the
same way, are: (1) degree of fulfillment of customer requirements, (2) customer satisfaction
with quality, (3) customer loyalty, and (4) customer satisfaction with the implementation of
the contract. Customer requirements are the desired characteristics of products that should
be met in order that the customer will decide to purchase the product. Satisfaction with
product quality refers to products’ technical and functional characteristics that are subject to
complaints [86]. Customer loyalty represents the degree of customers retention [87], while
satisfaction with the implementation of the contract refers to all the elements specified in
the sales contract, which the company is obliged to fulfill. It is assumed that the importance
of these indicators is equal.

Data collection was performed by collecting filled-up questionnaires, as shown in [57].
In order to determine the weights of KPIs, for each process, six experts q were engaged.
Their fuzzy assessments of the relative importance of KPIs are shown in [57]. Furthermore,
in the mentioned work, input data for the KPIs’ values are given, based on the assessments
of managers from each of 30 SMEs. These assessments are presented in Appendix A. In
order to evaluate the values of indicators of customer satisfaction, data in Appendix B were
collected, also based on the assessments of managers.

Based on the collected data, the proposed algorithm is tested.

Demonstration of the Algorithm

Figure 2 presents the fuzzy pair-wise comparison matrix of the relative importance of
KPIs for the purchasing process, assessed by expert q = 4. He gave his statement based on
his knowledge and experience (Step 1 of the Algorithm). Here, the decision-maker used
five predefined linguistic expressions which were modeled by TIFNs.
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Figure 2. Fuzzy pair-wise comparison matrix for the purchasing process.

After that, for each element of the stated fuzzy pair-wise comparison matrices, de-
fuzzification was performed to check the consistency of the entered data (Step 2 of the

Algorithm). The defuzzification method is illustrated in an example of the TIFN
~
A3.

de f uzz
(

~
A3

)
=

(2 + 2 ∗ 3 + 4) + ( 1.8 + 2 ∗ 3 + 4.2)
8

= 3

In the same way, scalar values of other elements of the fuzzy pair-wise comparison
matrices were calculated. An example of obtained pair-wise comparison matrix with scalar
values is given in Figure 3.

Figure 3. Pair-wise comparison matrix for the purchasing process.

Using the existing procedure Consistency Index was calculated (Step 2 of the Algo-
rithm). Its value is 0.05, so this matrix may be considered consistent, and it is not necessary
to re-evaluate the relative importance of KPIs. In the same way, the consistency of other
pair-wise comparison matrices was checked.

By using Step 4 of the Algorithm, the weight of KPI i = 1 of the purchasing process
(p = 1), at the level of expert q = 4, was calculated as:

w̃41
1 =

m̃41
1

∑5
i=1 m̃41

i
= {(0.087, 0.1758, 0.369), (0.0805, 0.1758, 0.3993)}

where m̃41
1 = {(0.6444, 1, 1.5519), (0.6203, 1, 1.6122)}.

In the same way, weights of the rest considered KPIs, obtained by each expert, are
calculated at each business process level.

By applying Step 5 of the proposed Algorithm, aggregated weights of each KPI at
the level of each business process are obtained (Appendix C). In accordance with this, the
weight of KPI i = 1 for process p = 1 is calculated as:

w̃1
1 = {(0.1720, 0.3274, 0.5771), (0.1581, 0.3274, 0.6328)}

In Step 6, fuzzy assessments of the KPIs’ values, at the level of each business process,
were estimated by decision-makers of each enterprise using seven predefined linguistic
expressions which were modeled by TIFNs (Appendix A).

The application of Step 7 of the proposed Algorithm is illustrated by the example: let
the value of KPI (i = 1) at the level of business process p = 1 in enterprise e = 1 be described
by TIFN:

ṽ11
1 = {( 7, 8, 9), ( 6.7, 8, 9)}
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The normalized value of this benefit-type KPI is calculated as:

r̃1
1 =

{(
7
9

,
8
9

,
9
9

)
,
(

6.7
9

,
8
9

,
9
9

)}
= {(0.7778, 0.8889, 1), ( 0.7444, 0.8889, 1)}

In the same way, normalized values of all KPIs for all business processes in each
enterprise were calculated.

Using Step 8 of the Algorithm, the weighted normalized values of all KPIs for each
business process in each enterprise were calculated. An example illustrates this for KPI
i = 1 of process p = 1 in enterprise e = 1:

d̃11
1 = w̃1

1·r̃11
1 = {(0.1720, 0.3274, 0.5771), (0.1581, 0.3274, 0.6328)}

·{{(0.7778, 0.8889, 1), ( 0.7444, 0.8889, 1)}}
= {(0.1338, 0.2910, 0.5771), ( 0.1177, 0.2910, 0.0.6328)}

In the same way, the weighted normalized values of all other KPIs are calculated.
After that, fuzzy ratings of BPM success at each enterprise’s level of each business

process are calculated using Step 9 of the Algorithm. Obtained fuzzy rating for process
p = 1 in enterprise e = 1 is:

Õ11 = {(0.0631, 0.1826, 0.3599), ( 0.0528, 0.1826, 0.3916)}

Finally, using the defuzzification procedure (Step 10) representative scalar of this
rating is obtained:

RBPMS11 = 0.1997

In the same way, scalar ratings of BPM success at the level of each business process
for each enterprise are calculated. These ratings are later used as input data to obtain
optimization equations (Appendix B).

In Step 11 decision-makers assess ICS, using predefined linguistic statements, which
are then modeled by TIFNs. Let the first ICS i = 1, in the enterprise e = 1, be described by
the linguistic expression “High value”. This expression is then modeled as TIFN:

ṽ1
1 = {( 7, 8, 9), ( 6.7, 8, 9)}

In Step 12 of the Algorithm, this value is normalized and calculated as shown in Step 7,
so the obtained result is:

r̃1
1 = {(0.7778, 0.8889, 1), ( 0.7444, 0.8889, 1)}

By using the defuzzification procedure in Step 13 scalar rating of ICS i = 1, for enter-
prise e = 1, is calculated:

RICS1
1 = 0.8847

In the same way, the RICS of all indicators in all enterprises are calculated, and they
also present input data for obtaining the optimization equations (Appendix B).

In Step 14, ANN is used to obtain optimization equations based on the RICSe
i as

dependent variables, and RBPMSep as independent variables, i = 1, ..., I; e = 1, ..., E; p = 1,
. . . P. A backpropagation ANN with two layers is used, and appropriate weights and
biases are calculated, as shown in Appendix C.

In Step 15 of the Algorithm, the limits of all RICS values are set to be 0.97, as it is the
maximum value of RICS. The goal is to achieve the optimal scores for all RICS at once,
which is as close as possible to the value of 0.97. By using the GA, optimal RBPMS for each
process are obtained (Appendix D). It can be seen that there are nine solutions, and in this
example, the final solution (see Table 4) was chosen as optimal because it has the highest
scores of all RICS observed.
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Table 4. Chosen solution.

Optimal RBPMS RICS

p = 1 p = 2 p = 3 p = 4 i = 1 i = 2 i = 3 i = 4

0.4976 0.1451 0.3559 0.9864 0.857691 0.948955 0.78133 0.899164

Based on the results obtained, each enterprise can identify gaps between current and
optimal RBPMS values for each process (Step 16). The results for the enterprise e = 23 are
shown in Figure 4. n the same way, scalar values of other el

Figure 4. Results for enterprise e = 23.

Based on Figure 4, managers of SME e = 23 can see that the highest gap between the
current and optimal values is for processes p = 4, i.e., after-sales service process, and this
means that this process needs the greatest improvements. On the other hand, it is seen that
the production process (p = 2) does not need improvement. According to the enterprise’s
strategy, managers of this SME should decide which methods of the business processes
improvement will be applied (Step 17 of the Algorithm). There are different possibilities,
depending on their opinions and available resources.

In order to improve the process with the highest gap, managers of this SME can be
focused on the calculated weights of KPIs for the after-sales service process, obtained in
Step 5 of the Algorithm. The most important KPI is “% of complaints resolved in time”,
which is a benefit type KPI. It means that corrective actions may firstly be aimed to increase
the value of that KPI. In order to improve this indicator, business managers of the observed
SME should consider whether it is necessary to increase the number of employees involved
in resolving complaints or perhaps to carry out their additional training. After that, the
manager may focus on the improvements of other KPIs. These improvements can be
realized through better communication with customers and proper execution of complaints,
respecting all customer requirements, their advice, and suggestions in accordance with
service recovery practice.

After that, the decision-makers of SME e = 23 can decide to implement strategies
that should improve the purchasing process. In this process, the most important KPI is
“% of complete orders”, a benefit type KPI the value of which should be increased. This
can be achieved by choosing suppliers who have a better reputation and who are more
responsible towards their associates. Managers can also focus their attention on other KPIs,
but since those KPIs refer to the quality and time for which the suppliers are responsible,
the best way for the KPIs improvement is to carry out the process of evaluation, ranking,
and selection of appropriate suppliers correctly.

In the end, looking at the obtained results, it can be seen that KPI with the most
significant importance for the marketing and sales process is “% of realization of sales
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plan (quantitative)”. It means that corrective actions may first be aimed to increase the
value of this KPI. This can be done by aligning the sales plan with realistic possibilities,
improving marketing activities, and using new forms of promotion. Other ways to improve
this process are more careful planning of marketing activities, including determining the
promoter, the order in which promotions are performed, the number of funds required,
improving product delivery time, etc.

5. Conclusions

In order to develop their business and survive in the market, production SMEs must
constantly satisfy the customers of their products. Increasing customer satisfaction may
lead to increased profits, which is important for the sustainability of SMEs.

The paper contributes to creating a BPM management model that improves the art’s
current state on methodological and substantive bases with two contributions: integrating
new information and using artificial intelligence techniques. The proposed model is used
to find out whether it is possible to determine the link between the BPM success, which
depends on the KPIs of business processes, and customer satisfaction. Therefore, on the
basis of calculated weights and values of KPIs, RBMPS ratings for each process within each
enterprise are obtained. On the other hand, there are ratings of the indicators of customer
satisfaction (RICS), within each enterprise. Using ANN and GA the links between these
two types of ratings are discovered and optimal solutions of RBMPS are proposed while
maximizing the RICS values. So, by improving the values of KPIs, RBMPS ratings will be
improved, which should lead to the improvement of RICS values, i.e., customer satisfaction.

The results provide evidence on how to separate the different performance dimensions
to identify a direction for improvement of customer satisfaction. There were two primary
scientific objectives. The first objective was to develop a model for assessing the process
KPIs and customer satisfaction RICS indices from various aspects. The second objective
was to develop an optimization model to support the decision-making process and to
make optimal decisions to improve individual process KPIs based on RICS desired levels.
Accordingly, a mathematical model with an accompanying 17-step algorithm was proposed.

The first part of the algorithm refers to determining ratings of BPM success and RICS
values. This is done by a fuzzy mathematical model where existing uncertainties and im-
precisions are modeled by TIFNs. These numbers are used in the proposed model because
they present a good way of modeling human thinking. Since the issue of determining the
weights of KPIs is stated as a multi-criteria decision-making problem, fuzzy AHP approach
and fuzzy averaging operator are used. Aggregated weights and normalized fuzzy ratings
of KPIs are used to obtain ratings of BPM success for each process in each SME. On the other
hand, fuzzy ratings of ICS values in each enterprise were normalized and then defuzzified
using the fuzzy algebra rules.

The second part of the algorithm uses ANN and GA approaches to determine the
optimal scalar ratings of BPM success for each process within an SME. A two-layered BP
ANN is used to calculate appropriate weights and biases. They are then used in GA in
order to determine the optimal RBPMS for each process. The goal is to achieve the highest
possible scores for all RICS at once. Based on these results, it is possible to determine the
gaps between current and optimal ratings and to propose optimal improvements for each
SME. This is very important for SMEs operating in today’s changing environment.

The algorithm was tested on the data from 30 manufacturing SMEs operating in Serbia.
It has been shown that there is a significant relationship between the observed business
processes and ICSs. This allows the determination of the optimal level of improvements
of business processes in an exact manner. Based on the obtained results, some of the
methods for the business processes improvement are explained, which should lead to the
improvement of customer satisfaction.

The proposed algorithm is very flexible. It allows the observation of a large number
of SMEs, their business processes, KPIs, and ICS simultaneously. This is very important
to obtain the most accurate results since they largely depend on the number of observed
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SMEs and entered values. Additionally, having data from different companies enables
benchmarking, meaning that each company could compare their results with the results of
other companies.

The practical implications include determining a decision support system that will
enable the adoption of optimal decisions by the SMEs management team to improve the
values of the process KPIs and customer satisfaction. The presented system may enable
benchmarking, simulation, and verification of different scenarios to improve the process
KPIs’ and customer satisfaction RICS values of the SMEs.

The originality of the research lies in the presented two-part model that can be made
available to SMEs and serve as a basis for determining future strategic directions.

However, collecting data from companies is not always an easy task, as they are not
always willing to provide information. Furthermore, as in many genuine problems, the
main disadvantage of the proposed model is obtaining input data of maximal accuracy
because they depend strictly on the knowledge and the experience of the decision-makers.
Besides, there is also a risk of their subjectivity when filling in the data.

Future works could test the developed methodology in other industrial branches, with
other KPIs or ICS. Additionally, different types of ANN and optimization constraints could
be applied.
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Appendix A

Table A1. Assessments of the KPIs’ values for the procurement process.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30

i1 ṽ6 ṽ6 ṽ6 ṽ5 ṽ5 ṽ5 ṽ5 ṽ6 ṽ6 ṽ6 ṽ6 ṽ5 ṽ4 ṽ3 ṽ4 ṽ5 ṽ3 ṽ3 ṽ5 ṽ4 ṽ3 ṽ3 ṽ4 ṽ6 ṽ4 ṽ4 ṽ5 ṽ4 ṽ4 ṽ5

i2 ṽ1 ṽ2 ṽ2 ṽ2 ṽ1 ṽ1 ṽ2 ṽ2 ṽ2 ṽ1 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ2 ṽ3 ṽ4 ṽ2 ṽ2 ṽ3 ṽ3 ṽ3 ṽ1 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ3

i3 ṽ1 ṽ2 ṽ1 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ1 ṽ1 ṽ3 ṽ3 ṽ3 ṽ3 ṽ2 ṽ3 ṽ3 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ1 ṽ2 ṽ3 ṽ3 ṽ2 ṽ3 ṽ3

i4 ṽ1 ṽ2 ṽ2 ṽ2 ṽ1 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ1 ṽ3 ṽ2 ṽ2 ṽ3 ṽ2 ṽ3 ṽ3 ṽ2 ṽ2 ṽ4 ṽ3 ṽ3 ṽ2 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ2

i5 ṽ2 ṽ2 ṽ2 ṽ3 ṽ2 ṽ3 ṽ2 ṽ2 ṽ1 ṽ1 ṽ2 ṽ2 ṽ3 ṽ2 ṽ2 ṽ2 ṽ3 ṽ3 ṽ2 ṽ2 ṽ3 ṽ4 ṽ4 ṽ2 ṽ2 ṽ3 ṽ2 ṽ3 ṽ3 ṽ2

Table A2. Assessments of the KPIs’ values for the production process.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30

i1 ṽ1 ṽ1 ṽ1 ṽ1 ṽ2 ṽ1 ṽ1 ṽ1 ṽ1 ṽ1 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ3 ṽ3 ṽ2 ṽ3 ṽ2 ṽ2 ṽ1 ṽ1 ṽ2 ṽ1 ṽ1 ṽ1 ṽ1 ṽ3

i2 ṽ1 ṽ1 ṽ1 ṽ2 ṽ2 ṽ2 ṽ1 ṽ1 ṽ1 ṽ1 ṽ3 ṽ3 ṽ2 ṽ3 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ2 ṽ3

i3 ṽ7 ṽ6 ṽ6 ṽ5 ṽ5 ṽ6 ṽ6 ṽ6 ṽ6 ṽ7 ṽ5 ṽ5 ṽ4 ṽ4 ṽ5 ṽ6 ṽ4 ṽ4 ṽ6 ṽ5 ṽ4 ṽ5 ṽ5 ṽ6 ṽ5 ṽ4 ṽ6 ṽ5 ṽ5 ṽ3

i4 ṽ1 ṽ1 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ1 ṽ1 ṽ1 ṽ3 ṽ3 ṽ2 ṽ3 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ3

i5 ṽ1 ṽ1 ṽ1 ṽ2 ṽ2 ṽ2 ṽ1 ṽ1 ṽ1 ṽ1 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ3 ṽ3 ṽ4 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ3
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Table A3. Assessments of the KPIs’ values for the marketing and sales process.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30

i1 ṽ7 ṽ6 ṽ5 ṽ5 ṽ4 ṽ4 ṽ6 ṽ6 ṽ6 ṽ7 ṽ6 ṽ6 ṽ5 ṽ4 ṽ5 ṽ6 ṽ4 ṽ4 ṽ6 ṽ5 ṽ5 ṽ5 ṽ6 ṽ7 ṽ6 ṽ5 ṽ6 ṽ5 ṽ6 ṽ4

i2 ṽ5 ṽ5 ṽ5 ṽ4 ṽ4 ṽ4 ṽ5 ṽ6 ṽ6 ṽ7 ṽ5 ṽ5 ṽ4 ṽ4 ṽ5 ṽ6 ṽ4 ṽ4 ṽ5 ṽ4 ṽ5 ṽ4 ṽ4 ṽ5 ṽ4 ṽ4 ṽ5 ṽ4 ṽ5 ṽ5

i3 ṽ2 ṽ2 ṽ2 ṽ1 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ2 ṽ3 ṽ2 ṽ3 ṽ2 ṽ1 ṽ2 ṽ3 ṽ2 ṽ2 ṽ2 ṽ5 ṽ1 ṽ1 ṽ2 ṽ3 ṽ2 ṽ3 ṽ1 ṽ2

i4 ṽ1 ṽ2 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ2 ṽ3 ṽ3 ṽ3 ṽ2 ṽ3 ṽ3 ṽ2 ṽ3 ṽ3 ṽ3

i5 ṽ6 ṽ6 ṽ6 ṽ5 ṽ5 ṽ5 ṽ6 ṽ6 ṽ5 ṽ7 ṽ5 ṽ5 ṽ4 ṽ5 ṽ5 ṽ6 ṽ4 ṽ3 ṽ5 ṽ5 ṽ5 ṽ5 ṽ4 ṽ6 ṽ5 ṽ4 ṽ5 ṽ5 ṽ6 ṽ4

i6 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ1 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ2 ṽ1 ṽ2 ṽ2 ṽ1 ṽ2 ṽ2 ṽ2 ṽ3

Table A4. Assessments of the KPIs’ values for the after-sales service process.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30

i1 ṽ5 ṽ5 ṽ4 ṽ4 ṽ4 ṽ4 ṽ4 ṽ5 ṽ4 ṽ5 ṽ6 ṽ5 ṽ5 ṽ4 ṽ5 ṽ5 ṽ4 ṽ4 ṽ5 ṽ4 ṽ2 ṽ3 ṽ4 ṽ5 ṽ4 ṽ4 ṽ5 ṽ4 ṽ5 ṽ3

i2 ṽ3 ṽ3 ṽ2 ṽ2 ṽ2 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ4 ṽ3 ṽ3 ṽ3 ṽ3 ṽ3 ṽ3 ṽ3 ṽ4 ṽ3 ṽ2 ṽ4 ṽ4 ṽ5 ṽ3 ṽ3 ṽ3 ṽ3 ṽ4 ṽ3

i3 ṽ2 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ1 ṽ2 ṽ2 ṽ1 ṽ1 ṽ2 ṽ2 ṽ3 ṽ2 ṽ2 ṽ3 ṽ3 ṽ2 ṽ3 ṽ5 ṽ4 ṽ3 ṽ2 ṽ3 ṽ3 ṽ3 ṽ3 ṽ3 ṽ4

i4 ṽ5 ṽ5 ṽ4 ṽ3 ṽ3 ṽ3 ṽ4 ṽ4 ṽ4 ṽ5 ṽ5 ṽ4 ṽ4 ṽ3 ṽ4 ṽ5 ṽ3 ṽ3 ṽ4 ṽ3 ṽ2 ṽ2 ṽ4 ṽ5 ṽ3 ṽ3 ṽ4 ṽ3 ṽ3 ṽ2

Appendix B

Table A5. Values of indicators of customer satisfaction.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30

ICS1ṽ6 ṽ6 ṽ5 ṽ5 ṽ4 ṽ4 ṽ6 ṽ5 ṽ5 ṽ6 ṽ5 ṽ4. ṽ5 ṽ4 ṽ5 ṽ6 ṽ4 ṽ4 ṽ6 ṽ4 ṽ4 ṽ4 ṽ5 ṽ6 ṽ4 ṽ3 ṽ4 ṽ4 ṽ5 ṽ4

ICS2ṽ6 ṽ6 ṽ6 ṽ5 ṽ5 ṽ5 ṽ6 ṽ6 ṽ5 ṽ6 ṽ6 ṽ5 ṽ6 ṽ4 ṽ5 ṽ6 ṽ4 ṽ4 ṽ6 ṽ4 ṽ4 ṽ5 ṽ6 ṽ7 ṽ4 ṽ4 ṽ5 ṽ4 ṽ6 ṽ4

ICS3ṽ6 ṽ5 ṽ5 ṽ5 ṽ5 ṽ5 ṽ6 ṽ6 ṽ5 ṽ6 ṽ5 ṽ5 ṽ6 ṽ4 ṽ5 ṽ5 ṽ4 ṽ4 ṽ4 ṽ4 ṽ4 ṽ4 ṽ5 ṽ6 ṽ4 ṽ4 ṽ4 ṽ4 ṽ5 ṽ3

ICS4ṽ5 ṽ5 ṽ5 ṽ6 ṽ4 ṽ4 ṽ4 ṽ5 ṽ5 ṽ6 ṽ4 ṽ4 ṽ4 ṽ4 ṽ6 ṽ6 ṽ4 ṽ4 ṽ5 ṽ4 ṽ4 ṽ4 ṽ5 ṽ6 ṽ4. ṽ4 ṽ4 ṽ4 ṽ6 ṽ3.

Appendix C

Table A6. Obtained Weights of KPIs for Each Process.

Obtained Weights of KPIs for Each Process Are:
∼
w

1
1 = {(0.1720, 0.3274, 0.5771), ( 0.1581, 0.3274, 0.6328)}
∼
w

1
2 = {(0.1205, 0.2275, 0.4179), ( 0.1114, 0.2275, 0.4593)}
∼
w

1
3 = {(0.1055, 0.1821, 0.3243), ( 0.0969, 0.1821, 0.3513)}
∼
w

1
4 = {(0.0955, 0.1621, 0.2898), ( 0.0878, 0.1621, 0.3113)}
∼
w

1
5 = {(0.0628, 0.1008, 0.1904), ( 0.0574, 0.1008, 0.2031)}
∼
w

2
1 = {(0.1795, 0.3091, 0.4984), ( 0.1647, 0.3091, 0.5521)}
∼
w

2
2 = {(0.1658, 0.2704, 0.4282), ( 0.1508, 0.2704, 0.4701)}
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Table A6. Cont.

Obtained Weights of KPIs for Each Process Are:
∼
w

2
3 = {(0.1229, 0.1928, 0.3151), ( 0.1115, 0.1928, 0.3411)}
∼
w

2
4 = {(0.0776, 0.1138, 0.1809), ( 0.0713, 0.1138, 0.1961)}
∼
w

2
5 = {(0.0776, 0.1138, 0.1809), ( 0.0713, 0.1138, 0.1961)}
∼
w

3
1 = {(0.1499, 0.2893, 0.5054), ( 0.1384, 0.2893, 0.5522)}
∼
w

3
2 = {(0.0896, 0.1605, 0.2973), ( 0.0827, 0.1605, 0.3207)}
∼
w

2
3 = {(0.1093, 0.2159, 0.3944), ( 0.1030, 0.2159, 0.4310)}
∼
w

3
4 = {(0.0807, 0.1349, 0.2406), ( 0.0750, 0.1349, 0.2557)}
∼
w

3
5 = {(0.0676, 0.1110, 0.2075), ( 0.0624, 0.1110, 0.2188)}
∼
w

3
6 = {(0.0550, 0.0883, 0.1682), ( 0.0504, 0.0883, 0.1784)}
∼
w

4
1 = {(0.1958, 0.3924, 0.7042), ( 0.1833, 0.3924, 0.7789)}
∼
w

4
2 = {(0.1463, 0.2749, 0.5046), ( 0.1364, 0.2749, 0.5536)}
∼
w

4
3 = {(0.1062, 0.1814, 0.3517), ( 0.0961, 0.1814, 0.3720)}
∼
w

4
4 = {(0.0915, 0.1512, 0.2967), ( 0.0823, 0.1512, 0.3106)}

Appendix D

Table A7. Input data for defining optimization equations using ANN.

p = 1 p = 2 p = 3 p = 4 ICS = 1 ICS = 2 ICS = 3 ICS = 4

e = 1 0.1997 0.1994 0.1497 0.1833 0.88 0.88 0.88 0.72

e = 2 0.1688 0.1965 0.1463 0.1833 0.88 0.88 0.72 0.72

e = 3 0.1787 0.1898 0.1379 0.1271 0.72 0.88 0.72 0.72

e = 4 0.1492 0.162 0.1304 0.1199 0.72 0.72 0.72 0.88

e = 5 0.1784 0.146 0.1121 0.1159 0.56 0.72 0.72 0.56

e = 6 0.1614 0.1687 0.1061 0.1199 0.56 0.72 0.72 0.56

e = 7 0.1574 0.1965 0.1403 0.1705 0.88 0.88 0.88 0.56

e = 8 0.1688 0.1965 0.1451 0.176 0.72 0.88 0.88 0.72

e = 9 0.1842 0.1965 0.1417 0.1582 0.72 0.72 0.72 0.72

e = 10 0.2052 0.1994 0.1673 0.1955 0.88 0.88 0.88 0.88

e = 11 0.1875 0.1181 0.1428 0.2255 0.72 0.88 0.72 0.56

e = 12 0.1122 0.1092 0.1198 0.176 0.56 0.72 0.72 0.56

e = 13 0.1048 0.1301 0.1172 0.176 0.72 0.88 0.88 0.56

e = 14 0.1095 0.1023 0.0978 0.1323 0.56 0.56 0.56 0.56

e = 15 0.1003 0.137 0.1385 0.176 0.72 0.72 0.72 0.88

e = 16 0.1574 0.1159 0.1647 0.1833 0.88 0.88 0.72 0.88

e = 17 0.0803 0.0804 0.1128 0.1323 0.56 0.56 0.56 0.56

e = 18 0.0745 0.0775 0.0995 0.1323 0.56 0.56 0.56 0.56
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Table A7. Cont.

p = 1 p = 2 p = 3 p = 4 ICS = 1 ICS = 2 ICS = 3 ICS = 4

e = 19 0.1574 0.1527 0.1489 0.1888 0.88 0.88 0.56 0.72

e = 20 0.1312 0.0873 0.1295 0.1323 0.56 0.56 0.56 0.56

e = 21 0.0762 0.1023 0.1257 0.0687 0.56 0.56 0.56 0.56

e = 22 0.0777 0.1092 0.1207 0.1141 0.56 0.72 0.56 0.56

e = 23 0.1038 0.1531 0.1392 0.1522 0.72 0.88 0.72 0.72

e = 24 0.1909 0.1687 0.1592 0.2087 0.88 0.97 0.88 0.88

e = 25 0.1455 0.146 0.1291 0.1323 0.56 0.56 0.56 0.56

e = 26 0.0921 0.1551 0.1069 0.1323 0.39 0.56 0.56 0.56

e = 27 0.1122 0.1687 0.1428 0.1574 0.56 0.72 0.56 0.56

e = 28 0.1064 0.1763 0.1065 0.1323 0.56 0.56 0.56 0.56

e = 29 0.0921 0.162 0.1472 0.1629 0.72 0.88 0.72 0.88

e = 30 0.1249 0.0735 0.1075 0.1201 0.56 0.56 0.39 0.39

Appendix E

Table A8. Hidden layer values of the parameters.

IW b1

1.5007 −1.6309 0.86557 0.99701 −2.4988

1.226 1.3628 −1.1437 −1.3141 −1.9081

−1.1365 1.7555 0.71124 −1.0712 1.3724

1.3059 −0.29296 1.4443 −1.315 −0.93135

1.4984 1.1729 0.55347 −1.8375 −0.67932

−1.3306 -1.3533 0.75435 1.0208 −0.72682

−1.0031 −0.26165 1.1011 1.7896 −0.35753

−0.20505 1.7655 −0.73274 −1.0372 1.6335

1.3854 1.0058 0.21794 1.5918 1.8425

1.1397 1.1896 −1.0599 −1.3549 2.6502

Table A9. Output layer values of the parameters.

LW b2

−0.13908 −0.7086 0.49561 0.23919 0.3903 −0.14243 0.258 −0.42744 0.14419 −0.33634 −0.00906

0.061347 0.11178 0.35141 −0.09187 0.21791 −0.44646 0.91944 −0.21342 −0.09013 −0.53321 0.4686

0.77751 −0.31071 −0.02863 −0.4486 0.75258 0.5476 −0.01411 0.45881 0.45256 0.022131 0.12332

0.41696 −0.02417 0.672 0.45597 0.051214 0.28033 0.26372 0.11978 0.20632 −0.1249 0.20288
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Appendix F

Table A10. Optimal results. obtained by GA.

Purchasing Production Marketing
and Sales

After Sales
Service
Process

Degree of
Fulfillment of

Customer
Requirements

Customer
Satisfaction

with Quality

Customer
Loyalty

Customer
Satisfaction with

the
Implementation
of the Contract

0.7586 0.4725 0.2599 0.2277 0.508906 0.718982 0.945718 0.969928

0.3097 0.5117 0.1003 0.7245 0.382157 0.970195 0.449697 0.55818

0.5141 0.3679 0.1819 0.7559 0.660412 0.965324 0.754372 0.496481

0.3113 0.5099 0.1341 0.7264 0.598932 0.980704 0.574131 0.658281

0.3101 0.5091 0.1131 0.7195 0.45391 0.979403 0.478917 0.598719

0.3371 0.5151 0.1228 0.7406 0.403378 0.960478 0.570081 0.590135

0.4766 0.4049 0.1043 0.6482 0.181812 0.946201 0.957059 0.547001

0.4978 0.0634 0.3086 0.9457 0.832441 0.95707 0.828687 0.85103

0.4976 0.1451 0.3559 0.9864 0.857691 0.948955 0.78133 0.899164
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