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Abstract: The serially-correlated nature of engine operation is overlooked in the vehicular fuel and
emission modeling literature. Furthermore, enabling the calibration and use of time-series models for
instrument-independent eco-driving applications requires reliable forecast aggregation procedures.
To this end, an ensemble time-series machine-learning methodology is developed using data collected
through extensive field experiments on a fleet of 35 vehicles. Among other results, it is found that
Long Short-Term Memory (LSTM) architecture is the best fit for capturing the dynamic and lagged
effects of speed, acceleration, and grade on fuel and emission rates. The developed vehicle-specific
ensembles outperformed state-of-the-practice benchmark models by a significant margin and the
category-specific models outscored the vehicle-specific sub-models by an average margin of 6%. The
results qualify the developed ensembles to work as representatives for vehicle categories and allows
them to be utilized in both eco-driving services as well as environmental assessment modules.

Keywords: vehicular emissions; eco-driving; recurrent neural networks; ensemble learning

1. Introduction

Training meso- and micro-scale models for estimating vehicular Fuel Consumption Rate
(FCR) and Emission Rates (ER) is a fundamental step towards developing reliable eco-driving
assistance services. Such models could also be used as a part of environmental-assessment
modules in the existing traffic simulation software. The micro-scale models focus on
understanding instantaneous correlations between the state of the vehicle and the fuel and
emission rates. They provide richer information for transportation environmental analysis.

The existing micro-scale fuel and emission models suffer from five major issues. First,
many of them depend on Internal Engine Variables (IEV) to achieve acceptable levels of
accuracy [1–7], which eliminates their applicability in instrument-independent eco-driving
services or integration with traffic simulation models.

Second, some of the popular comprehensive models such as MOVES [8] and CMEM [9]
require multiple processing steps that do not allow their real-time use. Some efforts have
been made to tackle this problem by pre-running various scenarios and generating multi-
dimensional matrices for fuel and emission rates [10]; nevertheless, deploying such models
is still computationally expensive.

Third, the existing research-based and commercial models could not be used in coun-
tries other than those of their origin. However, as some counter examples, the American
MOVES model is being widely used in Canada or the European COPERT IV [11] and
LEAP [12] models are being used in South America. As a result, their predictions could be
biased due to the differences in the fleet, driving-habits, meteorology, road conditions, etc.

Our real-world evaluation in Canada [13] revealed that MOVES underestimates energy
consumption and Carbon Dioxide (CO2) rates by 17% and 35%, respectively. A dramatic
overestimation (up to 420%) was observed for Nitrogen Oxides (NOx) and Particulate Matters
(PM) predictions as well.
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Fourth, the time-series and more importantly, the serially-correlated nature of the
engine operation is rarely addressed in the literature. The temporally extended impact
of past driving events (a few seconds before time t) on current fuel and emission rates
is either left unobserved [1,2,4,7,14,15], acknowledged but disregarded and considered
effectless [16], or at best is spread through time as an error using moving average techniques
to improve instantaneous predictions [3,5].

Fifth and last, methodologies for generalization and aggregation of the vehicular fuel
and emission models are missing in the literature. Robust models capable of accurately
forecasting FCR and ERs without the need for parametric calibration for specific vehicle
characteristics would have a wider range of use cases in practice.

We evaluated and attempted to solve the first three of the abovementioned issues in
our two previous publications [13,17]. In this study, we focus on finding solutions for the
last two issues. The novelty of our approach could be summarized as:

(1) To achieve acceptable prediction accuracies in the absence of precise engine-state
measurements (a requirement for instrument-independent models) while addressing
the serial correlation and the lagged impact of variables on FCR and ERs, we utilize a
state-of-the-art Machine Learning (ML) technique of Recurrent Neural Networks (RNN) to
keep the models’ architecture in alignment with the nature of the observed vehicular
operation data.

(2) The fact that the order of lagged effects of variables on FCR and ERs is not necessarily
constant has never been questioned in the literature. Hence, we use an Ensemble Learning
(EL) approach to tackle such uncertainty and dynamicity.

(3) Unlike the vast majority of the previous studies that are confined to vehicle-specific
modeling, we consider the need for category-specific FCR and ER models; hence, we
introduce a generalization methodology (from vehicles to categories) founded upon
well-recognized forecast-combination techniques.

The rest of the paper is structured as follows: In Section 2, some of the notable studies
and commercial efforts on microscale fuel consumption and emission modeling are re-
viewed. Section 3, explains our methodology for RNN time-series modeling and introduces
a two-step EL approach for generalizing the vehicle-specific models to category-specific
ones. The modeling results are then visually and statistically analyzed and discussed in
Section 4. At the end, in Section 5, conclusions are drawn and possible future research
topics following this study are depicted.

2. Literature Review

In addition to the commercial models, there have been several academic studies on
development of microscale FCR and ER estimation models. They range from 0D/1D
approaches (physicochemical simulation) to the use of traditional statistical techniques
such as multivariate linear/nonlinear regression, and finally, taking advantage of emerging
ML algorithms such as Support Vector Machines (SVM) and Artificial Neural Networks (ANN).

Although providing accurate predictions, the sensitivity of the performance of 0D/1D
models [15,18–22] to the accuracy of input variables is a matter of concern. This family
of models is complex and mostly benefits from the IEVs. This makes them instrument-
dependent and therefore, limits their real-world applications.

Cascaded techniques are proposed in the literature to reduce the complexity of the
fuel and emission models. For instance, equilibrium concentrations of oxygen and nitrogen
during NOx formation in the combustion chamber are calculated by injecting IEV measure-
ments into the Zeldovich model [23,24] and the resulting estimates are used to predict the
NOx rate [3].

By the introduction of Virginia Tech’s Comprehensive Power-based Fuel Model (VT-CPFM), a
significant step was taken towards pure data-driven fuel- and emission-rate modeling [5,25].
The model uses nonlinear polynomial regression and estimates of power demand as a
proxy variable. However, the IEV-independent version of the model, VT-CPFM Type I,
cannot compete with the state-of-the-art ML models developed later [17].
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Stepping into ML modeling in the recent few years, simple neural network architec-
tures are widely used in the literature to estimate fuel and emission rates for the cold-start,
hot-start, and hot-stabilized engine conditions [26–29]. However, sophisticated techniques
capable of capturing serial correlation and lagged effects of variables are overlooked. More-
over, independence from IEVs is not prioritized in many of the studies, which dramatically
limits the scope of applicability of the developed models.

As the second part of a series of studies, we started with the validation of predictions
by EPA’s comprehensive emissions model, MOVES [13], we introduced a cascaded machine-
learning methodology for FCR estimation using large amounts of data collected through
on-road measurements [17]. In that study, the absence of influential IEVs such as Engine
Speed (RPM) was compensated for by using their estimates. As a result, the accuracy of
models reached 83%, while improvements as high as 37% were achieved compared to using
an IEV-free variable set. In addition, our assessment of the direct use of lagged variables
in SVR and ANN algorithms proved the weakness of these methods in capturing serially
correlated and lagged effects of variables on FCR, emphasizing the need for a transition to
more innovative ML algorithms.

Time alignment of the input data is a popular method of dealing with lags and auto-
correlation [30,31]. Even the U.S. Environmental Protection Agency (EPA) used the same
method for preprocessing the data while estimating MOVES core models. Nevertheless,
the approach raises criticism as the lagged effects may not occur with a constant order.

The time-series forecasting of the vehicular FCR and ERs is a challenging problem due
to the dynamicity and non-stationarity characteristics of data [32–34]. Volatility in variables
leads to increased forecasting error and when combined with lagged effects, the majority of
the traditional statistical modeling techniques fail to perform acceptably.

RNNs are gaining renewed interest among researchers as they provide promising
results for modeling time-series and serially-correlated phenomena [33]. This family of
ML algorithms is being widely used in the transportation engineering context; however,
they have a pale footprint in vehicular energy and emissions modeling. Most of the
studies focus on predicting traffic-flow attributes such as travel-time, volume, speed, etc.,
or travel-mode and incident detection. For instance, the effect of upstream and down-
stream speed- and occupancy-rate fluctuations on traffic flow prediction is analyzed using
Long Short-Term Memory (LSTM) recurrent neural networks [35]. Moreover, stacked LSTM
architectures are evaluated for traffic flow predictions based using historical daily traffic
patterns and weather variations [36]. In a more recent simulation-based research, short-
term speed of vehicles is predicted using a combination of Convolutional Neural Networks
(CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM). The CNN is used to capture
the local variations of features, while the Bi-LSTM handling the extended temporal rela-
tionships [37]. Such studies have proved the exceptional power of RNNs in capturing
temporally-distributed effects, even with a limited number of input variables. Creative
solutions relying on RNN algorithms have simplified mode-detection process using smart-
phone sensor measurements [38] as higher accuracy could be achieved with RNNs even
with lower-resolution input data, making the models’ execution computationally inexpen-
sive. The use cases of RNN algorithms were recently expanded to classification and pattern
recognition. Road anomaly detection from the perspective of a vehicle is conducted using
RNNs with the physical road characteristics as time-series and serially-correlated inputs to
the models [39]. Moreover, improving near-future travel-time predictions based on histori-
cal data and real-time sensor observations are frequently addressed in the transportation
literature. It is interesting that almost all of the recently proposed models rely on innovative
combinations of RNN techniques [40–46]. In a rare case, RNN technique is introduced
to the vehicular FCR modeling literature as well [47]; however, the generalization of the
developed model is questionable due to use of a single vehicle for experiments.

The capacity of the modeling methodology to allow generalization to more aggregate
levels is an important factor when developing vehicular fuel and emission models either
for eco-driving purposes, use in traffic simulations, or even for large-scale environmental
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assessments in transportation planning. For the purpose of generalization, several forecast
combination techniques are introduced in the traditional statistics literature including meth-
ods of Simple Averaging [48] and the Trimmed and Winsorized means [49]. These methods
underperform significantly when the distribution of data is skewed [32]. An alternative
option frequently used by scholars for ensemble learning is the Ordinary Least Squares (OLS)
regression [50–52].

Forecast combination algorithms have been going through an evolution in recent years.
Methods founded upon the concepts of Decision Trees (DT), Gradient Boosting (GB) and its
extensions such as AdaBoost (AB), Random Forests (RF), SVM, and even ANN have come into
focus of the ensemble modelers and have proved their capability in generating significantly
improved predictions [53,54].

Elucidating the goals of this study, we will try to assess the feasibility of using popular
EL techniques as means of deriving robust category-specific FCR and ER models from
vehicle-specific IEV-independent RNN models. Such an approach opens avenues to simpler
and faster development of accurate fleet-specific models with diverse use cases in the
transportation field.

3. Methodology
3.1. On-Road Experiments

The test fleet for on-road experiments included 35 different passenger cars from three
cities of Montreal (Canada), Bucaramanga (Colombia), and Tehran (Iran). On-Board Diagnostics
(OBD) loggers installed on the vehicles collected the engine-state parameters. Instantaneous
GPS coordinates and accelerometer measurements were logged simultaneously. The OBD
parameter set included RPM, Manifold Absolute Pressure (MAP), Mass Air Flow (MAF),
Barometric Pressure (P), Fuel-Air Equivalence ratio (φ), and Intake Air Temperature (IAT). A
state-of-the-technology Portable Emissions Measurement System (PEMS) was installed on the
tailpipe of vehicles under study in Montreal to monitor and log the instantaneous CO2, PM,
Nitrogen Monoxide (NO), and Nitrogen Dioxide (NO2) concentrations.

The PEMS measures CO2 using Non-Dispersive Infra-Red (NDIR) absorption technology
with a measurement range of 0–20% and an accuracy of ±70 ppm. For the NOx, 3-electrode
electrochemical sensors capable of measuring up to 5000 ppm for NO and 300 ppm for NO2
were incorporated. The measurement resolution for NO and NO2 were 1–5 ppm and 0.1 ppm,
respectively. Regarding PM, the unit measures undiluted emissions through the response
of three dissimilar particulate sensors. Ionization was used for ultra-fine/fine particulates
usually between 0.01 to 1 micron, while a combination of opacimeter and laser scattering was
deployed for coarse particulates up to 10 microns.

It is important to note that we performed activity and fuel rate data collection on
all 35 vehicles under study. However, the additional tailpipe emission measurement was
conducted only on 17 vehicles all from Montreal.

Figure 1 shows both of the sensors installed on a test vehicle. The intake probe clamped
to the tailpipe collects exhaust sample at a rate of 2.5 L/min. As there was no dilution, no
extrapolation of the sensor values to the full concentrations was required. A chiller unit
condenses and removes the water vapor present in the exhaust. An additional water trap
completes the water-removal process before sending the sample to the main unit.

Cold-start emissions were disregarded in this study as the sensing process started after
reaching the hot-stabilized engine operation. Pre- and post-test ambient emission levels were
measured and used as a reference for calculating the net exhaust emission concentrations.

The maintenance quality of the vehicles was evaluated through interviews with the
volunteer car owners participating in the experiments. Vehicles with uncertain/unacceptable
conditions were excluded. A single person drove all the cars in each of the three cities. The
three drivers coordinated in advance in terms of driving style to mitigate the chance of bias
in sampling. The drivers were all asked to avoid aggressive driving and keep their speed
coordinated to that of traffic flow. It is noteworthy that the impact of the traffic flow and traffic
control systems would be implicitly captured in time-series logs of speed and acceleration.
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Figure 1. Details of the OBD-II logger and the PEMS device installed on a test vehicle.

A driving plan was set in advance for the time-windows drivers had to perform the
experiments and to guide them through the road network. The route-map and the time-
tables obliged them to drive approximately 30% of the time on highways, 30% on arterials,
30% on local roads, while dedicating the remaining 10% of the time to uphill and downhill
driving. The equivalent distance for the above shares varied in each test. However, as the
FCR and ERs are time-based, time was selected as a reference for scheduling the trip-chain
plans. For the 10% uphill- and downhill-driving time-window, special road segments with
grades beyond normal road design thresholds (higher than 7% or less than −7%) were
targeted. By taking such an approach, the randomness of data in terms of speed, road
grade, and diversity of acceleration/deceleration patterns was preserved.

Figure 2 presents the aggregated view of GPS trajectories for experiments conducted
in Montreal and Bucaramanga. Moreover, Table 1 provides descriptive information about
the on-road experiments and Table 2 describes the test fleet specifications.
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Table 1. Field experiments’ summary.

Attribute
City

Montreal Bucaramanga Tehran

Total Trip Length (km) 1804 291 255
Total Trip Time (Minutes) 5224 825 444
Number of Test Vehicles 22 7 6
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Table 2. Test fleet distribution based on different criteria.

Criterion Category Count

Vehicle Segments

SUV 8
Sedan 19
Van 1

Hatchback 7

Engine Types Regular 31
Turbo-Charged 4

Transmission Types

Manual 6
Automatic 19

Dual-Clutch (Auto) 2
CVT (Auto) 8

3.2. Data Preparation

Both the GPS as well as the Inertial Measurement Unit (IMU) output included outliers and
noise. To remove the outliers, first, an outlier removal procedure based on Kalman Filtering
algorithm [55] was applied. Then, the Savitzky-Golay smoothing algorithm [56] was
used to remove noise and minor fluctuations. The algorithm generated more satisfying
results compared to other available algorithms such as moving average, exponential,
and convolutional smoothing methods. Note that wheel speed retrieved from ECU was
prioritized over GPS speed due to relatively higher accuracy. Hence, no post-processing
(outlier filtering and smoothing) was applied to instantaneous speed data.

FCRt was calculated indirectly with the help of the observed (Equation (1)) or esti-
mated (Equation (2)) value of the MAFt rate. MAFt represents the flow of air entering a
fuel-injected internal combustion engine. Although all modern vehicles were equipped
with a MAF sensor, not all of them reported this parameter through the OBD-II interface.
MAFt could be acceptably estimated based on MAPt as well.

FCRt =
MAFt

λ× AFRstoich
(1)

MAFt =
RPM
120

× MAPt

IATt
× VE

100
× ED× MM

R
(2)

In Equations (1) and (2), index t indicates the instantaneous nature of observations,
FCRt and MAFt are both in g/s, and AFRstoich denotes the air-to-fuel mixture ratio at the
stoichiometric level. λ is the actual air-to-fuel ratio (AFR) to its stoichiometric level [57],
RPM is in revolutions per minute, MAPt is the pressure at the intake air manifold in kPa,
and VE is the volumetric efficiency, which is around 65% for regular gasoline engines and
goes up to 85% for turbocharged models. ED denotes engine displacement in Liters, MM
is the average molecular mass of air (28.97 g/mol), IATt is the intake air temperature in
Kelvin, and R is the ideal gas constant equal to 8.314 J/◦K/mol.

The PEMS setup reported instantaneous emission concentrations in percentage for
CO2, ppm for NOx, and micrograms/m3 for particulate matters. To convert second-by-
second concentrations into temporal rates in the absence of exhaust flow rate data, an all-in
all-out assumption was made (ignoring the existence of minor leakage from the engine
to the exhaust pipe) and the MAF rate was used as an alternative to the exhaust flow
rate. However, the exhaust-pipe lag (due to its length and presence of resonators and
catalytic converter) could introduce errors to the calculations. Later in this section, an RNN
modeling approach is described as a solution for capturing such lagged effects.

Equations (3) and (4) were used to unify concentration units and adjust the concentra-
tions for prevailing temperature and pressure. The concentrations were then converted to
instantaneous emission rates using Equation (5).

For CO2 : Concppm = 106 × Conc% (3)
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Concmg/m3 = Concppm ×
(

Molecular Weight o f Gas
22.4

)
×

(
273

273 + T

)
×

(
10× P
1013

)
(4)

ERt = Concmg/m3 × 10−6 ×MAFt ×
(

10−3

Air Density

)
(5)

In Equation (4), T is the intake air temperature in ◦C and P is the ambient barometric
pressure in kPa. In Equation (5), MAFt is the mass air flow in g/s and the air density is
equal to 1.2929 kg/m3. The molecular weight of emissions are 44.01, 46.01, and 30.01 g/mol
for CO2, NO2, and NO, respectively.

The multiple steps of data collection and preparation procedure are shown in Figure 3
in form of a flowchart. At the bottom layer of the flowchart, the input to the modeling steps
explained in the next sections is prepared.
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3.3. Vehicle-Specific RNN Modeling

The exhaust-pipe lag is not the only source of lag that affects the vehicular fuel or
emission rates. There is a Sensor response delay due to use of electrochemical sensors
in the PEMS unit. Such sensors have a slow response time to the changes of emission
concentrations. There is also an Engine response delay defined as the lag between the
moment a driver takes an action to increase, decrease, or stop the power demand and the
moment the engine starts to react. Finally, there is a Kinematic distributed lag as a result
of the gradual increase in the vehicle speed towards a target speed (when accelerating)
despite instantaneous consumption of the fuel after the driver pushes on the gas pedal.

Although it is possible to qualitatively rank different sources regarding their impact on
total order of lag, with the non-destructive experimenting approach taken in this study (we
avoided making any modifications to the test vehicles), there is no way to clearly quantify
the shares of each source. Hence, in this study, the focus was only on the total order of lag.

Recurrent neural networks are designed to recognize patterns and temporally-distributed
effects on the dependent variable in sequences of data, such as time-series. Nevertheless,
RNNs are rarely used in the vehicular fuel and emission rate modeling literature. In the
vast majority of studies in this field, data points are assumed random samples rather than
serially-correlated time-series.

A fully-connected neural network takes in a fixed-size vector and gains no knowledge
about temporal interactions between the dependent and the explanatory variables through
the training process. However, an RNN model takes the vector of input variables at time t
as well as the measurements of up to p lag steps (t− 1, t− 2, . . . , t− p) simultaneously
into account.

Figure 4 depicts the internal structure of three different RNN cell structures as well as
the architecture of a many-to-one RNN model with multiple stacked layers. The many-to-
one architecture is an appropriate choice for vehicular fuel and emission modeling as we
target a single variable and not a sequence as the prediction output.

Note that Xt =
[
Xt−p, . . . , Xt−2, Xt−1, Xt

]
is the input matrix corresponding to time t.

Each Xi element is a columnar vector holding the instantaneous values of the main model
variables. In our case, Xi would be equal to [vi, ai, zi]

T , where vi is speed in km/h , ai is
acceleration in m/s2, and zi is the GPS altitude in m. The measured instantaneous FCR (or
one of the ER values) at time t would be used as the dependent variable (Yt).

The temporally extended effects within time-series sequences of each variable were
implicitly captured by the gated structure of the RNN cells, while the direct correlations
between variables and the dependent at any time step t was modeled by 100-hidden-unit
sub-models inside each RNN cell wherever a Sigmoid or Tanh gate exists. In other words,
each gate (shown as yellow boxes inside the cell structures in Figure 4a–c) will itself be
a fully-connected neural network with 100 activation units. The input to the gates was
different for each of the cell structures. In Simple cells, the variables vector Xt and a hidden
state vector ht are injected into a single tanh gate. The hidden state carries information
about the short-term past state of the system. In a LSTM cell, three sigmoid and one tanh
gate work together [33,58–61]. The extra gates and a more complex internal mechanism
allow the LSTM cell to manage a memory of the past events at both short- and long-term
scales (in addition to the hidden state ht, a cell-state stream of information Ct carries long-
term memories and the combination of the gates let the cell keep or forget all or a part of
the memory). Finally, the Gated Recurrent Units (GRU) are a more recent type of RNN cell
structures [62,63]. The RNN architectures founded upon GRU cells have less parameters
to be trained; hence, the model will become less computationally expensive both at the
training and the execution stages compared to LSTM.
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many-to-one RNN architecture with lag order of p (RNN cells shown in green color).

The prediction power of RNNs could be boosted by deepening them through stacking
the layers over each other. In a stacked many-to-one RNN architecture, each layer (except
the last one) outputs a sequence of vectors which will be used as an input to a subsequent
layer. The additional layers are understood to recombine the learned representation from
prior layers and create new representations at high levels of abstraction.

As a foundation for developing category-specific models, vehicle-specific RNN models
are first estimated for FCR and ERs. Single-, double-, and triple-layer stacked architectures
are assessed (deeper structures are disregarded due to the exponentially increasing process-
ing time). Depending on the lag order, data are converted into p-length sets of vectors, and
five-fold cross-validation (with 70% of data for training and 30% for validation) is used to
achieve robust modeling results.

Regularization is applied through the Dropout technique with a drop probability of
50%. Using this technique, randomly selected neurons are ignored during each training
iteration. Hence, the contribution of the ignored neurons to the activation of downstream
neurons is temporally removed on the forward pass and any weight updates are not applied
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to the neuron on the backward pass. Therefore, other neurons will have to step in and
handle the representation required to make predictions for the missing neurons. As a result,
the neural network is allowed to learn multiple independent internal representations and it
becomes capable of better generalization and will be less likely to overfit the training data.

Mean Normalization is applied for feature scaling before training on the target variables
of speed, acceleration, and the GPS altitude as well as the dependent variable (either the
FCR or one of the ERs). The variables will be rescaled so that they will have the properties of
a standard normal distribution. Feature scaling is recommended in ML to avoid attributes
in greater numeric ranges (such as speed or altitude) dominating those in smaller numeric
ranges (such as acceleration). Furthermore, feature scaling speeds up the gradient descent
convergence during the training process of the ML models, especially when the data has
high variance.

Mean Squared Error (MSE) is used as the loss function, and the Adam algorithm is
considered for the neural network’s optimization (due to faster convergence compared to
Momentum, RMSprop, and Stochastic Gradient Descent algorithms). Python programming
language as well as two popular ML libraries of TensorFlow [64] and Scikit-Learn [65] are
used for training and evaluation of the models.

3.4. Primary Forecast Combination for Lag-Specific RNNs

The diversity of lag sources makes the true order of lag completely unknown and
possibly dynamic. To deal with this uncertainty, we performed a grid search and trained
RNN models for all the vehicle-dependent pairs with different cell structures, architecture
depth (stacking), and lag orders ranging from 1 to 10 (the dependents are the FCR and ERs).
The upper bound for the lag-order range was selected based on an engineering judgment
and the notion that 10 s is long enough for dissipation of temporally distributed effects
in vehicles’ physical operation. Figure 5 visually represents the average of normalized
Root Mean Squared Error (RMSE) for the trained models. Note that the color in each cell
reflects the average modeling score (ranging from 0 to 1) for the whole fleet under study, not
a subset of vehicles.
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The best results (highlighted with dashed yellow frames) were obtained for a range
of lag orders from 1 to an average of 6. Considering the proven capability of RNNs in
capturing serially-correlated and lagged effects, 6 s would be used as the maximum extent
of lagged effects for the rest of the modeling procedure. This finding is consistent with
our observation when speed and fuel/emissions curves were overlayed in our previous
studies [66].

The results of RNN modeling for lag orders of 1 and 6 for a randomly selected time-
window for three of the vehicles under study are presented in Figure 6.
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The prediction curves clearly show that in terms of accuracy, L1 and L6 models compete
with each other at different ranges. The RNNs with lower lag orders predict the extremes
and sudden peaks/valleys much better (see regions highlighted in magenta), while those
with higher lag orders perform better at ranges with smaller/no variations (see regions
highlighted in yellow). The observation brings the idea that combining forecasts conducted
by RNN models of different lag orders might lead to a single but more accurate model.

As the next step, forecast combination techniques are utilized to combine predictions
of RNN models trained for each vehicle-dependent pair for each of the 6 lag orders (we
call them lag-specific models). Taking this approach, we wish to come up with a Metamodel
(or Meta-Regressor) for each vehicle-dependent pair expected to perform at least as good as
the best lag-specific component model, if not outperforming it. The resulting metamodels
will have the capability of dynamically weighting the output of lag-specific sub-models
depending on the prevailing state of the vehicle operation at different time slots.

The primary metamodels will be used later for building higher-level ensembles for
the categories of vehicles. Note that the modeling approach taken here is inspired by the
Stacking method in the EL paradigm, where the component models are trained based on a
complete dataset, and then their outputs are used as input variables to train an ensemble
function (shown in Figure 7).
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Figure 7. A stacking ensemble learning architecture to develop vehicle-specific metamodels.

The performance of eight widely used EL algorithms (as the Meta-Regressors) is evalu-
ated here. The best algorithm-setting combination was then selected for each vehicle. The
algorithms and the corresponding major settings are described in Table 3.

Table 3. Details of EL algorithms evaluated for developing vehicle-specific meta-models.

Algorithm Settings

Attribute Value

Linear Regression Feature Scaling * Active
Ridge Regression Regularization Strength α = {0.1, 1.0}

Support Vector Regression
(SVR)

Kernel Radial Basis Function (RBF)
Gamma Scale
Epsilon 0.1

Regularization Parameter C = {1.0, 10.0}

Decision Tree
Splitting Criterion Mean Squared Error (MSE)

Splitting Strategy at Nodes {Best, Random}
Maximum Tree Depth Unbounded
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Table 3. Cont.

Algorithm Settings

Attribute Value

Gradient Boosting

Loss Function Least Squares Regression
Splitting Criterion Mean Squared Error (MSE)

Learning Rate 0.1
Number of Boosting Stages {10, 100}

AdaBoost

Base Estimator Decision Tree Regressor
Loss Function Linear
Learning Rate 1.0

Number of Boosting Stages {10, 100}

Random Forest
Number of Trees {10, 100}

Splitting Criterion Mean Squared Error (MSE)
Maximum Forest Depth Unbounded

Fully-Connected ANN

Number of Hidden Layers {1, 2}
Layer Size (No. of Neurons) 100

Activation Function ReLU
Optimizer Adam

Learning Rate 0.001
Maximum No. of Iterations 200

* Feature scaling in form of mean normalization is applied to data before evaluating each of the algorithms
listed above.

For EL modeling at this stage, a similar 70–30% train-test splitting strategy and a five-
fold cross validation is deployed. The results of the vehicle-specific forecast combination
are visually presented and statistically discussed later in Section 4.

3.5. Category-Specific Ensemble Modeling

Vehicle-specific modeling is naturally susceptible to bias; hence, generalizing such
models to other vehicles could always be criticized. Critiques could question how a model
trained on a particular vehicle’s dataset is guaranteed to work as good for other vehicles
which have different characteristics. Even vehicles from the same class (i.e., compact SUVs)
come with various technical specifications that affect their pattern of fuel consumption and
emissions generation. As an answer to this concern, higher level metamodels for categories
(we call them, Supermodels) are trained through an extra layer of forecast combination on top
of the vehicle-specific metamodels. Categorization of the vehicles could be done based on
their general attributes such as vehicle class, weight, age, transmission technology, engine
type, etc. However, we need to make a heavy assumption that all the vehicles in a category
possess common attributes affecting their operation, which result in similar fuel consumption and
emission generation patterns.

The data corresponding to each vehicle are assumed to be a subset of a larger hypo-
thetical homogenous dataset dedicated to the category. Nevertheless, we cannot clearly
say which common attributes lead to categories with such homogenized members. The
categorization criteria can be ranked only after comparing the modeling scores of the
category-specific supermodels. Figure 8 shows the comprehensive architecture of our two-
stage EL approach for generalizing the basic RNN models to category-specific supermodels.

Because the vehicle-specific metamodels are trained for each vehicle’s dataset separately,
the predictions regarding their test input data will not be valid for our second-level forecast
combination. To deal with this issue and to avoid violating our heavy assumption regarding
the homogeneity of category members, we take a Leave-One-Out Cross Validation (LOOCV)
approach. After categorizing the vehicles based on the desired criterion, in every step of the
cross validation, the training is conducted on n-1 vehicles out of n members of each category.
Hence, during each training iteration, the model does not see the data regarding the nth

vehicle at all. Each of the category members would play the role of left-out-vehicle once. As
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a result, the out-of-sample validation is repeated n times and the average of the validation
scores is finally used for evaluating the prediction power of the supermodel.
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validation vehicle correspond to one category).

The same set of EL algorithms and settings described in Table 3 are assessed for
developing category-specific models. Vehicles are categorized based on six criteria of age,
class, engine type, engine-size, transmission type, and weight (sum of curb weight and
live/dead payload). RMSE is used in all three lag-, vehicle-, and category-specific modeling
steps as the evaluation metric. Results of EL modeling attempts are visually presented and
discussed in Section 4.

4. Results and Discussion

In this section, the results of all modeling steps taken in this study are discussed in
the order of occurrence. Note that RMSE is the main metric used for evaluation of models’
prediction power; especially, when assessing the improvement of metamodels compared
to lag-specific RNNs and the supermodels compared to metamodels. Also, R-squared is
used wherever the predictions of our proposed mixed time-series and ensemble model are
compared to benchmark models or only to the ground-truth (true observations).

4.1. Metamodel Development Results

LSTM worked the best for about 75% of the vehicle, dependent, and lag-order com-
binations. Moreover, except for NO, having more than one layer of RNN (2 or 3) led to
improved RMSE scores. As the level of NO emissions has low volatility, less-complex
modeling architectures predict its rate acceptably.

The exceptional power of forecast combination algorithms was revealed during our
metamodel development stage. In total, we developed 103 vehicle-specific metamodels
including 35 for fuel rate in addition to 68 for emission rates (4 emission models for each
of the 17 vehicles under study that we performed tailpipe measurements on them, all in
Montreal). In 93 out of 103 metamodels, notable improvements in RMSE scores (up to 28%
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and on average 4%) was observed compared to that of the best lag-specific component
models. Nevertheless, it is not guaranteed that the ensembles always perform better than
the component models. It highly depends on the type of ensemble estimator as well as the
level of the weakness of the component models.

In Figure 9, each bar shows the percentage of vehicles for which a particular ensemble
estimator has led to the best meta-modeling RMSE score (the percentages in each of the
5 subsections, corresponding to the dependent-variable types, sum up to 100%). Also note
that the horizontal axis shows the absolute number of vehicles-specific metamodels and the
percentages are shown only next to the bars. Obviously, the random forest algorithm was
the superior ensemble technique for FCR- and CO2-rate meta-modeling, whereas the much
simpler method of Linear Regression led to the best results for NO2, NO, and PM rates.
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Figure 9. Share of different ensemble estimators leading to best RMSE score when applied for different
vehicles for modeling each of the dependent variables (FCR and ERs). Note that the horizontal axis
shows the absolute number of vehicle-specific models.

Two conclusions could be drawn in this regard. First, minor differences exist between
the predictions of different lag-specific models (as inputs of the EL models) for the FCR
and CO2 rates. Hence, only more sophisticated EL algorithms could extract underlying
nonlinear dependencies and achieve considerable improvements. It is noteworthy that
the 28%, 23%, and 16% improvement records in RMSE, when comparing the metamodel
score with the score of the best component model, are all dedicated to FCR and CO2 rate
metamodels (an average of 6% improvement was achieved in this group of metamodels).
Such high improvements confirm the existence of higher-level nonlinear dependencies that
the lag-specific RNNs were incapable of capturing them alone.

Second, the lag-specific RNN predictions for NO, NO2, and PM are varied enough and
as inputs to metamodels, they possess such linear correlations with the dependent which
allows forecast combinations such as simple unregularized linear regression algorithm
to work efficiently and even lead to score improvements. The average improvement for
the discussed emissions is equal to 2%. The lower average improvement in RMSE score
compared to FCR and CO2 metamodels could be due to the dominant effect of one lag-
specific component model on the metamodel performance. A possible interpretation is that
for NOx and PM emissions, the existence of a relatively constant lag order is feasible, while
for fuel and CO2, distributively lagged effects exist.
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Predictions of metamodels regarding three sample vehicle-dependent pairs are presented
in Figure 10. The EL algorithms show undeniable effectiveness for FCR and CO2 rate.
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Figure 10. Sample time-windows showing the prediction power of vehicle-specific metamodels in
comparison with the lag-specific component models for three sample vehicle-dependent pairs.

It is interesting how the EL algorithms have corrected some of the wrong local trends
predicted by lag-specific RNN models (see regions highlighted in yellow). Moreover,
metamodels have compensated component models’ weakness in predicting sudden spikes
(see regions highlighted in magenta). Even for the NOx and PM, despite the higher level
of prediction error, the metamodel outperforms the lag-specific component models. In
Figure 11, the true observations are compared to the metamodel predictions for all data
points corresponding to the same three vehicles-dependent pairs presented in Figure 10.
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the three vehicle-dependent pairs visualized in time-series format in Figure 10.

4.2. Validating Metamodels

Independent from the relative improvements achieved by the metamodels (compared
to their component models), their absolute accuracy could be a matter of concern. We take
three steps to validate our models and prove their strength compared to the models of the
same class.

First, meta-regressors similar to those used for developing vehicle-specific metamodels
(random forest for FCR and CO2 and linear regression for NOx and PM) are directly applied
on data (by skipping the RNN modeling step) and the modeling scores are compared to
that of the metamodels. By this comparison, we look to emphasize the impact of mixed
modeling methodology (mixture of EL and RNN techniques) in achieving outstanding
RMSE scores and to prove that use of meta-regressors alone would not be enough to
achieve such scores. As shown in Figure 12, the metamodels outperformed the direct
models for all vehicle-dependent pairs with an average margin of 13% (and a maximum of
38%) regarding the RMSE score. Only for 8 out of 103 vehicle-dependent pairs (most of
which corresponding to NO), the direct model has scored a lower RMSE value. Such few
outliers were expected as our NO-metamodels were already among the weakest compared
to the fuel and other emissions.
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Figure 12. The percentage difference of the RMSE score between vehicle-specific metamodels and the
direct models for all the vehicles under study.

In the second validation step, the predictions of the FCR metamodels are compared
to that of VT-CPFM [5,25], one of the most sophisticated power-based instantaneous fuel
models proposed in the literature. The VT-CPFM utilizes Vehicle Specific Power (VSP)
formula [67] to estimate the instantaneous power demand with detailed consideration
of the impact of aerodynamic drag, rolling resistance, road grade, vehicle’s drive-line
efficiency, and even transmission system characteristics. The estimated power is then used
as a proxy explanatory variable to calibrate a piecewise polynomial function to estimate
FCR. The out-of-sample test scores (R-squared) of the models are presented and compared
side-by-side in Table 4.
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Table 4. Side-by-side comparison of metamodel and benchmark model’s out-of-sample test scores.

Vehicle
Model Score (R-Squared)

Metamodel VT-CPFM

Hyundai Elantra GT 2019 (2.0 L Auto) 0.72 0.57
Chevrolet Captiva 2010 (2.4 L Auto) 0.86 0.26
Chevrolet Cruze 2011 (1.8 L Manual) 0.77 0.52

Figure 13 visually compares true FCR with predictions of metamodel the benchmark
model the 3 of the test vehicles (a random time-window is shown).
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Obviously, our RNN-based metamodels have made more accurate predictions, despite
all the parametric adjustments applied on VT-CPFM model for specific characteristics of
the vehicle and fuel type.

For the final validation step, we assess the performance of our metamodels at dif-
ferent temporal resolutions. Our mixed EL and RNN methodology is relatively complex
compared to simpler time-series modeling techniques such as Auto-Regressive Integrated
Moving Average (ARIMA). Also, higher resolution models normally have more specific use
cases (in our case, we target eco-driving purposes). So, one might question the benefit
of having precise and complex fuel and emission models at 1-sec temporal scale when
lower-resolution (for instance, 5-s or 10-s scale) but less-sophisticated models might be
enough for the needs of analysis. To this end, ARIMA model is trained at three scales
of 1, 5, and 10 s (average values for variables and dependent are used for 5- and 10-s
intervals) for three vehicles. The modeling R-squared scores are then compared to that
of aggregated outputs of our high-resolutions metamodels (Table 5). Note that in addition
to ARIMA predictions, the average of the second-by-second metamodel predictions and
true observations for 5- and 10-s time slots are used for calculating R-squared score at
aggregate levels.

Table 5. Comparison of ARIMA and metamodel R-squared scores at different temporal scales.

Vehicle
Temporal Scale/Model Type

1-s 5-s 10-s

ARIMA Metamodel ARIMA Metamodel ARIMA Metamodel

Hyundai Elantra GT 2019
(2.0 L Auto) 0.53 0.69 0.66 0.83 0.71 0.84

Chevrolet Captiva 2010
(2.4 L Auto) 0.11 0.86 0.25 0.92 0.23 0.94

Chevrolet Cruze 2011
(1.8 L Manual) 0.56 0.77 0.67 0.83 0.7 0.84

Our metamodels not only outperformed the simpler time-series ARIMA architecture
at 1-s scale but also, they kept their superiority with almost a similar margin at 5-s and
10-s scales. Hence, developing accurate high-resolution models for fuel and emission
estimation contributes significantly to situations where lower-resolution predictions are
desired as well.

4.3. Supermodel Development Results

Regarding the category-specific supermodels, an average RMSE score improvement
of 6% (with records up to 32%) compared to the best component metamodels is achieved.
Although the same set of EL algorithms is used for developing the supermodels, relatively
higher score improvements have occurred. The diversity of the datasets corresponding to
different category members, is one of the important root causes of this notable difference,
notwithstanding the heavy assumption we made about considering category member’s
datasets homogenous subsets of a hypothetical larger dataset.

Taking a look at the RMSE scores of the ensemble category-specific supermodels, all
positive score improvements with rare zero values are achieved. This supports the idea that
EL algorithms could work as a unifying medium for developing higher-level (aggregate)
microscale fuel and emission models. Transmission Type seems to be the most efficient
aggregation measure for FCR supermodels. The transmission system directly deals with
the quality of power transmission from the engine to the wheels and has a significant
impact on the efficiency of the combustion process. Hence, its importance regarding fuel
consumption and CO2 generation is expectable. However, this criterion does not seem
appropriate for NO and PM emissions where limited improvements is achieved.
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Modifying the categorization thresholds or combining some of the categories could lead
to more homogenous improvements among categories. For instance, the low RMSE score
improvement achieved for the Compact SUV class (3% compared to an average of 13% for
other classes) for FCR supermodels brings the idea of merging this class with another one.

The Age Range criterion seems to work best for the PM rate (with a record of 21%
RMSE score improvement for age range between 3 and 5). The aging of the vehicle leads
to physical degradation of the engine and adds to the inefficiencies of the powertrain.
Moreover, in an aged vehicle, usually the catalytic converter and the particulate filters lose
their effectiveness resulting in higher PM rates.

Although small, there were positive improvements for all NO-related supermodels. As
mentioned earlier, the low volatility of NO-rate observations makes predictions of much
simpler nonlinear modeling algorithms (even single-stage and without EL) acceptable
enough. Such weak results (compared to other emissions and FCR), could be linked to
the sensor measurement errors as well. Although the state-of-the-technology PEMS units
deployed in this study provides unbeatable accuracies, as NOx emission rates are generally
so low in gasoline-engine vehicles, even minor sensor errors affect the readings considerably.

Figure 14 shows that even for the supermodels, sophisticated algorithms (Gradient Boosting
as well as Random Forest) outperform others for the majority of criteria/categories for FCR
and CO2 rate, while similar to the metamodels, Linear and Ridge Regressions shoulder the
forecast combination burden of NOx and PM supermodels better.
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Figure 14. Share of different ensemble estimators leading to best RMSE score when applied for
different categories for modeling each of the dependent variables (FCR and ERs). Note that the
horizontal axis shows the absolute number of category-specific models.

Gradient Boosting and Random Forest algorithms both use Decision Trees at their core
and combine their forecasts to achieve better results, however, the former builds trees
one at a time, where each new tree helps to correct errors made by the previously trained
tree. Their difference could be better explained using the concept of bias and variance
in the ML paradigm. Boosting is based on weak learners which have high bias and low
variance (like the vehicle-specific metamodels in each category) and it reduces errors
mainly by reducing bias. On the other hand, Random Forest uses fully grown decision
trees with low bias and high variance (similar to lag-specific RNNs). It tackles the error
reduction task by reducing variance. This explanation clarifies why Gradient Boosting and
Random Forest algorithms have been the dominant best estimators for supermodel and
metamodel development, respectively.
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Finally, in Figure 15, sample time-windows are randomly selected for 3 category-
dependent pairs to visually evaluate the performance of trained supermodels.
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Figure 16 depicts the impressive accuracy of the proposed two-stage EL approach,
where for FCR and CO2 rates, R-squared scores of 0.95 and 0.88 are achieved, respectively.
The method has made acceptable predictions for NO2 as well, although it appears to
be weak in capturing peaks. Nevertheless, as our categorization process still requires
refinement, an R-squared score of 0.7 seems a satisfying score at this stage.
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5. Conclusions and Future Work

In this study, we targeted the development of a methodology for estimating microscale
fuel consumption and emission models deployable in smartphone-based eco-driving assis-
tance services or in combination with the existing traffic microsimulation models. We first
addressed the dynamicity of the lag order through mixed use of time-series and ensemble
modeling. Then by using an additional layer of forecast combination on top of first-stage
mixed models, we developed a robust methodology for generalizing models to categories
of vehicles.

Our vehicle-specific metamodels showed improvement records of up to 28% con-
cerning the RMSE score (with an average improvement of 4% among different vehicles
and dependent types) compared to that of the best lag-specific component models. More-
over, our generalized supermodels even outperformed the component metamodels by
a margin of up to 32% regarding RMSE score (with an average of 6% among different
criteria/categories). Our proposed methodology opens avenues to use of machine learning
techniques for rapid development of light, generalized, and localized microscale fuel and
emission models calibrated using field data.
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A few aspects could be addressed in future works. Although large compared to
many other studies, the test-fleet size and its diversity could be increased to hundreds
of vehicles and many planned experiments on particular vehicles could be run. In the
light of a such large and diverse dataset, the impacts of unseen factors like vehicle weight,
number of passengers, use of auxiliary components, weather conditions, etc. could be
included in the models as well. Furthermore, due to technical limitations of the PEMS units,
we disregarded cold-start operation and the tire-/brake-wear emissions which could be
exclusively studied using appropriate equipment.
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