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Abstract: Understanding how socio-ecological systems respond to environmental variability is an
important step in promoting system resilience. In this paper, we asked: How do the frequency
and amplitude of water availability variation affect both the social-ecological regimes present and
how the system transitions between them? How do these transitions differ under flood-prone and
drought-prone conditions? We modified a dynamical systems model of a complex watershed to
directly link environmental variability to system-level outcomes, specifically the livelihoods present
in the system. The model results suggest that flood-prone systems exhibit more drastic regime shift
behavior than drought-prone systems, with abrupt shifts from the complete participation to complete
abandonment of livelihood sectors. Drought-prone systems appeared to be more sensitive to the
amplitude of water variability, whereas flood-prone systems exhibited more complex relationships
with amplitude and frequency, with frequency playing a bigger role compared to drought-prone
systems. Lower frequency variations with sufficient amplitudes exposed the system to extended
periods of environmental hardship, reducing the system’s ability to recover. Our analysis also
highlighted the importance of environmental stochasticity: the deterministic version of the model
that assumed no stochasticity overestimated system resilience. The model and analysis offer a
more systematic framework to investigate the linkages between sustainability of social-ecological
systems and environmental variability. This lays the groundwork for future research in systems with
significant current or predicted environmental variability due to climate change.
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1. Introduction

Understanding how social-ecological systems respond to environmental variability
is critical for ensuring their sustainability. Many parts of the world are seeing changes
in the frequency and the magnitude of extreme environmental events [1]. Studies in
ecological systems have shown that environmental variability can result in changes in the
number and nature of system stable states [2–4]. However, few studies in social-ecological
systems have explored the effects of variability on such regime shifts, instead focusing
on sudden shocks or disturbances and long term trends [5,6]. This work fills this gap by
incorporating stochastic fluctuations with a range of frequencies and amplitudes into a
dynamical model of a social ecological system and analyzing the effects of such fluctuations
on system resilience.

Many existing studies focus on identifying resilience indicators and early warning
signs of regime shift [7–10]. These approaches are useful when evaluating social-ecological
systems with particular vulnerabilities. For instance, a system experiencing increasingly
severe droughts might want to evaluate how close they are to a regime shift, or a region
prone to large storms will want to know what the potential outcomes of the next big one are.
These approaches are, however, less helpful when investigating the effects of variability. A
system may respond to a large storm in one way, but to a series of large storms in another.
This work uses dynamical systems modeling to directly link environmental variability to
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system-level regimes and examine how the system moves between these regimes under
different conditions.

The dynamical systems model was previously developed based on a Northwest Costa
Rican watershed (the Tempisque-Bebedero watershed) [11], resulting in the establishment
of clearly defined social-ecological regimes. However, it did not incorporate fluctuations
in water availability. This paper incorporated these fluctuations and directly related their
frequency and amplitude to the system state, examining the transition between system
states to answer the following research questions: How do the frequency and amplitude of
water availability fluctuations affect both the social-ecological regimes present and how the
system transitions between them? How do these transitions differ when induced by water
surplus versus water shortage?

2. Materials and Methods
2.1. Model Structure

The model was developed with a goal of capturing the social and eco-hydrologic
dynamics in a complex social-ecological system. The model focuses on a type of social-
ecological system where human and environmental activities are strongly linked with
the possibility for nonlinear dynamics. In this system, residents’ livelihoods come from
either the agricultural sector or an alternative industry (e.g., tourism), local governance
infrastructure reacts to extreme environmental conditions (e.g., flooding), all impacting a
downstream wetland. Six dynamical variables were chosen accordingly, with three eco-
hydrologic variables and three social variables, summarized in Table 1 and Figure 1 (see [11]
for more details on dynamical variable selection). Water in the river (W) represents the
available pool of water for industries and the environment. The amount of water (WPV) and
invasive cattail (C) in the downstream wetland indicate environmental health. The percent
of the population with agricultural livelihoods (U) represents the persistence or collapse
of the agricultural sector in the watershed. The water governance capacity indicates the
ability of the institutional systems to provide assistance to farmers in times of drought (GD)
or flood (GF). This model was built on a previous model [11] with the major modification
being the inclusion of the negative impact of too much water (flooding) and the governance
capacity to deal with flooding (GF).

Figure 1. A conceptual diagram of the model. Directed links represent causal effects from one
dynamical variable to another. Dynamical variables GD and GF are distinct, but interact with the
model in essentially the same way depending on if the system is experiencing drought or flood.
IM(t) is the variable incoming water, modeled using a marked Poisson process.
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Table 1. Dynamical variables and parameters of the model.

Symbol Unit Definition

Dynamical Variables
W L3 Water in river

WPV L3 Water in downstream wetland
U - % of population participating in the agricultural sector
G - Governance capacity: the ability to mitigate adverse effects of drought
C - Cattail coverage as % of the wetland area

Parameters
IM L3/T Inflows of water, including the portion transferred/imported into the basin
Ag 1/NT Per capita water allocation rate to farmers
To 1/T Water allocation rate to alternative industry
q 1/T Rate of water leaving the river and entering the wetland
q′ 1/T Rate of water leaving the wetland
r N/$ Population responsiveness to difference in profit
n N Population size in the system

πT $/NT Per capita income stream for people in alternative industry
πA $/NT Per capita income stream for people in the agricultural sector
p $/(L3)2 Factor converting agricultural water allocation to profit
b $/NT Base per capita agricultural profit
c L3/NT Per capita farmer allocation threshold, below which drought occurs
f L3 flood cutoff
D 1/T Decay rate of governance capacity
β - % Damage by birds to agricultural products

mD N/L3 Rate of improvement of governance capacity dependent on severity of drought
mF 1/TL3 Rate of improvement of governance capacity dependent on severity of flood
g 1/T Natural growth rate of cattail

gA 1/([M/L3]T) Additional cattail growth rate induced by increased nutrient concentration due to agricultural activities
k M/L3 Nutrient concentration in agricultural runoff
F 1/T Rate of mechanical cattail removal

The symbols for unit/dimension are as follows: L for length; T for time; M for mass (e.g., mg of nutrients); N =
number of people; $ for monetary unit.

The dynamics of W and WPV reflect a simplified mass balance. Water enters the system
and exits to the agricultural sector, alternative industry, and the wetland, WPV . The growth
of invasive cattail in the wetland, C, is increased by agricultural runoff (determined by W, U,
and WPV) and inhibited by management practices. Participation in the agricultural sector,
U, is modeled using a replicator equation borrowed from evolutionary game theory [12]:
people choose an agricultural livelihood when the payoff is better than the alternative
industry. The payoff of agriculture depends on the state of the system: whether there is a
flood or a drought (determined by W), whether there is the governance capacity to help
when there is a flood or a drought (GF and GD), and the severity of the degradation of the
wetland (C). Both governance capacity variables, GF and GD, operate on an assumption of
institutional memory. When the system experiences an event (flood or drought), they gain
experience and are thus better equipped to handle the next event that comes along. When
an event does not occur for an extended period of time, the capacity drops. This dynamic
was incorporated to explore how the frequency as well as magnitude of events can affect
the system’s resilience. These dynamics are captured in Equations (1)–(6). (Further details
can be found in Appendices A and B.)
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dW
dt

= IM(t)− (Ag · n ·U + To + q) ·W (1)

dWPV
dt

= q ·W − q′ ·WPV (2)

dC
dt

=

(
g +

Ag · n ·U ·W · k
q′ ·WPV

· gA

)
· C · (1− C)− F (3)

dGD
dt

= IAg·W<c ·mD · (c− Ag ·W) · (1− GD)− D · GD (4)

dGF
dt

= IW> f ·mF · (W − f ) · (1− GF)− D · GF (5)

dU
dt

= r ·U · (1−U)(πA − πT) (6)

where,
πA = [p(1− G′)(Ag ·W − c)( f −W) + b](1− βC)

G′ =


GD if Ag ·W < c
GF if W > f
0 otw.

2.2. Introducing Variable Water Availability

To investigate system resilience under environmental variability, we incorporated the
stochasticity of the incoming water, IM(t). This is a key modification: In the previous
deterministic model [11], the incoming water was a constant parameter. For any one
value of this parameter, there could be only one model outcome. In this work, incoming
water is a stochastic dynamical variable. With the addition of stochasticity, we are able to
explore how a single mean value can produce different model outcomes depending on the
nature of the fluctuations. To model variations in incoming water, we considered a suite
of marked Poisson IM(t). A marked Poisson model of incoming water has been used to
capture hydrological fluctuation [13–15] while keeping the simplicity of the original model.
To map the model outcomes, parameters of the marked Poisson process were varied to
create incoming water signals with an array of frequency and amplitude. For each set of
parameters, a marked Poisson process was used to generate IM(t) and the model was run
until it reached equilibrium—i.e., when the system no longer exhibited directional changes.
This was repeated for 500 realizations. The model outcome of interest is the persistence or
collapse of the agricultural sector as defined by a collapse cutoff. When the participation
in agriculture (U) was below a collapse cutoff of 2%, the sector was considered to have
collapsed. The results, especially those associated with the flood-prone conditions, are
quite robust against reasonable choices of the cutoff values (low values to define a collapse).
For each parameter set, the percent of the 500 realizations where the agricultural sector
collapsed was mapped. To explore the effect of drought-prone and flood-prone conditions,
this process was repeated for a range of mean incoming water values, each resulting in
a model outcome map (Figure 2). These resilience–amplitude–frequency maps help us
understand how both changes in the mean water availability and changes in the occurrence
and severity of extreme events can influence how regime shifts occur.
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Figure 2. Resilience–amplitude–frequency maps under different hydrological conditions, ranging
from drought-prone to flood-prone. The color represents the fraction of realizations where the
agricultural system collapsed at equilibrium. In (A,E), with too low or too high a mean value of
IM(t), the agricultural sector cannot support itself at any frequency or amplitude. Between these
extremes (C), the system survives at all frequencies and intensities. The system transitions between
these states of full collapse and full survival with different behavior depending on whether collapse
is driven by a shortage of water (B) or a surplus of water (D).

3. Results and Discussion

Figure 2 includes model results associated with a value of amplitude close to zero,
representing the model outcome without fluctuation: These results represent “deterministic
benchmarks” that highlight the effects of the environmental variation. In this deterministic
case, the agricultural sector survives the mean incoming water in Figure 2B–D. Without
taking environmental variation into account, the model overestimates the ability of the
system to withstand changes in incoming water—Figure 2B,D allows us to explore system
dynamics that would otherwise be overlooked in a deterministic model.

Under drought-prone conditions, the transition from agricultural sector survival to
collapse is gradual and largely dependent on the amplitude of variation, with the system
surviving low-amplitude variation at any frequency (Figure 2B). The histogram of W
(Figure 3A, rightmost panel) is highly concentrated at a value near, but above, the drought
cutoff. These values of W correspond to an agriculture payoff competitive with the payoff
of alternative industry. When the payoff to agriculture fluctuates between being the more
profitable option and the less profitable option, it drives fluctuations in U. The time series
of U accordingly fluctuates near, but above, collapse.

Increasing the amplitude (comparing Figure 3B to Figure 3A) resulted in a more dis-
persed histogram of W, with some values falling below the drought cutoff. The histogram
of U exhibits a dramatic shift: it is no longer concentrated around a mean; rather it becomes
bimodal, with the primary peak at U = 0. While the histogram of U in this case (Figure 3B,
second panel from left) may appear similar to those in Figure 3C–F, it is important to note
that a mixed strategy (0 < U < 1) is still possible, even with a peak at U = 0; that is, there
are some, although relatively few, realizations with U in the intermediate range. This is not
the case with a flood-prone system.

When a drought occurs, the payoff of agriculture becomes less appealing than alternative
employment, driving U towards 0. Due to the replicator dynamics of U, the more time U
spends approaching 0, the harder it becomes to recover. The higher the amplitude of variation,
the more likely it is that the system will encounter a drought. The more time the system
spends in a drought, the more likely it is for the agricultural sector to collapse. This leads to the
gradient from survival to collapse along the amplitude dimension seen in Figure 2B.

The frequency of variation affects how much time the system has to respond to
fluctuations. High frequency oscillations move quickly with respect to other processes,
meaning that if a drought occurs, the system may not have time to fully collapse before the
drought ends and conditions become more favorable. Low frequency oscillations subject
the system to water stress for a more extended period of time. A minor drought that lasts
longer gives U more time to decline towards 0, eventually leading to a collapse of the
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agricultural sector. This means a lower amplitude of variation is needed to cause a system
collapse when the frequency is low, which can be seen in Figure 2B.

Figure 3. Sample time series of U, and histograms of U, payoff to agriculture, and W values at
equilibrium from 500 realizations under different hydrological conditions. The dashed line in
the histograms of payoff to agriculture represents payoff to alternative industry—when payoff to
agriculture is above this line, it is the more appealing livelihood option. In (A,B), the dashed line and
change in color in the histograms of W represents the drought cutoff; in (C–F), they represent the
flood cutoff.
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Frequency plays a bigger role in the transition to collapse under flood-prone conditions
(Figure 2D). At lower frequencies, the system experiences either near complete survival (the
percentage of realizations below the collapse cutoff is near 0%) or near complete collapse
(near 100% below collapse cutoff), with a very sharp transition between the two (compared
to the transition under drought-prone conditions). At higher frequencies, the transition
is much more gradual and moves between less extreme states. Additionally, from the
time series and histograms of U in Figure 3C–F, we see that U demonstrates bimodal
behavior under flood-prone conditions. Under any frequency and amplitude, participation
in agriculture at equilibrium is concentrated near 0% and 100%.

With low-amplitude variation (Figure 3C,E), the histograms of W display a bimodal
distribution—W can be concentrated above or below the flood cutoff. In other words, the
system can move to either a flooding or non-flooding regime. When the system moves
to a flooding regime, the payoff to agriculture is driven down, and vice versa. Unlike
in the drought-prone case, the payoff to agriculture is not fluctuating around the payoff
to alternative industry in either flooding or non-flooding regime. Instead, the payoff is
fluctuating entirely below or entirely above the payoff to alternative industry. Fluctuations
fully below the alternative payoff will not result in fluctuations of U, but will affect how
fast U collapses. The time series in Figure 3C and E highlight the “legacy effect”: where
the system ends up at equilibrium (full collapse or full survival of the agricultural sector),
depends on which path was taken at the outset: towards a flooding regime or towards a
non-flooding regime.

Higher amplitude variation blurs the lines between flooding and non-flooding regimes:
the histograms of W in Figure 3D,F do not display the strong bimodality seen in cases with
low-amplitude variation. Higher amplitude variation allows transition between the two
system states of collapse and survival. The time series in Figure 3D shows that even if
agriculture reaches near full participation, the system can still collapse later on. In Figure 3F,
the system can not only collapse later on, but can recover as well. Just as in the water
shortage case, lower frequency oscillations subject the system to a more extended period of
time with near 0% participation, making it increasingly harder for the system to recover.
Higher frequency oscillations allow for more movement between the two alternatives,
resulting in less extreme collapse and survival conditions.

4. Conclusions

Changes in the frequency and amplitude of environmental events can have serious
impacts on the sustainability of social-ecological systems. In this paper, we asked: How
do the frequency and amplitude of water availability variation affect both the social-
ecological regimes present and how the system transitions between them? How do these
transitions differ under flood-prone and drought-prone conditions? A dynamical systems
approach allowed us to explore the qualitative behavior of the system under different
conditions, rather than predict the outcome of a particular system. Our analysis resulted in
a more systematic framework to investigate the linkages between sustainability of social-
ecological systems and environmental variability, e.g., the resilience–amplitude–frequency
maps. These maps allowed us to examine system dynamics that would be missed using a
deterministic model.

In both flood- and drought- prone systems, resilience was overestimated when varia-
tion was not considered. We found that survival or collapse of the agricultural sector is
largely determined by the magnitude of the events. Under both flood- and drought-prone
conditions, the system survives frequent events better than infrequent, but prolonged,
unfavorable conditions. Agricultural sector collapse due to water shortage happens more
gradually, with the possibility for a mix of livelihoods. Collapse of the agricultural sector
due to water surplus, however, happens more suddenly, and without the possibility of a
mix of livelihoods—once conditions become severe enough, the system transitions from
fully agricultural to full abandonment.
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The frequency of flooding events was found to be more impactful than the frequency
of drought events. The agricultural sector could still bounce back after collapse caused by
more frequent flooding, whereas less frequent, but longer flooding episodes will lead to
a more permanent collapse of the agricultural sector. Low-amplitude variation does not
facilitate much transition between the two system outcomes, whereas higher amplitude,
higher frequency variation allows the system to move back and forth. High amplitude,
low frequency variation allows the system to move from survival to collapse, but it is more
difficult to move back once flooding is established.

Incorporating stochastic environmental variation into a dynamical model of a social-
ecological system allowed us to directly link the frequencies and severity of environmental
events (water surplus and shortage) to system-level outcomes (livelihood choices) in a
systematic and quantitative way. This direct link can be difficult to achieve with more
highly-parameterized models. Stylized dynamical systems models such as this offer a
different perspective on complex problems, with potential to be adapted to similarly
interconnected social-ecological systems. Insights and lessons from this approach may
be applied to a range of future research, including model development with the goal of
predicting social-ecological outcomes. This lays groundwork for future research in systems
with significant current or predicted environmental variability due to climate change.
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Appendix A. Site Description

The dynamical model used is based on the The Tempisque-Bebedero watershed in
Northwest Costa Rica, a complex social-ecological system: water transfer connects elec-
tricity generation, irrigated agriculture, and an internationally recognized migratory bird
habitat, in addition to a growing tourism industry [16–18]. Variability of water availability
in the Tempisque-Bebedero watershed exists on multiple time scales and for different rea-
sons. The area has well-defined wet and dry seasons that create intra-annual variability [19].
El Niño Southern Oscillation (ENSO) events create inter-annual variability [19]. Climate
change trends predict changes in the frequency and severity of extreme events as well as
changes in the overall water availability [1,19]. Additionally, in a water subsidized system,
management of water transfer can dampen or exacerbate environmental variation.

Appendix B. Nondimensionalized Model

To ease analysis, the model was simplified using nondimensionalization. Dimension-
less groups are listed and defined in Table A1 and yield the following model.
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dw
dτ

= 1− (θAU + θT + 1) · w (A1)

dwPV
dτ

= w− λwPV (A2)

dC
dτ

= (γ +
γAθAwU

wPV
)C(1− C)− φ (A3)

dGD
dτ

= IθA ·w<αD · µD(αD − θAw)(1− GD)− δGD (A4)

dGF
dτ

= Iw>αF · µF(w− αF)(1− GF)− δGF (A5)

dU
dτ

= U(1−U)(π̂A − π̂T) (A6)

where,
π̂A = [ρ(1− G′)(θAw− αD)(αF − w) + ψ](1− βC)

G′ =


GD if θAw < αD

GF if w > αF

0 otw.

Table A1. Dimensionless group definitions and interpretations.

Symbol Definition Interpretation

w W·q
IM Rescaled water availability in the basin

wPV
WPV ·q

IM Rescaled water in downstream wetland
τ t · q Rescaled time
θA

Ag·n
q Relative water allocation rate to agriculture compared to the natural draining rate of the

watershed
θT

To
q Relative water allocation rate to alternative industry compared to the rate at which water

leaves the watershed
λ

q′
q Ratio of water exiting to water entering wetland

π̂T
rπT

q Rate of people entering alternative industry relative to the rate at which water leaves the
watershed

ρ
pr·IM2

nq2 Rescaled profit factor for agriculture

αF
f q

IM Rescaled flood threshold
αD

cn
IM Rescaled drought threshold

ψ rb
q Potential rate of people entering the agricultural sector relative to the rate at which water

leaves the watershed
µD

mD IM
qn Rescaled maintenance/improvement rate of drought governance capacity

µF
mF IM

q2 Rescaled maintenance/improvement rate of flood governance capacity

δ D
q Decay rate of governance capacity (due to loss of institutional memory) relative to the rate at

which water leaves the watershed
γ

g
q Natural cattail growth rate relative to the rate at which water leaves the watershed

γA
kgA
q′ Additional cattail growth due to nutrient pollution relative to the rate at which water leaves

the wetland
φ F

q Mechanical cattail removal rate relative to the rate at which water leaves the watershed
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