<@ sustainability

Article

Artificial Neural Networks for Modelling and Predicting Urban
Air Pollutants: Case of Lithuania

Svajone Bekesiene *

check for
updates

Citation: Bekesiene, S.;
Meidute-Kavaliauskiene, I. Artificial
Neural Networks for Modelling and
Predicting Urban Air Pollutants:
Case of Lithuania. Sustainability 2022,
14,2470. https://doi.org/10.3390/
su14042470

Academic Editors: Marc A. Rosen

and Constantinos Cartalis

Received: 6 December 2021
Accepted: 18 February 2022
Published: 21 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Ieva Meidute-Kavaliauskiene

Research Group on Logistics and Defence Technology Management, General Jonas Zemaitis Military Academy of
Lithuania, Silo 5A, 10322 Vilnius, Lithuania; ieva.meidute@lka.lt
* Correspondence: svajone.bekesiene@lka.lt; Tel.: +370-68-648-000

Abstract: This study focuses on the Vilnius (capital of Lithuania) agglomeration, which is facing the
issue of air pollution resulting from the city’s physical expansion. The increased number of industries
and vehicles caused an increase in the rate of fuel consumption and pollution in Vilnius, which has
rendered air pollution control policies and air pollution management more significant. In this study,
the differences in the pollutants” means were tested using two-sided t-tests. Additionally, a 2-layer
artificial neural network and a pollution data were both used as tools for predicting and warning air
pollution after loop traffic has taken effect in Vilnius Old Town from July of 2020. Highly accurate data
analysis methods provide reliable data for predicting air pollution. According to the validation, the
multilayer perceptron network (MLPN1), with a hyperbolic tangent activation function with a 4-4-2
partition, produced valuable results and identified the main pollutants affecting and predicting air
quality in the Old Town: maximum concentration of sulphur dioxide per 1 hour (SO,_1 h, normalized
importance = 100%); carbon monoxide (CO) was the second pollutant with the highest indication of
normalized importance, equalling 59.0%.
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1. Introduction

Air pollution can have significant negative effects on people’s health. Even though
air quality in Lithuania is relatively good, the World Health Organisation states that
100,000 people lose an average of 1.5 years of healthy life to ambient air pollution in
Lithuania [1]. While the level of vulnerability to air pollution differs across the individuals
in the population and the majority of Lithuanian citizens do not report any health issues,
the air pollution indicator in Lithuania is two times higher than the European Union
average; thus, this should be accounted for. Accordingly, vulnerable population groups
may experience its effects on their health, even where the pollutant concentrations are
relatively low.

According to the provisions of the Law on Ambient Air Protection of the Republic
of Lithuania [1], to ensure that the concentration of pollutants in the ambient air does
not exceed the set norms, municipal institutions should foresee and implement means to
control ambient air quality.

All Lithuanian cities have rolled out ambient air quality control programmes given
the emergent situation. To reduce air pollution, Vilnius city is following an action plan
that aims to maintain an air quality that is healthy for people and the environment, as
well as to reduce the solid particle, nitrogen dioxide and benzo pyrene pollution in Vilnius
city. The means selected must improve air quality and ensure that the concentration of
pollutants in the ambient air does not exceed the permissible level of ambient air pollution.
The programme in Vilnius city has been prepared for 2020 to 2025 [2]. It is expected
that the implementation of the measures to improve ambient air quality will lead to an
improvement in air quality in the future compared to the current situation (Figure 1).
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Figure 1. Reduction (%) of the main pollutants” NOy—nitrogen oxides, NMVOCs-non-methane
volatile organic compounds, SO,-sulphur dioxide, NHz—ammonia, PM2.5-particulate matter (2.5 um
a diameter), and Linear (PM2.5)-linear trend for particulate matter (2.5 pm a diameter) in ambient air
compared to 2005 and emission reduction commitments by 2020 and 2030.

Every year, growing awareness of the links between traffic, air pollution, exposure,
and the associated negative health effects are driving many cities worldwide to strive
to comply with air quality guidelines established to protect public health. Previously
conducted studies have proved that high traffic emissions disperse into the ambient air,
as traffic-related air pollution is the primary source of outdoor air pollution in urban
areas [3/4].

Based on the 2020 statistics on traffic flows in Vilnius, it was observed that 40% of
all traffic in Vilnius Old Town consists of transit traffic. In some streets of the Old Town
(e.g., Radninky, Klaipédos, Boksto), transit traffic during the morning rush hour accounted
for more than 70% of the total traffic. This led to an indication that the exceedance of
traffic is the main risk for air pollution in the Old Town of Vilnius, which is 1 of the largest
surviving medieval period old towns in Northern Europe (coordinates are 54°41'12" N
25°17'35"" E) and has an area of 3.59 square kilometres (887 acres). The oldest part of the
Lithuanian capital Vilnius has been developing many centuries. In 1994, Vilnius Old Town
was included in the UNESCO World Heritage List (No. 541), recognizing its universal
value and authenticity. It has been recognized as one of the most beautiful cities in the
Old Continent.

This was a concern for Vilnius City Municipality since such a concentration of traffic
increased noise, air, and pollution of historic buildings, destroyed the unique heritage of the
Old Town, posed a risk to pedestrians, cyclists, scooter riders, and prevented both residents
and visitors from enjoying the perks of the Old Town. Therefore, to reduce air pollution and
protect human health and the environment in Vilnius Old Town, a decision was made to
implement traffic changes from 2020 onwards. At the beginning of July, Vilnius introduced
a loop traffic regulation, which primarily aimed at reducing the number of cars in the Old
Town. The regulation of loop traffic was implemented by introducing one-way traffic and
installing prohibitive road signs and barriers. A total of four main loops planned for the
Old Town organized the traffic of vehicles entering and leaving the Old Town.

After introducing loop traffic, the residents of Vilnius could continue to drive to their
homes, workplaces, and other destinations. However, the possibility of crossing the Old
Town by car was removed due to the reorganization of traffic, which meant that if one
entered from one side of the Old Town, it would only be possible to leave on that same side.
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For example, if one entered the Old Town on the west side, they must also exist on the west
side. In this way, the historical centre of Vilnius became inconvenient for those drivers who
would decide to cross the Old Town as a shortcut to their destination elsewhere in Vilnius.
However, Vilnius Old Town stayed open to those drivers whose destination was the Old
Town itself.

Policy intervention refers to a set of possible strategies, measures, or practices taken
regarding a policy objective. Consequently, examples can be found when further air
quality improvement in the cities has been targeted by urban policy interventions [5]. In
many cities, one can find scope for further improvement in air quality through targeted
urban policy interventions, which reduce traffic-related emissions [6—10]. Many European
countries have been implementing such changes in their transport traffic in recent years.
As early as the 1980s, Amsterdam was 1 of the first to reduce the number of cars in the
city [11]. At present, cycling paths stretch over 35,000 kilometres across the Netherlands,
and almost a quarter of the country’s population regularly rides bicycles. Since 2018, the
Spanish capital Madrid has introduced restrictions on vehicle access to the city centre to
reduce air pollution. As little as 1 month after introducing the reform, emissions in central
Madrid fell by 38% [12]. Consequently, Vilnius City Municipality is not the only one that
has made traffic changes in the city centre to reduce air pollution.

Examples from these European cities have demonstrated that planning for measures
that improve air quality is the key step in managing air quality, making it possible to
reduce pollution levels in certain areas. Before planning for air quality management
measures, it is undoubtedly important to assess the contribution of pollution sources to
the overall situation in the area and create an effective action plan. It is also necessary to
consider various options for improving air quality in order to choose the most cost-effective
and efficient measures. Accordingly, the objective of the ambient air quality management
measures is to maintain healthy air quality as it concerns human health and the environment
and to reduce air pollution by particulate matter in the city in order to ensure that their
ambient air concentrations do not exceed ambient air pollution levels [13-15].

Air quality in Lithuanian cities has majorly changed in recent years. Relevant indi-
cators reported cities having consecutive days of unhealthy air quality. For this reason, it
is very important to recognize and predict the main air pollutants in order to access pre-
liminary warnings and to employ appropriate management measures before air pollution
occurs. Keeping in mind the assessment of the impact of the proposed transport policies
has on urban sustainability in Vilnius Old Town, this research aims to develop a modelling
framework to estimate vehicle-induced emissions and air pollutant concentrations in the
Vilnius agglomeration. Recognizing that urban sustainability involves environmental,
social, and economic objectives, this study specifically focuses on analysing the environ-
mental dimension. The most significant environmental effects of transport are linked to air
quality [16]. For air quality assessment we can choose from a wide range of predictive tools
and methods which were explored by scientists: (1) autoregressive integrated moving aver-
age (ARIMA) [17], (2) machine learning [18], (3) principal component or non-parametric
regression [19,20], (4) hybrid techniques [21], bias adjustment [22], and linear unbiased
estimator [23]. Currently the artificial neural networks (ANNs) which can be used as the
adaptive modeling techniques for an investigation of environmental systems with the
universal approximation of non-linear functions for the complex associations between
the level of dependent and independent variables assessment were chosen to discover
a hidden association and forecasting of air pollution in different locations [24-27]. With
this in mind, the present study aimed to optimize and evaluate combined artificial neural
networks (ANN) methods for the modelling and prediction of the main urban air pollutants
in Vilnius Old Town based on the collected dataset of the main pollutant amounts in order
to provide valuable information on predicting and warning before the preventable episodes
of air pollution occur. Therefore, the data modelling was conducted using the amounts of
pollutants recorded by the Automatic Air Quality testing stations (Table A1, Appendix A),
and the research focused on answering the following questions:
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e How did air quality change in Vilnius Old Town after the introduction of loop traffic
by Vilnius city municipality compared the recorded amounts of pollutants in July 2019
and in July 2020?

e Did loop traffic solve air quality problems in Vilnius Old Town, or it is still important
to search for options for a better and environmentally friendly transport network?

e  What can be suggested as the priority areas for further research into Vilnius Old Town
air quality in the context of transport traffic change regulations?

This paper consists of six sections. The first section briefly discusses air quality
problems in Lithuanian cities. The second section covers the literature on the impact of air
pollution. Data sample collection and study methodology are addressed in the third section.
The fourth section considers the results of the preliminary statistical analysis, starting with
the comparative air pollution data analysis. Furthermore, this section presents air quality
modelling results using neural network models. The discussion on the current practices in
evaluating air quality is presented in the fifth section of this research. Finally, the concluding
comments and future research directions regarding the Vilnius agglomeration are discussed
in the last section.

2. Ambient Air Quality Evaluation

Air quality affects human health and the environment. The ambient air protection
by the law of the Republic of Lithuania establishes the rights of persons to clean air, the
obligations to protect ambient air from pollution related to human activities and reduce its
damage to human health and the environment [1]. Therefore, ambient air conditions are
required to assess ongoing natural and anthropogenic changes in environmental forecasting
trends and possible consequences for human health and ecosystems [28].

Air pollution by particulate matter (PM) has caused negative health outcomes and has long-
time been understood as the main source of the increase in mortality and morbidity [29-31].
Notable, the PM10 and particulate matter less than 10 pm a diameter can go in the lower
breathing system, but PM2.5 (2.5 um a diameter) is a dangerous pollutant that can go in the
gas-exchange areas of the lungs [32-35].

The formation of vehicles consumes emissions which mostly depends on the air to
fuel ratio, a parameter critical for the process of gasoline internal burning engines has
to be discussed. Following the theory, complete burning happens at the air-to-fuel ratio
of 14.7 or the stoichiometric ratio when there is just enough oxygen to oxidize the fuel;
subsequently, the process proceeds to the formation of CO,, water, and nitrogen. The other
problem appears with the modern gasoline-fuelled vehicles that use fuel injection systems
responsible for combustion optimization. However, in reality, the complete burning never
happens, and some atmospheric and fuel nitrogen is oxidized to NOx, some form new
hydrocarbons (HC) and CO, and a part of the fuel is not burned at all and is thus emitted
as hydrocarbons. The emissions in diesel-fuelled engines perform differently because of
compression-ignition compared to spark-ignition. Therefore, the combustion in diesel
engines can be characterized mainly by NOy, SO,, and PM.

There is a significant signal that vehicle technology, fuel composition, and emission
control technology can significantly affect emissions. We found that the optimum fuel
consumption rate happens at a cruise speed of around 72 km/h [36]. Instantaneous
emission rates of HC, CO, and NOy were found to rise as the cruise speed increased from
72 km/h to 104 km/h and when the cruise speed decreased from 72 km/h to 56 km/h [36].
Lawson [37] observed that 55% of CO emissions were emitted by only 10% of the fleet
and explained this effect by the oldest engine maintenance or poorly maintained vehicles.
In addition, we found that the high variability in emissions measured for different light-
duty cars of the identical model year was caused by engine maintenance or the state of
repair, which are significant variables that affect emissions [38]. These vehicles are usually
quantified as gross emitters.
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The types of all outdoor air pollution can be classified by Levinson et al. [39] into four
categories: photochemical smog, acid deposition, ozone depletion and global warming.
The characteristics, causes and effects of each category are summarised in Table 1.

Table 1. Characteristics, causes and effects by the type of air pollution.

Air Pollution Characteristics

Pollutants

Influence

Photochemical smog

Tailpipe emissions from automobiles. Ozone
(O3), by reaction between Volatile Organic
Compounds (VOCs), and Nitrogen Oxides (NOx)
and water in the presence of sunlight.

Health, vegetation and material damages.

Acid Rain

Sulphur Dioxide (SO,) and Nitrogen Dioxide
(NOy) react with H,O to form sulphuric and
nitric acid.

Health, vegetation and material damages.

Stratospheric ozone

More intense ultraviolet radiation

Chlorofluorocarbons (CFCs)

towards the earth.

Greenhouse Effect

Man-made pollutants including Carbon Dioxide
(CO,), Methane (CHy), Nitrous Oxide (N,O), O3,
and CFCs

Raising the average temperature on
Earth, resulting in slight melting of polar
ice-caps and a consequent rise in the sea

level.

Source: Levinson et al. [39].

When planning air quality management measures, it is very important to assess the
contribution of pollution sources to the overall situation in the area to create an effective ac-
tion plan. It is necessary to consider various options for improving air quality to ultimately
select the most cost-effective and efficient measures [40].

Various types of motor vehicle pollution emissions and their impact were summarised
by U.S. Environmental Protection Agency (US EPA) [41] and Oak Ridge National Laboratory
(ORNL) [42] in Table 2.

Table 2. Vehicle Pollution Emissions.

Pollutant Description Impact
Carbon dioxide (CO,) A by-product of combustion. Fuel production and engines.
Carbon monoxide (CO) A toxic gas which undermines blood’s ability to Fuel production and engines.

carry oxygen.

CFCs

Durable chemical harmful to the ozone layer
and climate.

Older air conditioners, aerosol.

Fine particulates (PM10; PM2.5)

Inhalable particles consisting of bits of fuel and carbon.

Diesel engines and other sources.

Hydrocarbons (HC) Unburned fuel. Forms ozone. Fuel production and engines.
Lead Element used in older fuel additives. Fuel additives and batteries.
Methane (CHy) A gas with significant greenhouse gas properties. Fuel production and engines.

Nitrogen oxides (NOx)

Various compounds.

Some are toxic, and all contribute
to ozone.

Major urban air pollution problem resulting from NOy

Ozone (Os) and VOCs combined in sunlight. NOxand VOC.
Road dust Dust particles created by vehicle movement. Vehicle use.
Sulphur Oxide (SOx) Lung irritant, causes acid rain. Diesel engines.

Volatile organic hydrocarbons
(VOCs).

A variety of organic compounds that form aerosols.

Fuel production and engines.

Toxics (e.g., benzene)

VOCs that are toxic and carcinogenic.

Fuel production and engines.

Sources: US EPA (1999a) [14]; ORNL (2000), [31].
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Given that various types of motor vehicle pollution emissions have a higher impact
on air pollution, the preparation of the air quality management action plan should include
the assessment of the level of ambient air pollution; the identification and assessment
of the factors contributing to the increase in the ambient air pollution levels and the
exceeding of the set emission limit values; feasibility and impact studies into the reduction
in and management of pollution in the municipal territory; moreover, the proposal of
supported measures, which should then be approved in strategic planning documents
and implemented to reduce the level of ambient air pollution below the established limit
values, and, if possible, the target values, in the shortest possible time, as well as to continue
reducing it [43].

Recently, extensive research has been focused on the prediction of air pollution to
form and develop models using meteorological data, including statistical models [44—48],
community multi-scale air quality model [49], research and prediction models using chem-
istry [50], neuro-fuzzy inference systems [51], and other similar models [52].

These methods have performed well in predicting air pollution, thereby allowing
the identification of new correlations between the collected data. Among these models,
the artificial neural network (ANN), which has nonlinear mapping capabilities and self-
adaptation, has proved superior and is widely used in predictive fields. Recently, various
ANN structures have been developed to improve the predictive function of air pollutant
concentrations [24,53-58].

3. Research Methodology
3.1. Research Area

The research area included the Vilnius agglomeration. In general, it should be men-
tioned that in Vilnius, connections between cities and across borders are made by way of
local and international roads, railways, and planes. Accordingly, vehicles are one of the
main sources of air pollution that needs to be reduced. Suburban roads in the suburban area
of Vilnius form a radial system comprising of 8 main roads and 5 country roads. Three Euro-
pean motorways cross Vilnius, i.e., E28 (Berlin-Gdansk—Kaliningrad—Marijampolé—Prienai—
Vilnius-Minsk); E85 (Klaipéda—Kaunas—Vilnius-Lida-Bucharest-Alexandroupolis); and
E272 (Vilnius-Panevézys-Siauliai-Palanga-Klaipéda). Trans European Network (TEN) IXB
transport corridor and its branch (Kyiv—Minsk-Vilnius—Klaipéda) also cross Vilnius and
integrate it into the international road network. The main roads Al (E85) Vilnius—Kaunas—
Klaipéda and A3 (E28) Vilnius-Minsk forms its basis.

In addition, special attention was paid to the Vilnius Old Town area, which covers
74 quarters with 70 streets and lanes, numbering 1487 buildings with a total ground area of
1,497,000 square meters.

3.2. Data Collection

To model and predict air pollutants in the Vilnius Old Town, we used data archives that are
consistently collected by the Environmental Protection Agency (EPA), which was established on
1 January 2003 by order of the Minister of the Environment of the Republic of Lithuania. The
study used the database set of air pollution in Vilnius agglomeration in 2018-2020.

According to the State Environmental Monitoring Programme 2018-2023, ambient
air pollution in Vilnius city is being studied in the 4 municipal air pollution estimation
stations (APES): Vilnius, Old Town Vilnius, Lazdynai (coordinates N 54°41’8"" E 25°12/39""),
Vilnius, Zirmiinai (coordinates N 54°42'55"" E 25°17/22""), and Vilnius, Savanoriy Avenue
(coordinates N 54°40'24"" E 25°14'56/'). Zirminai station is located on the high-traffic
Kareiviy Street, and best reflects the impact of transport on air quality. Savanoriu Ave
APES is located further from the busy street and close to residential buildings and reflects
the impact of two types of pollution sources on air quality, i.e., transport and the nearby
industrial and energy companies in Zemieji Paneriai. The Old Town APES is located
near a low-traffic street in a densely built-up and crowded area. Lazdynai APES is in a
residential area away from high traffic streets and other sources of pollution. The automatic
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air quality testing stations measure concentrations of assessable pollutants as provided for
in Lithuanian and European Union legal acts: particulate matter PM10, PM2.5, nitrogen
dioxide (NOy), sulphur dioxide (5O,), carbon monoxide (CO), ozone (O3), benzene con-
centrations. Zirm@inai APES station also collects samples of heavy metals, e.g., lead (Pb),
cadmium (Cd), nickel (Ni), arsenic (As) and polycyclic aromatic hydrocarbons, including
benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo
(a, h) anthracene, indene (1,2,3 cd) pyrene. These samples are used for concentration tests
in the laboratory of the Environmental Protection Agency. The detailed descriptions of
these automatic air quality testing stations are presented in Table A1, Appendix A.

Following the main motivation for this research, the dataset of the variables was
chosen to evaluate the condition of ambient air in the Vilnius agglomeration. Table A2,
Appendix A demonstrates statistical data on the air pollution indicators that environmental
stations collect to evaluate air quality in the Vilnius agglomeration. Furthermore, the results
section presents detailed information about the main indicators of air pollution, i.e., carbon
dioxide (CO3), carbon monoxide (CO), sulphur dioxide (50,), fine particulates (PM10;
PM2.5), nitrogen oxides (NOx), benzene (C¢Hg), and ozone (O3), which were included in
the mathematical modelling investigation.

3.3. Data Analysis and Mathematical Modelling

Data analysis results are presented in tables as mean and standard deviation. The
normality of variables was tested using the Shapiro-Wilk’s test. Student’s t-test for paired
data was applied to identify the differences in air contamination by measurement day
and year (7-31 July 2019 and 7-31 July 2020. The pollutants (PM10 (g/m?3), CO (mg/m?),
S5O,_1h (g/ m3), SO, 24 h (g/ m3), and NO, (g/ m3)) analysed throughout the day and
year were equated by a 2-way ANOVA with repeated procedures. For significant F-values
to establish the significant differences between variables means the Bonferroni’s post hoc
comparisons were conducted. The hypothesis of sphericity was tested by the Greenhouse-
Geisser adjustment. Cohen’s d coefficients were chosen as a measure of effect size for paired
data [59]. In addition, partial eta-squared (np?) measures were calculated to report the
effect size [60]. Finally, the air quality of Vilnius Old Town was assessed using mathematical
modelling. One-layer and two-layer artificial neural networks (ANN) were constructed.
The validated ANN model construction steps included the investigation process with
different numbers of hidden layers and dissimilar groupings of nodes to achieve the best
validation of the air pollutant assessment model. The collected dataset training-testing-
holdout percentages of 40-40-20, 50-30-20 and 60-20-20 were used. ANN builds the model
by learning from the potential correlation between variables that are independent (air
pollution indicators) and dependent (air quality situation measured by fixed air pollution
after and before the introduction of loop traffic in the Vilnius Old Town).

ANN design is inspired by the structure of the human brain and relies on advanced
learning processes [59]. The overall structure of ANN has three layers with specific tasks,
including a data input layer to ANN, an information processing layer (middle layer), and
an output layer. ANN shows the results and outputs in addition to the processing of each
network input parameter. For this research, we used the multilayer perceptron network
(MPN) with the back propagation algorithm (BPA). Network strategy is constructed from
the amount of the data in the input layer using a combination of data on the significant
parameters for air quality over time in several structures. In each structure, input data are
through the output of the first layer neurons after processing, moving to the neurons of the
next layers, and finally transmitted to the network output, if acceptable. Otherwise, they
return to the previous layers by calculating the computational error, and the calculations
are repeated to obtain acceptable results [60]. In this study, the standardized data were
used as a network input to increase the data processing speed and to prevent network
interruptions in the local minimums [61-63]. IBM SPSS 27v software was used to perform
the air pollution analysis for Vilnius agglomeration.
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4. Results

This section presents the main results of descriptive and inferential data analysis. The
preliminary statistical analysis started with a comparative air pollution data investigation
on the period of 2018-2020 in the Vilnius agglomeration. We used Student f-test and neural
network modelling for inferential data analysis. Mathematical modelling was conducted
using IBM SPSS 27v software.

4.1. Preliminary Analysis for Vilnius Agglomeration

To identify ambient air conditions in the Vilnius agglomeration, we assessed the
number of pollutants recorded by the air quality control services between 2018 and 2020.
This analysis focused on the following pollutants: particulate matter (PM10), carbon
monoxide (CO), nitrogen dioxide (NO;) and sulphur dioxide (50O,). The findings for the
annual concentration of PM10 from 2018 to 2020 are presented in Figure 2.
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Figure 2. PM10 air pollution measured in the Vilnius agglomeration by 4 municipal air pollution
monitoring stations located in Zirminai, Savanoriy Avenue, Lazdynai and Vilnius Old Town from
2018 to 2020: (a) particulate matter (PM10, ug/ m°) average of concentration by annual recorded
amounts; (b) number of days when the recorded daily limit value for PM10 (50 ug/ m?) was exceeded
in the period of 2018-2020.

The comparative data analysis results show that the highest average for the annual
concentration of PM10 from 2018 to 2020 was observed at Zirm{inai Air Control Services
(AQC) station. Moreover, the PM10 concentration in 2018 was close to the limit value that
is safe for human health (40 pg/m?3) and reached the value of 36 ug/m3. Additionally,
the situation in 2019 did not change, and the average annual concentration of PM10 at
Zirmanai AQC station remained the highest. The annual concentration of PM10 in the
Vilnius Old Town changed the least: it ranged from 28 pg/m3 (2018) to 26 pg/m? (2019); in
2020, it was recorded at 24 pg/ mS.

Carbon monoxide is an odourless, colourless, and highly toxic gas formed during the
combustion process when the combustible materials are not fully oxidized. Vehicles are
one of the main sources of carbon monoxide formation, as are thermal energy production
by energy companies and residential heating systems. Carbon monoxide (CO) maximum
concentration in a period of 8 h was calculated using a moving average (Figure 3a). Ac-
cording to the statistical information in Figure 3a, a higher CO concentration was identified
at Vilnius Old Town APES station in 2018 year (3.5 mg/m?). Later, CO concentration
decreased. In 2019, the average amount of CO was 2.1 mg/m?, and in 2020-1.4 mg/m?3.
This information helped prove that the limit value (10 mg/m?) of CO was not exceeded in
2018 to 2020.
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Figure 3. CO and NO; air pollution measured in the Vilnius agglomeration by 4 municipal air
pollution monitoring stations located in Zirmiinai, Savanoriu Avenue, Lazdynai and Vilnius Old
Town in the period of 2018-2020: (a) carbon monoxide (CO) maximum concentration in a period
of 8 h was calculated by means of a moving average; (b) average annual concentration of nitrogen
dioxide (NOy).

Nitrogen dioxide is formed during the majority of combustion processes. The main
sources of nitrogen dioxide are vehicles with internal combustion engines and thermal
energy production. Figure 3b provides information on the average annual nitrogen diox-
ide concentrations (NO;) between 2018 and 2020. It is evident that the concentration at
Zirmiinai APES station was the highest and ranged from 33 pg/m? (2018) to 25 pg/m?3
(2020). However, it did not exceed the set normative levels (40 nug/m?) that are safe for
human health in any year. The lowest concentration was at Lazdynai APES station, ranging
from 15 to 11 pg/m3.

Sulphur dioxide is mainly formed during the combustion process (mostly by burning
fossil fuels containing sulphur compounds) and during the processing of petroleum prod-
ucts and the production of sulphuric acid. Sulphur dioxide concentration in the Vilnius is
measured at Savanoriu Ave., Lazdynai and the Old Town AQC stations (Figure 4).
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Figure 4. SO, air pollution measured in the Vilnius agglomeration by 3 municipal air pollution
monitoring stations located at Savanoriy Avenue, Lazdynai and Vilnius Old Town from 2018 to 2020:
(a) maximum concentration of sulphur dioxide (5O,) per 1 h in the period of 2018-2020; (b) maximum
daily concentration of sulphur dioxide (5O,) in the period of 2018-2020.

The collected-dataset analysis showed that the maximum daily concentration of sul-
phur dioxide (SO,) between 2018 and 2020 was recorded in Lazdynai AQC station. Fur-
thermore, in 2018, the concentration of SO, was 29.2 ug/ m? and accounted for 23.4% of
limit value for sulphur dioxide concentrations. Moreover, assessing the recorded daily
concentrations of SO, during the indicated period, it is evident that SO, steadily decreased.
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Vilnius Old Town AQC ranged from 10.7 pg/m? in 2018 to 9.5 ug/m? in 2020. Vilnius
Lazdynai AQC ranged from 29.2 ug/ m?3 in 2018 to 15 ug/ m? in 2020. However, there is a
notable increase in the SO, concentration in the Vilnius Savanoriu Avenue: the recorded
data indicated the 8.1 ng/ m?3 in the air in 2018, but in 2020 SO, rise to 10 ug/ m3.

The fixed norm of the average counted per 1 hour for SO, concentrations officially has
the maximum limit of 350 j1g/m?, and this limit by the order cannot be exceeded more than
24 times in any calendar year. Furthermore, the maximum average daily concentration
(in 24 h) for SO; has a limit of 125 pg/ m? and, following the order, cannot be exceeded
more than 3 times in any calendar year. Lastly, the assessment of both the maximum
concentration of SO, in one hour and the daily concentration of SO,, proved that the
normative level for the safety of human health in this period was not exceeded in any of
the AQC stations.

4.2. Air Pollution Analysis Results in the Vilnius Old Town after Loop Traffic Agreement

Loop traffic regulation was introduced in the Vilnius Old Town concerning similar
traffic changes in the European urban centres that have been going on for several years.
As little as a month after the traffic reform in the Old Town, statistical monitoring data
confirmed that the population habits with regards to driving around the city had changed.
Comparing the last week of June 2020 with that of July 2020, the daily traffic average in the
Old Town decreased to 6%. Meanwhile, the morning rush hour is reduced by almost 10%
on weekdays. The evening rush hour saw traffic decreasing by 2.1%. Due to lower transit
traffic, the traffic flow on the streets of Vilnius Old Town has significantly changed, with
traffic on Pameénkalnis street reducing by about 27%, whereas the number of cars decreased
by as much as 40% on Klaipédos street after the integration of loop traffic.

Since the integration of loop traffic in July 2020 managed to reduce vehicle traffic in the
Old Town during the first month, the recorded changes in traffic probably should also affect
air quality in this part of Vilnius. However, in order to assess the impact of loop traffic on
reducing air pollution in the Vilnius Old Town more accurately and to identify significant
changes, we selected air pollution indicators recorded by the Automatic Air Quality testing
station in the Vilnius Old Town in 7-31 July 2019 and 7-31 July 2020 (Tables 3 and A2),
Appendix A).

Table 3. Mean performance statistics of air pollution in the Vilnius Old Town.

7-31 July 2019 7-31 July 2020 .
Pollutant Std Std Paired Mean Cohen’s d
Mean e Mean e Differences (Rating)
Deviation Deviation

PM10 (g/m3) 21.400 6.513 18.040 4118 3.36 % 0.434 (small)
3¢Co (mg/m3) 0.276 0.072 0.364 0.064 —0.09 ** 0.806 (large)
150, 1h (g/m3) 4512 0.176 2.684 0.415 1.83 ** 3.665 (large)
250, 24h (g/m3) 5.212 0.188 3.972 0.912 1.24 ** 1.391 (large)
NO; (g/ m3) 35.480 16.078 30.300 9.086 5.18 0.287 (small)

Notes: ! SO,_1 h-SO, maximum concentration per one hour; 2 50,_24 h-S0, maximum daily concentration.
3 CO maximum concentration per 8 h; Significant difference: * p < 0.05, ** p < 0.01.

Comparative data analysis results showed that the situation had changed and that
the amounts of some pollutants (PM10 and NO,), as measured by the Automatic Air
Quality testing station, had decreased (see Table 3). Despite the fact that the solution of loop
traffic changed the habits of many residents who visited Vilnius Old Town, the average
CO concentration in this zone did not reduce. On the contrary, the value increased from
0.276 ug/m3 in 2019 to 0.364 ]ng/m3 in 2020 (p < 0.01, A = —0.09, Table 3). Additionally, we
identified that some of the pollutant values statistically significant decreased: amounts of
PM10 (p <0.01, A =3.36), SO,_1h (p < 0.01, A =1.83), and SO;_24 h (p < 0.01, A =1.24) in
July 2020 (Table 3). We analysed a significant interaction effect between measurement year
and day. The significant differences between 7-31 July 2019 and 7-31 July 2020 pollution
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were identified for PM10 (p < 0.05, npz = 0.44) (see Table 3). The PM10 amounts were
significantly higher (p < 0.05) in 7-31 July 2019 (Table 3). In addition, an interaction effect
(p < 0.05) between day and year was obtained on PM10, CO, SO,_1h, SO,_24 h (g/ m3) and
NO; (g/ m3). The estimated PM10, SO,_1 h and SO,_24 h were higher 7-31 July 2019 than
7-31 July 2020 (p < 0.05, np? = 0.72, 0.61, 0.75) throughout the day measurement. However,
no significant differences of air contamination by NO, between conditions in 7-31 July
2019 and 7-31 July 2020 were found (Table 3). Despite this, the size of the mean differences
of NO2 was small. Finally, all Oof the variables showed a significant decrease over 7-31 July
2019 (p < 0.05, np? = 0.52-0.97) with 1 exception for CO (Table 3 and Figures 5 and 6).
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Figure 5. Estimated marginal means of CO pollution in the Vilnius Old Town, the values recorded in
the 7-31 July 2019 and in the 7-31 July 2020.

4.3. Inferential Statistical Analysis Results

The multi-perceptron neural networks were chosen for dataset analysis to answer the
research questions. Following to the specificity of the neural network analysis, the dataset
was divided into different partition rates and then assigned training, testing, and holdout
conditions: MLPN1 = 40%-40%-20%, MLPN2 = 50%-30%-20%, and MLPN3 = 60%-20%-20%.
This analysis allowed us to validate the model under different conditions. Furthermore, the
model was designed using specific parameters: initial lambda, which was set to 0.0000005;
initial sigma, which was set to 0.00005; interval centre (a, and a) forced the simulated
annealing algorithm to generate random weights between (a, — a) and (a, + a) to minimize
the error function and interval centre as well as the interval offset. Moreover, 0 was defined
as the interval centre, and the interval offset was set to £0.5.

Results of Case Processing

The multilayer perceptron neural network was used to help correctly predict air pollu-
tion before and after implementing the loop traffic agreement. Table 3 presents descriptive
statistical information about the datasets used to design the neural network models.

We used custom architecture for the MLPN network design with ten nodes for the
first hidden layer, five nodes for the second hidden layer, and two for the output layer
computations. Hyperbolic tangent activation function was used for the hidden layers, and
identity function was used for the output layer. Validation of the constructed models was
evaluated by the sum of square function (see Table 4).
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Figure 6. Estimated marginal means of pollutants in the Vilnius Old Town, between values recorded
in the 7-31 July 2019 and 7-31 July 2020: (a) PM10; (b) NO,; (c) SO,_1 h; (d) SO,_24 h.
Table 4. MLP network description for data processing.
Layer Partitions Number of Units Activation Function 1 Variable Description
MLPN1:4-4-2
Input 28.0% 5 - IV: PM10, CO, SO,_1 h, SO,_24 h, NO,
Hidden (1) 40.0% 10 Hyperbolic tangent
Hidden (2) e 5
Output 30.0% 2 Identity DV: (SIT: 1 = July 2019; 2 = July 2020)
MLPN2: 5-3-2
Input 44.0% 5 - IV: PM10, CO, SO,_1h, SO;_24 h, NO,
Hidden (1) 34.0% 10 Hyperbolic tangent
Hidden (2) 5
Output 22.0% 2 Identity DV: (SIT: 1 = July 2019; 2 = July 2020)
MLPN3: 6-2-2
Input 60.0% 5 - IV: PM10, CO, SO,_1 h, SO,_24 h, NO,
Hidden (1) 20.0% 10 Hyperbolic tangent
Hidden (2) 5
Output 20.0% 2 Identity DV: (SIT: 1 = July 2019; 2 = July 2020)

! Notes: IV = independent variable; DV = dependent variable; PM10-average daily concentration; CO-maximum
concentration per one hour; SO,_1 h-SO, maximum concentration per one hour; SO,_24 h-SO, maximum daily
concentration; NO,—maximum concentration per one hour. Standardized rescaling method for covariates; Error

Function = Sum of Squares.
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The high validated network (MLPN1) diagram is shown in Figure A1 (Appendix B),
which illustrates the diagram with 5 input nodes, 15 hidden nodes, and 2 output nodes
according to the 2 dependent variable categories. The summary for the designed models
provides information on the results of the training (and testing) and holdout sample, as
shown in Table 5.

Table 5. Summary for the designed models.

L. MLPN1 MLPN2 MLPN3
Layer Description 4-4-2 5-3-2 6-2-2
Sum of Squares Error 0.005 0.008 0.411
! Training Percent Incorrect Predictions 0.0% 0.0% 0.0%
Training Time 0:00:00.01 0:00:00.01 0:00:00.01
Testin Sum of Squares Error 0.021 0.057 0.075
J Percent Incorrect Predictions 0.0% 0.0% 0.0%
Holdout Percent Incorrect Predictions 0.0% 33.3% 0.0%
1 Notes: Dependent variable: SIT: 1 = July 2019; 2 = July 2020. Stopping rule used = consecutive step(s) with no
decrease in error.

The sum of squares error was used for both the training and testing samples. The
MLPN1 (4-4-2) model was identified as having the smallest sum of squares error value
(training = 0.005; testing = 0.021), indicating the model’s capability to predict air pollution
before the introduction of loop traffic (July 2019) and after (July 2020).

According to the calculation results, the MLPN1 model’s percentages of inappropriate
predictions constructed on the training and testing samples were 0.0% and 0.0%, respec-
tively. Moreover, the degree of improper predictions in the holdout dataset equalled 0.0%.
The training procedure was performed until one consecutive step with no decrease in the
error function was achieved. Additionally, the synaptic weights of MLPN1 (40%-40%-20%)
are presented in Supplementary Materials as Table S1.

The outcome in Table 6 for the MLPN1 model demonstrates that 20 cases (out of 20)
of air quality situations were classified correctly and measured by the 2 categories in the
training data sample and 20 out of 20 variables in the testing sample. Overall, the designed
model MLPN1 properly classified 100.0% of the training and testing cases. The same
situation appears for the MLPN2 model.

Table 6. Model sample classification using the constructed MLPNS.
1 Predicted Dependent Variable
Sample Observed MLPN1 (4-4-2) MLPN2 (5-3-2) MLPNS3 (6-2-2)
sIT1 siT2 Dot gy g Pereemt gy gy Percent
Correct Correct Correct
July 2019 10 0 100.0% 10 0 100.0% 15 0 100.0%
Training July 2020 0 10 100.0% 0 13 100.0% 0 15 100.0%
Overall Percent 50.0% 50.0% 100.0% 43.5% 56.5% 100.0% 50.0% 50.0% 100.0%
July 2019 10 0 100.0% 13 0 100.0% 5 0 100.0%
Testing July 2020 0 10 100.0% 0 5 100.0% 0 5 100.0%
Overall Percent 50.0% 50.0% 100.0% 72.2% 27.8% 100.0% 50.0% 50.0% 100.0%
July 2019 5 0 100.0% 2 0 100.0% 5 0 100.0%
Holdout July 2020 0 5 100.0% 3 4 57.1% 0 5 100.0%

Overall Percent 50.0% 50.0% 100.0% 55.6% 44.4% 66.7% 50.0% 50.0% 100.0%
! Notes: Dependent variable = SIT: SIT1 = July 2019, SIT2 = July 2020.

Additionally, the MLPN1 model’s predicted pseudo-probability for the two situations
of air quality categories of the SIT variable are presented in a box-plot diagram (see
Figure 7).
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Figure 7. MLPN1 (4-4-2) model’s predicted pseudo-probability is presented in a box-plot diagram for
the two SIT variable groups.

This specific graph separately illustrated the predictions for the two categories of the
dependent variable SIT and categorized the predicted pseudo-probabilities based on the
whole analysed dataset. Detailed analysis of the diagram should start from the left side.
The first boxplot on the left shows the predicted probability of the observed situation of
air conditions in the category before the loop traffic agreement (July 2019) in the Vilnius
Old Town. The second boxplot shows the probability for air conditions classified in the
category after the loop traffic agreement (July 2020). The third boxplot shows the outcomes
that have been observed in the category after the loop traffic agreement (July 2020) and
the predicted probability of the category before the loop traffic agreement (July 2019). The
right boxplot shows the probability for air conditions that succeeded to be classified in the
category after the loop traffic agreement (July 2020).

Moreover, the MLPN1 model was validated using the ROC curve, which showed
the classification performance for all possible cut-offs in the sensitivity versus specificity
diagram (Figure 8).
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Figure 8. Graphical validation of the MLPN1 (4-4-2) model using the ROC curve.

In this model, the research dataset was divided in the following way to be analysed:
training = 40%, testing = 40%, and holdout = 20%. Figure 8 gives the sensitivity and
specificity (situation in July 2019 and July 2020) diagram constructed on the training and



Sustainability 2022, 14, 2470

15 of 24

testing illustrations. The 45-degree line from the lower-left corner to the upper right corner
of the chart characterizes the situation of randomly guessing the category. The further the
curve moves from the 45-degree reference line, the more precise the classification. The area
under the curve (AUC) was measured, and the higher validation result of 1.000 as an AUC
appeared for the air quality category SIT1 and 0.998 for the category SIT2 (see Table 7).

Table 7. The area under the curve.

MLPN1 MLPN2 MLPN3
40%-40%-20%  50%-30%-20%  60%-20%-20%
Area Area Area
) SIT1 = July 2019 0.998 1.000 1.000
SIT SIT2 = July 2020 1.000 1.000 1.000

! Notes: Dependent variable = SIT: SIT1 = July 2019, SIT2 = July 2020.

Measures of sensitivity and specificity for the designed MLPN1, MLPN2, and MLPN3
models were presented as the AUC, which presents the entire position of the ROC curve
according to the SIT variable’s 2 categories: July 2019 and July 2020. The AUC presented in
Table 7 can be described as the probability of a randomly selected air condition situation
being rated or ranked correctly. This explanation is based on non-parametric Mann-—
Whitney U statistics. Moreover, the maximum AUC = 1.000 (MLPNT1, SIT group 2 = July
2020, Table 7) showed that air conditions assessed using the recorded values of pollutants
as air pollution markers demonstrated a high predictive ability to classify situations before
and after the loop traffic agreement.

The chart in Figure 9a provides the cumulative gains that illustrate the accurate
classifications gained by the MLPN1 model against the correct classifications that could
affect by chance (without exploiting the model). The gains chart demonstrates the success
of the classification designed by the neural network model. For example, the third point
on the curve for the category that presents air conditions after the loop traffic agreement
(July 2020) is at (30%, 85%). This can be explained in terms of the network scoring the
data and classifying all air quality conditions using the predicted pseudo-probability of the
category after the loop traffic agreement. The top 30% is predicted to cover approximately
85% of all cases in the situation described by the second SIT category (July 2020). It is
not significant to select 100% of the scored data to find all of the recognized illustrations
of air quality established in the dataset. Accordingly, the higher overall gain specifies
higher performance. Additionally, Figure 9b helps to graphically judge the performance of
the classification models. Moreover, the presented lift graph, which uses a portion of the
dataset, can show a clear view of the benefit of the modelling result, if not using modelling.
The values from the gains diagram were used to compute the lift feature (i.e., the support):
the lift at 100% for the second SIT category (July 2020) was 85%/30% = 2.8.

Furthermore, the impact of each pollutant on air quality predictions in terms of relative
and normalized importance acknowledged in the models MLPN1, MLPN2, and MLPN3 is
demonstrated in Table 8. We found that the variable SO,_1 h had the highest importance
of all predictors (normalized importance = 100%). The highest normalized importance of
air quality prediction was identified for the maximum concentration of sulphur dioxide
per one hour (SO,_1h, g/ m?) in all constructed MLPN models (Table 8). In addition, the
chart for the MLPN1 model is presented for a better illustration of the pollutants and their
importance for air contamination increases (see Figures A1 and A2, Appendix B).
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Figure 9. Model performance measurement: (a) cumulative gains that illustrate the accurate classifi-
cations gained by the MLPN1 model; and (b) lift chart shows the MLPN1 model performance in a
portion of the statistical sample.

Table 8. Importance of independent variables for air quality prediction.

1 Variables

40%-40%-20%

MLPN2
50%-30%-20%

MLPN3
60%-20%-20%

MLPN1

Normalized Normalized Normalized
Importance Importance Importance

Importance Importance Importance
PM10 0.154 39.4% 0.033 5.9% 0.116 21.8%
(€0 0.230 59.0% 0.259 46.6% 0.180 33.8%
SO, 1h 0.390 100.0% 0.557 100.0% 0.533 100.0%
SO, 24h 0.132 34.0% 0.118 21.1% 0.139 26.1%

NO; 0.094 24.2% 0.034 6.0% 0.031 5.8%

! Notes: PM10-average daily concentration; CO-maximum concentration per one hour; SO;_1 h-SO, maximum
concentration per one hour; SO,_24 h-SO, maximum daily concentration; NO,—maximum concentration per
one hour.

5. Discussion and Limitations

On 7 July 2020, Vilnius Old Town embraced traffic changes, whereby the regulation
of loop traffic was introduced to the area. Visitors and residents of the Old Town could
continue to drive to their homes, workplaces, and attractions. However, many drivers
were no longer able to cross the Old Town in order to shorten their journey time. The
introduction of loop traffic aimed to improve the quality of life of the residents of the
Old Town. Reducing vehicle traffic meant that noise and air pollution also diminished.
However, the changes affected the public transport system so that both the residents and
the guests of the capital were able to travel by conventional bus routes. Consequently, it
was important to assess the changes in air quality after the loop traffic agreement.

The study analysed a dataset from 2018 to 2020 as recorded by the Automatic Air
Quality testing stations in the Vilnius agglomeration. The research was conducted to
help and identify air quality in the Vilnius agglomeration and the area of Vilnius Old
Town. Based on the collected air quality dataset, these investigations included a control
component, which was the dependent variable SIT (1 = July 2019, 2 = July 2020), air
pollution in the Vilnius Old Town in 2 different situations (after and before the loop traffic
agreement), and five independent variables: PM10, CO, SO;_1 h, SO,_24 h, and NO;,
which were chosen to investigate how loop traffic helps to reduce air pollution in the Old
Town area of Vilnius.
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Particulate matter is a mixture of airborne particles and liquid droplets, also known as
aerosols, which actively absorb toxic substances and microorganisms and carry hazardous
substances. In addition, the finer the particles, the deeper they penetrate the human
body and, in turn, the greater their adverse effects on human health. Accordingly, we
focused on the amount variations of this pollutant in the Vilnius agglomeration. The results
in terms of the annual average daily concentrations of particulates under 10 microns in
diameter (PM10, g/m?) showed that PM10 changed the least in the Vilnius Old Town:
they ranged from 28 pg/m3 (2018) to 26 pg/m3 (2019); in 2020, they were recorded at
24 pg/m3. Therefore, the annular data investigations for the number of days when the
recorded daily limit value for PM10 (50 pg/m?3) was exceeded in 2018-2020 showed that
extreme values of PM10 were recorded ten times days as in 2019 as in the 2020 year. These
findings proved the same problem with the heavy traffic loads, and it is along the same
lines as those of other scholars [64-66], who identified that air pollution caused by PM
is one of the most pressing problems in cities. The most common sources of particulate
pollution are vehicles, combustion processes (heat production, fires, scrap), industrial
activities, etc. [65,67,68]. This led us to reach a similar conclusion to other scholars [64,69]
that the most common sources of particulate pollution sources were frequently localized
as depicted by high concentrations at low wind speeds in the area of Vilnius Old Town,
mostly by the emissions from road vehicles that increased pollution in the summertime
(July) due to the unfavourable dispersal conditions.

Carbon monoxide (CO) is an odourless, colourless, and highly toxic gas formed
during the combustion process when the combustible materials are not fully oxidized. The
maximum concentrations of CO (CO = 0.50 mg/m?) per 1 hour was registered in July 2020.
Student t-test is statistically significantly higher than in July 2019 (CO = 0.40 mg/m?). This
is a worrying outcome because it proves that vehicles are one of the main sources of carbon
monoxide formation in the summertime in the Vilnius Old Town. This finding is concurrent
with other research into air pollution in cities [67,70,71].

When analysing the neural network modelling results, the highest normalized im-
portance (normalized importance = 100%) of air quality prediction was found with the
maximum concentration of sulphur dioxide per one hour (SO,_1 h, g/m?). Moreover,
50,_1 h pollutant had the highest indication (normalized importance = 100%) in all of
the constructed neural network models to judge the importance of independent vari-
ables. Another predictor with high importance was carbon monoxide (mg/m?), indicated
by the maximum concentrations of carbon monoxide per one hour (normalized impor-
tance = 59.0%, MLPN1). Next in importance was PM10 (normalized importance = 39.4%,
MLPN1). Unexpectedly, nitrogen dioxide (NO;), a pollutant attributable to the transport
sector, was found to have a small impact (normalized importance = 24.2%, MLPN1) on air
pollution in the Old Town. This importance varied across the different models (see Table 8).
The multilayer perceptron neural networks design with custom architecture with hyperbolic
tangent activation function for two hidden layers (ten nodes for the first hidden layer and
five nodes for the second) and identity function for the output layer computations were val-
idated in the same way as other scholars did by the sum of square function [24,48-55]. The
research findings demonstrate that the highest accuracy was reached with the MLPN1 with
4-4-2 partition, the standardized rescaling method for covariates, and the backpropagation
algorithm. MLPN1 model was acknowledged as the best by the smallest sum of square
error value of 0.005, a correct classification rate of 100%, and the AUC for each category
with the predicted pseudo-probability (July 2019 = 0.997; July 2020 = 1.000).

The specific location area of AQC stations enabled us to conduct the comparative
data analysis and assess the average annual particulate matter PM10 in the Vilnius ag-
glomeration. We identified that PM10 in 2018 ranged from 13 to 36 ug/m3 and from
13 to 24 pg/m3 in 2020 and did not exceed the limit value (40 pg/m?). In addition, a higher
CO concentration was identified in the Vilnius Old Town AQC station in 2018 (3.5 mg/m?3).
However, the CO concentration decreased later. In 2019, the average CO concentration was
2.1 mg/m?, and in 2020-1.4 mg/m3. Moreover, although Lazdynai AQC station is located
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in a residential area, away from streets and other sources of pollution, the maximum daily
concentration of sulphur dioxide (50O;) was recorded in Lazdynai AQC station from 2018
to 2020.

This study has limitations. Firstly, the research design was based on a dataset from
2018-2020. Secondly, air conditions in the Vilnius agglomeration were measured without
including meteorological parameters, which play a key role in the moderation or intensifi-
cation of air pollution. Thirdly, this analysis did not investigate the correlation between
daily changes in pollution and changes in human health in the Vilnius agglomeration. It
can also be assumed that all of the components of the air quality control process must
be fair to avoid offsetting effects between the components. Given the above caveats, the
study’s conclusions must be interpreted carefully.

Future research can include variables such as minimum and maximum daily tempera-
ture, average daily temperature, total daily rainfall, sunny hours, cloudy hours, maximum
daily wind speed, wind direction, average wind speed, maximum and minimum humidity
measures, which have been considered in other studies [10,28]. Additionally, air quality
assessment studies can include the statistical measures of daily vehicle traffic in the city
and noise indicators [72]. Despite these limitations, this study used accurate methods to
predict air pollution and provided interesting evidence regarding the role of the loop traffic
agreement in the Vilnius Old Town. Consequently, the prediction of air pollutants based on
the modelling of neural networks could significantly contribute to the decision-making of
Vilnius city managers and planners as it concerns the negative effects of air pollution.

6. Conclusions

This scientific work has been conducted to gain more knowledge and new evidence
regarding air quality in the Vilnius agglomeration after an internal integrated city transport
corridor was formed, built Vilnius Southern Bypass and Vilnius Western Bypass, and the
regulation of loop traffic was introduced.

The chosen analysis methods helped to identify the main pollutants that cause the
most air pollution and aggravate human health problems. The offered air contamination
assessment has 4 important aspects which make it different from those which have been
previously presented: (1) our analysis focuses on the interaction between air pollution and
assessment of the impact of the proposed transport policies has on urban sustainability in
Vilnius Old Town strategy rather than assuming that the strategies are simply indepen-
dent; (2) our data modelling takes into account that air pollution is a multidimensional
phenomenon that must be measured and modelled using nonlinear methods, which is
ignored in the pollution assessment dynamics literature; (3) Mathematically, artificial neural
network modelling is used in purpose to handle complex systems with many interrelated
parameters; (4) the new evolutionary-based algorithm was developed by simultaneously
changing the topology and the connection weights of ANNs by means of different combi-
nations of genetic algorithm. Furthermore, the results of this study will contribute to the
planning of ambient air quality management in the Vilnius agglomeration. This research
will help make the right decisions in maintaining healthy air quality concerning human
health and the environment. When preparing a plan for air quality management, it is
necessary to assess ambient air pollution and identify and evaluate the main pollutants that
contribute to the level of ambient air pollution. Accurate methods for predicting air pollu-
tion can help find insights for solutions to reduce air pollution in the Vilnius agglomeration.
Therefore, the prediction of air pollutants based on a dataset recorded by the Automatic Air
Quality testing stations could largely contribute to the decision-making of city managers
and planners as it concerns the adverse effects of air pollution on Vilnius Old Town.

Future studies on complex air pollution modelling should focus on the indicators or
multifaceted methods that may better reflect the way pollutants cause air pollution and
influence health. Despite the findings of the investigation that demonstrated effective im-
plementation of neural network modelling for air pollution, future studies need to validate
these findings with extended datasets. In addition, future studies could be extended by
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research into the correlation between daily changes in pollution and changes in health.
Furthermore, this type of analysis could consider other contributing factors, such as the
season, temperature, and the day of the week.

Supplementary Materials: The data supporting the reported results are available online at https:/ /www.
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Appendix A

Table Al. Types of Automatic Air Quality testing stations employed in the Vilnius agglomeration.

1 Station

Station Type Station Coordinates Description

Vilnius, Old Town

Located in a densely populated, crowded

. o / 1 o ! 1!
city background N 54°40'537 E 25717717 area, near a low-traffic street.

Located in a residential area, away from

. : : : o Qr’ o ! !
Vilnius, Lazdynai city background N 54°41’8"" E 25°12/39 streets and ofher sources of pollution.
Located close to heavy traffic on Kareiviuy
Vilnius, Zirminai transport N 54°42'55"" E 25°17/22"" Street, near the intersection with

Kalvariju Street.

Vilnius, Savanoriu Avenue

Located on a busy street, but at a greater
distance from it, in a square next to
residential houses. Air quality in this area

industrial N 54°40'24" E25°14'56/"  can be significantly affected by emissions
from both transport and the nearby
industrial and energy companies in
Zemieji Paneriai.

Notes: ! Vilnius agglomeration, Lithuania.


https://www.mdpi.com/article/10.3390/su14042470/s1
https://www.mdpi.com/article/10.3390/su14042470/s1
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Table A2. Aggregate statistical indicators of air quality in the Vilnius agglomeration in the period of
2019-2020.

PMy PM_ 5 SO, NO, O3 CO = GCgHp
ug/m3 ug/mS ug/m3 mg/mS ug/m?, mg/m?: m g/m3
.y Cmax . . Cmax Cmax . Cmax Cmax Cmax Cmax .
Station Cvid 24 h P Cvid Cvid 24 h 1h Cvid 1h \% 8h P1 P2 1h 8h Cvid
2020 Existing Standards, Limit Values, Information and Alert Thresholds for the Protection of Human Health
0 0 ¥ 2 125 350 40 200 18 120 25
Vilnius Old Town 24 155 10 59 9.5 13.3 15 109 0 14
Vilnius, Lazdynai 25 149 6 10.1 15.0 22.6 11 95 117 124
Vilnius, Zirminai 27 152 16 13.6 25 123 117 127 0.9 0.23*
Vilnius, Savanoriu 43 149 6 50 100 386 14 8 0 12 038*
venue
2019 existing standards, limit values, information and alert thresholds for the protection of human health
Station 0 50 ¥ 2 125 35 40 200 18 1200 25
Vilnius Old Town 26 87 10 5.8 8.9 439 18 104 2.1
Vilnius, Lazdynai 17 62 3 4.7 17.2 34.1 11 79 143 9 147
Vilnius, Zirmiinai 30 80 15 16 31 120 149 5 154 14 0.24*
Vilnius, Savanoriu 19 g g 50 91 258 18 148 0 11 029*

Avenue

Notes: Cvid—average annual concentration; Cmax 24 h—maximum daily concentration; Cmax 1 h—maximum
1 h. concentration; Cmax 8 h—maximum 8 h. Concentration for the period is calculated using the moving average
method; 120 M —the target value for ozone must not be exceeded for more than 25 days in a year, averaged over
3 years. P—number of days when the daily limit value was exceeded (50 pg/m?); Pl—number of days when 8 h
were exceeded. Ozone target value for 2019; P2—average annual number of days when the limit value in the 8 h
period was exceeded. Target value for ozone, 2018-2020; V—number of hours when the limit value in the 1 h
period was exceeded. Limit value (200 pg/ m?); *—less than 90% of data collected.

Appendix B

Normalized Importance

0% 20% 40% 60% B80% 100%

S02_1h

CO_gh
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Importance

Figure Al. Predicted normalized importance for pollutants according to the MLPN1 (40%-20%-
20%) model.
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Synaptic Weight = 0
m— Synaptic Weight < 0

Hidden layer activation function: Hyperbolic tangent

Cutput layer activation function: dentity

Figure A2. MLPN1 topology for cycle time with multi-layered perceptron.
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