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Abstract: Evaluating the regional trends of air pollution disaster risk in areas of heavy industry and
economically developed cities is vital for regional sustainable development. Until now, previous
studies have mainly adopted a traditional weighted comprehensive evaluation method to analyze
the air pollution disaster risk. This research has integrated principal component analysis (PCA), a
genetic algorithm (GA) and a backpropagation (BP) neural network to evaluate the regional disaster
risk. Hazard risk, hazard-laden environment sensitivity, hazard-bearing body vulnerability and
disaster resilience were used to measure the degree of disaster risk. The main findings were: (1) the
air pollution disaster risk index of Liaoning Province, Beijing, Shanghai and Guangdong Province
increased year by year from 2010 to 2019; (2) the mean absolute error (MAE), root mean square error
(RMSE) and mean absolute percentage error (MAPE) of each regional air pollution disaster risk index
in 2019, as predicted by the PCA-GA-BP neural network, were 0.607, 0.317 and 20.3%, respectively;
(3) the predicted results were more accurate than those using a PCA-BP neural network, GA-BP
neural network, traditional BP neural network, support vector regression (SVR) or extreme gradient
boosting (XGBoost), which verified that machine learning could be used as a method of air pollution
disaster risk assessment to a considerable extent.

Keywords: air pollution; PCA-GA-BP neural network; GIS technology; disaster risk assessment

1. Introduction

With the proliferation of high-intensity human engineering activities on a global scale,
the global air pollution trend has become more and more obvious [1–3]. Extreme weather
events frequently occur and have caused a series of disasters, and a high degree of air
pollution seriously endangers human health [4–8]. High concentrations of PM2.5 and PM10
have significantly increased population mortality [9,10]. According to the Global Burden
of Disease (GBD) report, nearly 4.09 million people died as a consequence of outdoor air
pollution in 2016 [11,12]. The Environmental Law and Policy Center of Yale University
published China’s environmental quality ranking in the Global Environmental Performance
Index Report 2018, ranking it 120th among 180 countries and regions in the world. China’s
overall assessments of PM2.5, nitrides and sulfides were ranked 177th, and the air quality
compliance rate of 338 cities across the country was 35.8%. Among all the kinds of air pol-
lution, the impacts of PM2.5, PM10, and nitrides and sulfides on human health have become
a research focus worldwide. Many studies have shown that the population mortality rate
and the incidence of various human respiratory and circulatory system diseases are closely
related to short-term exposure to air pollution [13–20]. Burkart et al. [21] adopted bivariate
response surface models (BRSMs) and generalized additive models (GAMs) to assess the in-
creased mortality risk from high temperatures and air pollution. Willers et al. [22] designed
a case-crossover method to analyze the associations among mortality, temperature, and air
pollution and found significant synergistic effects from high temperature and air pollution
on mortality. Requia et al. [23] applied the integrated exposure-response function (IERF) to
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estimate the influence of PM2.5 on premature mortality, which found that reducing traffic
congestion and land using efficiency could reduce air pollution and population mortality.
Zhao et al. [24] utilized statistical data to evaluate the influence of O3 and PM10 on the risk
of depression or anxiety diagnosis in the general population. Liu et al. [25] studied the
substantial association between the psychological wellbeing of citizens in various aspects
and air pollution. Yuan et al. [26] evaluated the impact of air pollution and green spaces on
people’s subjective well-being (SWB) in China.

With the rapid development of the national economy and the advancement of indus-
trialization and urbanization, the overall air quality in China has deteriorated significantly,
and extreme air pollution incidents have occurred frequently [27–32]. To date, existing
studies have carried out a comprehensive air pollution disaster risk assessment regarding
the economy, society and ecology. Sun et al. [33] evaluated the gestational exposure to
air pollution of 6275 pregnant mothers in Zhejiang Province in China in 2013–2017. Du
et al. [34] studied indoor and outdoor polycyclic aromatic hydrocarbons (PAHs) and popu-
lation inhalation exposure in two rural counties in Shanxi and Guizhou provinces. Zhang
et al. [35] analyzed air mass transportation and the sources of volatile halogenated hydro-
carbons (VHCs) in Beijing, to better understand the health risks of VHCs. Bao et al. [36]
analyzed the pollution characteristics, atmospheric photochemical reactivity, human health
risk and sources of carbonyls during a heavy air pollution episode in Chengdu in China. As
for the weighting methods, some researchers have adopted the analytical hierarchy process
(AHP), the fuzzy analytical hierarchy process (FAHP), the Delphi method, the entropy
method (EM), and so on to evaluate the association among economic development, air
pollution, and people’s health [37–40]. With the continuous improvement of information
technology, some researchers have used machine learning tools to effectively assess the air
pollution disaster risk. Du et al. [41] used the length-changeable incremental extreme learn-
ing machine (ELM) to forecast air quality information, which is essential for controlling
and managing air pollution. Li et al. [42] adopted a backpropagation (BP) neural network
to simulate air pollution control in the future, objectively and effectively evaluating the
performance of air pollution. However, the BP model will make its prediction error fall into
the local minimum of the error space, resulting in low convergence speed and affecting
the prediction’s accuracy. A genetic algorithm (GA) with good optimization ability could
improve the search performance of the BP neural network; the GA-BP neural network had
better predictive performance in the modeling of machine learning [43].

Based on the above literature review and the disaster risk theory, to further improve
the assessment indicators, we first considered the natural environment, economic and
social development, population, residents’ health status, and the death rate from diseases
as air pollution disaster risk assessment indicators. Then, we constructed an air pollution
disaster risk assessment indicator system from hazard risk, hazard-laden environment
sensitivity, hazard-bearing body vulnerability and disaster resilience. Finally, the authors
introduced principal component analysis (PCA) to analyze the constituent indicators of air
pollution disaster risk in Liaoning Province, Beijing, Shanghai and Guangdong Province,
to acquire the training data for the GA-BP neural network. This research has been divided
into four sections. The first section will introduce the background of the research. The
materials and methods section will introduce the study area, data sources, indicator system
and the principle of the PCA-GA-BP neural network. The analytical results section will
introduce the air pollution disaster risk index and the changing trends of the risk index, as
displayed by GIS technology from 2010 to 2019. The final section will offer a discussion,
our conclusions, and the limitations of this research.

2. Materials and Methods
2.1. Data
2.1.1. Overview of the Study Area

In order to verify the science and rationality of the method, Liaoning Province, Beijing,
Shanghai and Guangdong Province were used as examples to carry out the applied research.
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Liaoning Province is located in the southern part of northeast China, and it is bounded by
latitude 38◦43′–43◦26′ N and longitude 118◦53′–125◦46′ E, with a total area of 148,600 square
kilometers. Beijing is located in the northern part of China with a total area of 16,400
square kilometers, between latitude 39◦26′–41◦03′ N and longitude 115◦25′–117◦30′ E, at
the junction of the North China plain, the Taihang Mountain and the Yanshan Mountain.
Shanghai is located in the middle of the eastern coast of China, between latitude 30◦40′–
31◦53′ N and longitude 120◦52′–122◦12′ E. It is the center point between China’s north and
south coasts, with a total area of 6300 square kilometers. Guangdong Province is located in
the most southern part of China’s mainland, between latitude 20◦13′–25◦31′ N and longitude
109◦39′–117◦19′ E. The total land area of the province is 179,800 square kilometers, which is
about 1.87% of the country’s landmass. The characteristics of heavy industrial structures in
the northeast region have been prominent for many years, and the development of heavy
industry still puts great stress on the ecological environment. In 2015, the total emissions of
industrial-source SO2 from the three northeastern provinces reached 1,452,400 tons; this
was about 81.2% of the total emissions of SO2 in the region. Liaoning Province was an
important industrial area, with more value to research for carrying out risk assessments of
dangerous air pollution levels. Pollution emissions had an impact on both the birth rate and
the death rate. This effect was mainly reflected in the more developed coastal and inland
central cities in China. The agglomerations of Beijing, Shanghai and Guangzhou Province
were selected to better analyze the changing trends of China’s regional air pollution disaster
risk. The geographic locations of the study areas are shown in Figure 1.
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2.1.2. Details of the Data Sources

The data on regional economic and social development used in this study includes re-
gional GDP, the density of economic activity, the proportion of secondary industry, building
construction areas, urban green space areas, health expenditure, energy conservation and
environmental protection expenditure, population status, and so on. The data regarding
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residents’ health status included birth rate, death rate, natural growth rate, the death rate
from individual diseases, average medical treatment visits and average annual hospitaliza-
tion rate. The meteorological data included annual average temperature, relative humidity
and rainfall data. The above data range was from 1 January 2010 to 31 December 2019 and
was sourced from the National Statistics Administration, the China City Statistical Yearbook
and China Health Statistical Yearbook. The annual average PM10, PM2.5, SO2, NO2, O3 and
CO were calculated from the daily data, which were from the US Embassy’s Air Quality
Report (https://www.airnow.gov/ accessed on 25 October 2021) and the National Statistics
Administration. In this research, using a PyCharm environment in Python and other tools,
the six pollutant concentrations are shown in Figure 2a–d. The standard deviations of the
annual average of the six major pollutant concentrations in each region from 2010 to 2019
are shown in Table 1.
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Table 1. Standard deviations of the annual average of six pollutant concentrations in each region
from 2010 to 2019.

Region SO2
(ug/m−3)

NO2
(ug/m−3)

PM10
(ug/m−3) CO (ug/m−3) O3 (mg/m−3) PM2.5 (ug/m−3)

Liaoning Province 27.786 5.075 26.429 0.757 12.452 16.248
Beijing 10.965 6.119 15.351 0.830 7.130 18.135

Shanghai 7.284 3.955 14.920 0.345 10.316 11.270
Guangdong Province 6.216 3.100 9.133 0.314 14.869 8.331

The annual average concentrations of SO2, PM10, CO and PM2.5 of Liaoning province,
Beijing, Shanghai, and Guangdong Province have decreased year by year from 2010 to 2019.
However, the annual average concentrations of NO2 in each region have not decreased
significantly. The annual average concentrations of O3 in each region have increased yearly.
The transport effect of air pollution, photochemical decomposition and human activities
had a significant impact on increasing the concentration of O3. Related studies conducted
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in other regions also showed that the concentrations of O3 were negatively associated with
the concentrations of SO2, NO2, PM10, CO and PM2.5 [44–47].

2.1.3. Construction of the Indicators System

The regional assessment index system of air pollution disaster risk constructed from
the perspective of four aspects is shown in Table 2.

Table 2. Primary and secondary pollution indicators.

Primary Indicators Secondary Indicators Reference Source Impact
Direction

Hazard factors

X1: Annual average SO2 (ug/m−3)

[1,6,7]

+
X2: Annual average NO2 (ug/m−3) +
X3: Annual average PM10 (ug/m−3) +
X4: Annual average CO (mg/m−3) +
X5: Annual average O3 (ug/m−3) +

X6: Annual average PM2.5 (ug/m−3) +

Hazard-laden
environment

X7: Birth rate (%)

[2,11,14,19,22]

−
X8: Natural growth rate (%) −

X9: Average annual temperature (°C) −
X10: Annual average relative humidity (%) −

X11: Average annual rainfall (mm) −
X12: Regional GDP (CNY 100 million) +

X13: Density of economy (CNY 100 million/km2) +
X14: Proportion of secondary industry (%) +

X15: Building construction area (km2) +
X16: Death rate (%) +

X17: Death rate from respiratory diseases (%) +
X18: Death rate from heart diseases (%) +

X19: Average annual residents’ medical treatment visits (Times) +
X20: Average annual hospitalization rate (%) +

Hazard-bearing
body

X21: Population (10,000 people)

[33,35]

+
X22: Proportion of urban population (%) +
X23: Density of population (people/km2) +

X24: Urban green space area (hm2) −

Disaster resilience

X25: Per capita disposable income (CNY)

[12,16,32]

−
X26: Per capita consumption expenditure (CNY) −

X27: Health expenditure (CNY 100 million) −
X28: Energy conservation and environmental protection

expenditure (CNY 100 million) −

X29: Number of medical insurance participants (10,000 people) −
X30: Number of health workers (people) −

Based on the theory of disaster risk systems and the existing related research results,
considering the current situation regarding air pollution and the availability of data, this
study has constructed an indicator system of air pollution disaster risk assessment from
hazard factors, hazard-laden environments, hazard-bearing body vulnerability, and disaster
resilience. The hazard factors were directly responsible for air pollution disasters. Previ-
ously published studies have shown that the major six air pollutants affected the residents’
health. Therefore, the annual average concentrations of SO2, NO2, PM10, CO, O3 and PM2.5
were used as directly influencing indicators of regional air pollution. Hazard-laden envi-
ronments include the natural environment and human environments. The occurrence of air
pollution disasters is closely related to the regional natural environment and to economic
and social development. Higher emissions of industrial and residential pollutants caused
higher average annual temperatures. The average annual air humidity and the average
annual rainfall decreased the possibility of human exposure to air pollution. The more
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developed regions consumed more energy and released more toxic gases and particulate
matter, which increased their risk of air pollution. With their higher proportions of sec-
ondary industry, the degree of air pollution and damage and the sensitivity of hazard-laden
environments would be higher. Construction dust was also a major source of inhalable
particulate matter; therefore, the more building construction took place in an area, the
higher the concentration of inhalable particulate matter. In addition, this article selects
the levels of regional population birth rate, death rate, and the death rate from specific
diseases to evaluate the sensitivity of air pollution disaster risk. Therefore, this research
selected the natural environment, economy, population, and residents’ health to quanti-
tatively evaluate the sensitivity of regional hazard-laden environments. Hazard-bearing
body vulnerability was adversely influenced by disasters. Many developed regions are
predominantly urban areas. The higher density of the regional population and the high
proportion of the population living in urban areas causes more people to suffer from air
pollution problems and increases the level of hazard-bearing body vulnerability. Existing
related studies have shown that urban green vegetation could absorb harmful gases and
construction dust, which could decrease the danger of air pollution and the population’s
vulnerability to its hazards. Therefore, this research selected a regional population, a
proportion of the urban population, a densely populated area, and urban green spaces to
evaluate the body’s vulnerability to this hazard. Disaster resistance represents the ability to
overcome air pollution issues. This research mainly considered the resilience of the whole
region and individuals regarding air pollution adverse events. On the one hand, with
higher regional health expenditure and energy conservation and environmental protection
expenditure, a greater number of medical insurance participants and health workers could
increase a region’s ability to deal with air pollution and decrease the air pollution disaster
risk. On the other hand, higher per capita disposable income and per capita consumption
expenditure could increase the residents’ ability to prevent and deal with air pollution
adverse events. Therefore, the six indicators listed above are selected as the evaluation
indicators of regional disaster resilience.

2.2. The Principle of the PCA-GA-BP Neural Network

The BP neural network used in the study, comprising an input layer, hidden layer
and output layer, was a multilayer feedforward neural network with backpropagation,
which was trained by supervised learning and could handle complex nonlinear mapping
relationships [48]. It had the characteristics of signal forward propagation and error
backpropagation. Each layer of the BP neural network contained 1 or n neuron nodes.
The data first entered the network through the input layer, was processed by the hidden
layer, then transmitted to the output layer, and finally, processed and output by the output
layer. If there was a large error between the output value and the expected value, the
error data would propagate back along the original path, adjust the network weight and
threshold, and repeat the above operations until the error reached the allowable threshold
or the maximum number of iterations of the algorithm. The steepest descent method in
the BP neural network framework was to minimize the error between the output value
and expected value. However, it was difficult to find an optimal global solution because
of its function and the randomness of setting the initial weight and threshold. In this
research, a GA was imported to enhance the stability and efficiency when searching for
the optimal global solution [49]. It is worth noting that there are many influencing factors
in air pollution adverse events. Dimension reduction was vital to the accuracy of the
model because of the strong coupling and redundancy in the indicator system. PCA was
able to merge the original features and reduce the dimension to simplify computation,
especially aiming at strong linear indicators [50,51]. When the data were processed by PCA,
only some principal influencing factors were considered. In order to obtain more accurate
prediction results, this research adopted a GA-BP neural network to predicate the training
data processed by PCA.
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2.2.1. Data Standardization

Data standardization could improve the learning efficiency and prediction accuracy of
the GA-BP neural network. The data were standardized to the same range, such that [0, 1],
which means that the data dimension was unified. The original data obtained, according to
the regional risk assessment indicators in Table 2, had positive and negative effects. At the
same time, due to the inconsistency of the data units, the data needed to be standardized
to eliminate the dimensional impact. Positive impact indicators were treated as Equation
(1) and negative impact indicators were treated as Equation (2). Data were standardized
as follows:

X∗ = −
Xij − X J

SJ
(1)

X∗ =
Xij − X J

SJ
(2)

where X* is the standardized data, Xij represents the real value of the index of the sample,
X J represents the mean value of the index, SJ represents the variance of the index.

2.2.2. PCA Principle

When modeling multivariate data, the complexity and computation time of the model
may be increased by the variables. PCA is adopted to reduce the dimensions of the dataset
to solve this problem. PCA can easily overcome the disadvantages of computational com-
plexity resulting from a large number of dependent variables. The idea of using PCA was
to map the n-dimensional features to k-dimensions (k < n) according to the maximum
variance theory [52]. PCA is a feature-extraction method based on multivariate statistical
regression. It can linearly transform data characteristics, which are comprehensive indica-
tors containing the vast majority of the original variable parameters and are independent of
each other. The essence of PCA is an orthogonal coordinate system transformation, which
can reduce the dimensions of the original indicators with specific relevance and combine
them to form a new set of comprehensive indicators. In data analysis, the original dataset
is projected into a new space through the feature analysis of the matrix, so as to reduce
the dimensions of the data. Firstly, the component with the largest variance contribution
rate is selected as the first principal component. If the variance contribution rate is not
high enough, the one with the second variance contribution rate is selected as the second
principal component, until the cumulative variance contribution rate reaches the preset
value. The variance contribution rate in this research was used as the weight of the final
evaluation of regional air pollution disaster risk.

2.2.3. GA Principle

The genetic algorithm is a random searching and optimizing algorithm that evaluates
each coded individual according to a self-defined fitness function and eliminates the
bad fits. In addition, it selects the coded individuals with good fitness to select, cross
over and mutate, and generates offspring groups several times until a coded individual
approaches the optimal solution [53]. In this research, GA was applied to optimize the
weight and threshold of the BP neural network. After the maximum generation of the
selection operation, crossover operation, and mutation operation, the GA searches for the
best-fitting value corresponding to an optimal individual as the initial weight and threshold
of the BP neural network. When using a genetic algorithm to solve optimization problems,
there are three coding methods for establishing optimization variables: vector form coding,
binary form coding, and matrix form coding. Because the weight and threshold form
the matrix function to optimize each element, the elements are first removed separately
and then put into the vector, in order to complete the coding. The empirical range of the
weight and threshold in this study was −1–1. The parameters of GA are selected as follows:
population size is commonly set as 10–100. In this research, the population size was 55,
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the population evolution iteration time was 35, the crossover probability was 0.7, and the
variation probability was 0.009.

2.2.4. BP Neural Network Principle

The most basic component of the neural network is the neuron, which is the basic
information-processing unit of the neural network operation and consists of three basic
elements: a set of connections, an adder, and an activation function. The BP neural network
is a kind of typical multilayer feed-forward neural network with the ability to approximate
any continuous function and nonlinear mapping. Its topological structure includes an
input layer, hidden layer and output layer. Each neuron between adjacent layers is fully
connected, but the neurons in the same layer have no connections. To ensure that the
network matches the mapping relationship between the input and output, the BP neural
network studies and adjusts the connecting weight and threshold value among neurons,
according to the input and output of given samples [54]. The training process of BP neural
network was shown as Figure S1.

The PCA-GA-BP neural network algorithm can be divided into four parts, mainly
including data standardization, data dimension reduction using PCA, optimization using a
GA algorithm, and prediction using a BP neural network. Data standardization enhances
the data generalization ability of the neural network. The prediction model is based on
PCA and replaces a large number of original interrelated indicators with a smaller number
of uncorrelated principal indicators, to further improve prediction accuracy. Finally, the
model, based on a GA-BP neural network, is ready to predict. The flow chart of the
PCA-GA-BP neural network algorithm was shown in Figure S2.

3. Analytical Results of Air Pollution Disaster Risk

The 30 standardized indicators were analyzed as principal indicators. In Table A1, it
can be seen that the tangency quantity of KMO sampling was 0.662 (>0.5), and the Sig value
of the Bartlett spherical degree test was 0.000 (<0.05), demonstrating that the indicators
were independent of each other to a certain extent and that the PCA could be used to
reduce the dimensionality and feature selection of the data. According to the principle
that the characteristic value was greater than 1, the first four indicators were selected as
the main indicators. The variance contribution rates were 47.1%, 24.0%, 13.2% and 9.13%,
respectively, and the cumulative contribution rate was 93.4%, which could basically reflect
all the information in the original indicators.

The characteristic values and contribution rates of each principal component are
shown in the Appendix A (Table A2). Taking the first four items as the principal component
indicators of air pollution disaster risk and expressing them as P1, P2, P3 and P4, the
indicator loading of each principal component and the original standardized indicator was
calculated as shown in Table A3 in the Appendix A. The loading values in the principal
indicator loading matrix reflected the degree of importance of the role of each indicator
in the air pollution disasters risk. Hence, the loading values of each indicator could be
used to express the indicator weight. Using the weighting equation calculated the score of
each region according to 4 principal indicators. The air pollution disaster risk index with
different principal components can be expressed as:

Ri = ∑ ωjX∗ij (3)

where Ri is the risk index of the ith evaluation unit with different principal indicators, X∗ij
is standardized values of the jth indicator of the ith evaluation unit, and ωj is the loading
value of the jth indicator on the corresponding principal indicators.
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Using the principal indicators’ contribution rates, the comprehensive score was cal-
culated using a weighted model; the comprehensive air pollution risk index R could be
expressed as in Equation (4):

R =
R1P1 + R2P2 + R3P3 + R4P4

P1 + P2 + P3 + P4
(4)

where R1, R2, R3 and R4 represent the risk index of each unit on each principal indicator
after being calculated by Equation (3). P1, P2, P3 and P4 represent the corresponding
contribution rate of each indicator.

As shown in Table A4 in the Appendix A, the comprehensive risk index of each
region was calculated using Equations (3) and (4). The comprehensive risk index calculated
from Table A4 showed that there were significant temporal and regional differences in the
comprehensive air pollution disaster risk index among regions in the period from 2010 to
2019. The changing trend in the comprehensive air pollution disaster risk index is shown
in Figure 3a–d over the past 10 years. Considering the changes in the human settlement
environment, the health status of the population, and the death rate from various diseases,
the air pollution disaster risk index showed a significant increasing trend from 2010 to 2019.
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Calculating the risk index quartiles resulted in −5.832, −1.471, and 4.945, respectively,
and the standard deviation was 7.512. GIS technology was used to take the quartiles and
standard deviation of the comprehensive air pollution disaster risk index as references.
Using the natural fracture method, the risk index levels of each region in the past 10 years
were divided into five levels: lower risk (P ≤ −5.832), low risk (−5.832 < P ≤ −1.471),
medium risk (−1.471 < P ≤ 4.945), high risk (4.945 < P ≤ 7.512) and higher risk (7.512 < P).

It can clearly be seen from the changing trend of the risk index of each region over the
past 10 years that Guangdong Province was the area most seriously affected by air pollution,
the death rate from various diseases has increased significantly year by year, and the birth
rate has also shown a downward trend. Due to the positive and negative interaction of the
indicators, it could be suggested that the air pollution disaster risk in the old industrial
area of Liaoning Province is slowly increasing, but it presents a low risk. The extent to
which Beijing and Shanghai have been affected by air pollution disasters was increasing
year by year. The data showed a slowly increasing trend and indicated that the region was
paying attention to the protection and governance of the environment when developing its
economy. Through the assessment of the impact of regional air pollution on people’s lives
and the descriptive analysis of disaster risk, the results obtained were generally consistent
with the impact in the findings published by the Chinese Center for Disease Control and
Prevention in Liaoning Province, Beijing, Shanghai and Guangdong Province, respectively.
Air pollution had a serious impact on the incidence of pollution-related illness and the
death rate as a result of its effect on residents’ respiratory systems, which finding was vital
to evaluate the regional air pollution disaster risk assessment.
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4. Discussion
4.1. Evaluation Indicators of the Prediction Model

To simplify the computational complexity of the regional air pollution disaster risk
index, a BP neural network algorithm was selected for this research, and the four principal
components after PCA screening in each region from 2010 to 2018 were used as characteristic
variables, to predict the comprehensive risk index of each region in 2019. At the same
time, the selection of BP neural network parameters would affect the prediction accuracy;
therefore, this research used the GA optimization algorithm to select the weight and
threshold of the BP neural network. To reasonably evaluate the prediction model, mean
absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error
(MAPE) are selected to test the prediction result, which can be shown as:

MAE =
1
n

n

∑
i=1
|y∗i − yi| (5)

RMSE =
1
n

√
n

∑
i=1

(
y∗i − yi

)2 (6)

MAPE =
n

∑
i=1

∣∣∣∣y∗i − yi

yi

∣∣∣∣× 100
n

(7)

where n represents the total number of test samples, and y∗i and yi represent the predicted
value and the real value in Equations (5), (6) and (7), respectively.

4.2. Analysis Results Based on PCA-GA-BP Neural Network

To reduce network complexity, this model adopted a BP neural network with three
layers; the different number of nodes in the hidden layer will produce different errors in
each model. The BP neural network optimized by GA was chosen because it offers a greater
possibility of obtaining a globally optimal solution. On the one hand, the data is still a
probability problem in essence; there may be an individual who did not conform to the
overall trend and failed to obtain an optimal solution in terms of probability, resulting in
a larger error. On the other hand, with the number of hidden layer nodes increasing, the
training time would increase, and the model would decrease in generalization ability. To
verify the performance of the PCA-GA-BP neural network model, this model was compared
with the PCA-BP neural network model, GA-BP neural network model and BP neural
network model. The training times were set to 1000, the target error was set to 0.0001, and
the learning rate was set to 0.1 in the above models. In this research, for the PCA-GA-BP
neural network model and PCA-BP neural network model, the number of input layer nodes
was set at 5 and the number of output layer nodes was set at 1, while the number of hidden
layer nodes was 3–13. For the GA-BP neural network model and BP neural network model,
the number of input layer nodes was set at 9 and the number of output layer nodes was set
at 1, while the number of hidden layer nodes was 4–14. The mean square errors (MSE) of
the different hidden layer nodes are shown in Figure 4.

The model resulted in an uncertain relationship between the mean square errors and
the hidden layer nodes. In Figure 4a, under the PCA-GA-BP neural network model, when
the number of hidden-layer nodes for Liaoning Province and Beijing was 7, the mean
square errors were the smallest. When the number of hidden-layer nodes for Shanghai was
9, the mean square error was the smallest. When the number of hidden-layer nodes for
Guangdong Province was 8, the mean square error was the smallest. In Figure 4b, under
the PCA-BP neural network model, when the number of hidden-layer nodes of Liaoning
Province and Guangdong Province was 5, the mean square errors were the smallest. When
the number of hidden-layer nodes of Beijing was 4, the mean square error was the smallest.
When the number of hidden-layer nodes for Shanghai was 8, the mean square error was
the smallest. In Figure 4c, under the GA-BP neural network model, when the number of
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hidden-layer nodes for Liaoning Province and Beijing was 7, the mean square errors were
the smallest. When the number of hidden-layer nodes for Shanghai was 6, the mean square
error was the smallest. When the number of hidden-layer nodes of Guangdong Province
was 8, the mean square error was the smallest. In Figure 4d, under the BP neural network
model, when the number of hidden-layer nodes for Liaoning Province and Guangdong
Province was 5, the mean square errors were the smallest. When the number of hidden-
layer nodes for Beijing was 8, the mean square error was the smallest. When the number
of hidden-layer nodes for Shanghai was 11, the mean square error was the smallest. In
addition, among the above models, the mean square error of each region was the smallest
under the PCA-GA-BP neural network model.
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After the parameter setting of each model was completed, the test data was inputted
to obtain the prediction result of each model. The predicted values are shown in Table 3
and the evaluation indicators of each model are shown in Table 4.

By using PCA, reducing the network input and reducing the network target function
convergence value effectively solved the correlation between the input variables and the
defection of excessive input data. As shown in Table 3, we found that the traditional BP
neural network model had the largest prediction error, which showed that the traditional BP
neural network model appeared to be overfitting and resulted in poor generalization ability.
As seen from the comparison in Table 4, the prediction accuracy of the PCA-GA-BP neural
network model improved by 50.6%, 52.8%, and 36.4% upon the PCA-BP neural network
model on the MAE, MSE and MAPE, respectively. It improved by 56.4%, 59.2% and 21.6%
upon the GA-BP neural network model on the MAE, MSE and MAPE, respectively, and
improved by 65.7%, 66.6% and 17.1% upon the traditional BP neural network model on the
MAE, MSE and MAPE, respectively. Given all these findings, the prediction accuracy was
significantly improved, which verified the effectiveness and feasibility of the PCA-GA-BP
neural network compared with the other three models. To further verify the performance
of the model, the performance comparison of the evaluation indicator with the SVR model
and XGBoost model is shown in Figure 5. By verifying the effectiveness and feasibility of
the model, proposed in this research, in the field of air pollution disaster risk prediction,
the PCA-GA-BP neural network accurately predicted the trend of regional air pollution
disaster risk and provided helpful insights for the government’s environmental protection
and governance, which could make governments pay more attention to air pollution when
developing the regional economy and society.

Table 3. Predicted values of the air pollution disaster risk index of each model.

Region Real Value
PCA-GA-BP Neural Network PCA-BP Neural Network

Predicted Value Absolute Error Predicted Value Absolute Error

Liaoning Province −2.437 −2.874 0.437 −3.973 1.536
Beijing 1.052 1.519 0.467 1.351 0.299

Shanghai 5.933 5.036 0.897 7.585 1.652
Guangdong Province 17.477 16.852 0.625 18.903 1.426
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Table 3. Cont.

Region Real Value
GA-BP Neural Network BP Neural Network

Predicted Value Absolute Error Predicted Value Absolute Error

Liaoning Province −2.437 −1.186 1.251 −4.582 2.145
Beijing 1.052 1.907 0.855 1.727 0.675

Shanghai 5.933 6.852 0.919 7.692 1.759
Guangdong Province 17.477 14.932 2.545 19.971 2.494

Table 4. Comparison of the evaluation indicators of each model.

Prediction Model MAE RMSE MAPE (%)

PCA-GA-BP Neural
Network 0.607 0.317 20.3

PCA-BP Neural
Network 1.228 0.671 31.9

GA-BP Neural
Network 1.393 0.775 40.6

BP Neural Network 1.768 0.948 49.0
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Figure 5. Comparison of evaluation indicators with the SVR model and XGBoost model.

5. Conclusions

Most previous studies have analyzed air pollution’s spatiotemporal distribution by
using statistical data and non-statistical data to evaluate the air pollution disaster risk.
In this period of artificial intelligence, the application of a PCA-GA-BP neural network
model to air pollution disaster risk assessment could effectively improve the assessment
accuracy and provide a new reference source for future air pollution disaster risk manage-
ment. Based on the theory of regional natural disaster systems, this study constructed a
regional air pollution disaster risk assessment indicator system using data from Liaoning
Province, Beijing, Shanghai, and Guangdong Province using hazard factors, hazard-laden
environment sensitivity, hazard-bearing body vulnerability, and disaster resilience. First,
the 4 principal indicators were screened using PCA, and the weights of each indicator were
determined according to the contribution rate and indicator loading matrix. Second, the air
pollution disaster risk indicators of each region were calculated from 2010 to 2019. Third,
the risk index was divided into 5 levels using GIS technology and descriptive statistical
analysis. Fourth, the risk index prediction model was constructed using the PCA-GA-BP
neural network model, and the risk index was predicted using the data after PCA screening.
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The model performance was evaluated from the MAE, RMSE, and MAPE. The following
conclusions were drawn from our findings.

(1) From the indicator weighting represented by the indicator loading matrix, it can be
seen that the annual average SO2 concentration, annual average NO2 concentration,
annual average PM10 concentration, and annual average PM2.5 concentration com-
prised the most serious air pollutants in the region, which affected the natural ecology
environment and residents’ health. The annual average temperature, average annual
rainfall, regional GDP, the density of the economy, the proportion of secondary in-
dustry and building construction areas largely reflected the sensitivity of the regional
hazard-laden environment from the points of view of the natural environment and
economic development. The birth rate, the death rate from respiratory diseases, the
death rate from heart disease, average annual residents’ medical treatment visits and
average annual hospitalization rate reflected the sensitivity of the population to air
pollution disasters from the point of view of residents’ health. The six indicators of
regional resilience reflected the emergency response capacity of different regions to
air pollution disasters.

(2) Using GIS technology to classify the risk index of each region from 2010 to 2019, we
identified that Guangdong Province, which has the largest population and the largest
geographical area, has been subject to the greatest risk of air pollution disasters every
year since the introduction of a number of policies in the Environmental Protection
Law in 2010. The disaster risks of Liaoning Province, Beijing and Shanghai were small.
Starting with each geographical location, the air pollution disaster risk index was
generally increasing from the north, east and south directions year by year.

(3) This research verified that the PCA-GA-BP neural network could be used as a method
of air pollution disaster risk assessment. Regional air pollution disaster risk assess-
ment is a basic way to effectively identify the influence of air pollution on the natural
ecological environment and the residents’ health. Air pollution disaster risk prediction
and management need long-term complex system engineering, and an air pollution
disaster risk assessment indicator system and prediction model is needed for the
various different regions to carry out more in-depth and advanced research.
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Appendix A

Table A1. Results of the KMO and Bartlett tests.

Tangency Quantity of KMO
Sampling

Bartlett Spherical Degree Test

Approximate Chi-Square Degrees of Freedom Significance (Sig)

0.662 3186.978 435 0.000

Table A2. Principal component characteristics values and contribution rates.

Principal
Components

Characteristic
Values

Contribution
Rates

Cumulative
Contributions

1 14.117 47.056 47.056
2 7.186 23.953 71.009
3 3.961 13.204 84.213
4 2.739 9.129 93.342
5 0.634 2.115 95.457
6 0.351 1.170 96.627
7 0.254 0.847 97.474
8 0.197 0.658 98.132
9 0.118 0.393 98.525
10 0.115 0.385 98.910
11 0.074 0.247 99.158
12 0.066 0.220 99.377
13 0.049 0.162 99.540
14 0.044 0.146 99.685
15 0.026 0.088 99.773
16 0.020 0.066 99.839
17 0.014 0.046 99.885
18 0.009 0.030 99.915
19 0.006 0.022 99.936
20 0.005 0.016 99.952
21 0.004 0.015 99.967
22 0.003 0.009 99.976
23 0.002 0.007 99.984
24 0.002 0.005 99.989
25 0.001 0.005 99.993
26 0.001 0.002 99.996
27 0.001 0.001 99.997
28 0.000 0.001 99.998
29 0.000 0.001 99.999
30 0.000 0.001 100.000

Table A3. Principal component factor loading matrix.

Indicator Codes P1 P2 P3 P4

X1 0.497 0.770 -0.112 0.083
X2 −0.043 0.243 0.885 0.118
X3 0.734 0.565 0.250 −0.120
X4 0.671 0.344 0.503 −0.245
X5 0.301 −0.599 0.391 −0.502
X6 0.679 0.329 0.605 −0.094
X7 0.833 0.053 −0.408 0.238
X8 0.790 0.140 −0.554 0.133
X9 0.876 0.266 −0.308 −0.207
X10 0.782 −0.260 0.145 −0.469
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Table A3. Cont.

Indicator Codes P1 P2 P3 P4

X11 0.908 −0.086 −0.057 −0.243
X12 −0.940 0.107 −0.023 −0.266
X13 −0.835 −0.271 −0.175 0.274
X14 −0.383 0.814 −0.235 0.340
X15 0.515 0.251 −0.775 −0.069
X16 0.776 0.418 0.306 0.137
X17 0.776 0.017 −0.337 −0.477
X18 −0.050 −0.926 0.312 0.141
X19 −0.130 −0.467 −0.785 −0.323
X20 −0.836 0.454 −0.024 −0.291
X21 −0.863 0.463 0.022 −0.160
X22 0.292 −0.853 0.311 0.259
X23 −0.634 −0.211 −0.062 0.701
X24 0.943 −0.306 −0.028 0.000
X25 −0.042 0.952 0.110 −0.002
X26 −0.040 0.976 0.093 0.029
X27 0.858 0.090 0.063 0.399
X28 0.665 0.253 −0.049 0.572
X29 0.914 −0.283 −0.014 0.230
X30 0.866 −0.323 0.007 0.378

Table A4. Comprehensive risk index of regional air pollution disasters from 2010 to 2019.

Region Year P1 P2 P3 P4 R

Liaoning
Province

2010 −15.330 −15.265 −0.362 −1.171 −11.811
2011 −14.955 −13.106 1.090 −0.705 −10.817
2012 −13.596 −12.090 2.203 −0.214 −9.666
2013 −12.046 −10.785 3.000 0.072 −8.409
2014 −11.548 −8.469 1.995 1.015 −7.613
2015 −10.387 −7.523 3.111 1.117 −6.617
2016 −8.810 −4.789 6.089 1.360 −4.676
2017 −8.833 −3.386 6.661 1.800 −4.203
2018 −7.539 −2.539 8.124 1.889 −3.118
2019 −6.319 −2.285 8.206 1.776 −2.437

Beijing

2010 −16.058 −0.080 −7.089 1.222 −8.999
2011 −14.062 1.638 −7.049 1.710 −7.499
2012 −12.414 1.918 −6.283 1.590 −6.499
2013 −11.830 2.556 −6.292 1.422 −6.059
2014 −10.953 3.932 −6.186 2.417 −5.151
2015 −11.519 5.548 −4.214 2.772 −4.708
2016 −9.518 7.323 −2.944 3.753 −2.968
2017 −7.588 8.950 −0.767 3.933 −1.252
2018 −7.696 10.420 1.625 3.922 −0.592
2019 −5.946 12.344 3.594 3.821 1.052

Shanghai

2010 −5.975 0.512 −3.373 −4.815 −3.829
2011 −4.743 1.035 −1.896 −5.231 −2.905
2012 −3.069 2.421 −2.296 −4.482 −1.689
2013 −2.963 3.733 −0.958 −4.517 −1.113
2014 −1.036 5.387 0.717 −4.578 0.514
2015 −1.259 6.273 0.709 −4.400 0.645
2016 2.417 8.834 1.755 −3.368 3.405
2017 2.349 10.705 2.755 −2.369 4.089
2018 3.145 11.383 4.708 −2.791 4.900
2019 4.256 12.583 5.973 −2.924 5.933
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Table A4. Cont.

Region Year P1 P2 P3 P4 R

Guangdong
Province

2010 13.714 −8.315 −3.931 −2.072 4.021
2011 14.226 −6.977 −2.012 −1.395 4.960
2012 16.971 −6.403 −2.928 −1.243 6.377
2013 18.406 −5.516 −1.900 −0.464 7.549
2014 19.868 −4.275 −0.829 0.298 8.831
2015 23.412 −3.482 −0.332 0.322 10.893
2016 26.289 −2.235 0.258 0.800 12.794
2017 28.254 −1.274 −1.178 2.455 13.990
2018 29.549 0.035 −0.206 3.341 15.203
2019 33.136 1.261 0.454 3.932 17.477
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