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Abstract: It is of great significance to be able to accurately predict the time series of energy data. In
this paper, based on the seasonal and nonlinear characteristics of monthly and quarterly energy time
series, a new optimized fractional grey Holt–Winters model (NOFGHW) is proposed to improve
the identification of the model by integrating the processing methods of the two characteristics. The
model consists of three parts. Firstly, a new fractional periodic accumulation operator is proposed,
which preserves the periodic fluctuation of data after accumulation. Secondly, the new operator
is introduced into the Holt–Winters model to describe the seasonality of the sequence. Finally, the
LBFGS algorithm is used to optimize the parameters of the model, which can deal with nonlinear
characteristics in the sequence. Furthermore, in order to verify the superiority of the model in energy
prediction, the new model is applied to two cases with different seasonal, different cycle, and different
energy types, namely monthly crude oil production and quarterly industrial electricity consumption.
The experimental results show that the new model can be used to predict monthly and quarterly
energy time series, which is better than the OGHW, SNGBM, SARIMA, LSSVR, and BPNN models.
Based on this, the new model demonstrates reliability in energy prediction.

Keywords: NOFGHW model; seasonal; nonlinear; energy prediction

1. Introduction

As the cornerstone of economic development and industrial progress, energy plays a
significant role. Due to environmental pollution [1,2], instability of clean energy, and other
reasons, energy prediction has become a very important research content, including energy
consumption [3] and energy production [4]. According to data released by the National
Energy Bureau, China’s energy consumption and production have been on the rise in
recent years. However, energy consumption tends to be greater than energy production,
and China needs to rely on energy imports to maintain the balance between the two.
However, not all energy has the characteristic of inexhaustible; all countries in the world
advocate sustainable development strategy. In this context, energy prediction must be
made. Energy forecasting is the advance planning of the future energy market, an important
means to maintain the balance between supply and demand in the market, reduce the
waste of resources, and provide technical support for the implementation of sustainable
development strategy. However, influenced by many uncertain factors, monthly and
quarterly energy time series often show more data characteristics, such as seasonality and
nonlinearity. Thus, compared with annual series forecast, monthly and quarterly series
forecasting can provide more detailed suggestions for relevant planning. In addition,
taking Web of Science as an example, we set the theme as “energy prediction” to search
the literature in the last 10 years. As can be observed in Figure 1, the number of articles
on energy forecasting is increasing every year, and most of the growth trends are in an
upward state. Therefore, energy prediction has been a hot issue, and its research is of great
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significance. At present, there are three main methods for energy prediction, which are
statistical models, machine learning models, and grey prediction models.
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Machine learning models are used extensively since they can deal with the com-
plexity and nonlinearity of energy systems. The BP neural network model, an important 
model in machine learning model, originates from imitating the function of the human 
brain. Wang et al. found the most suitable neural network by comparing network struc-
tures and cross-validation, and used it to predict solar irradiance [14]. Further, Wen et al. 
made a double improvement on the particle swarm optimization algorithm to propose 
DPSO-BP model. The results show that the prediction effect of the new model is better 
than that of the single BP neural network model [15]. However, the BP neural network 
model relies too much on the input data of the model and is easy to fall into local opti-
mization, while the SVR model can solve this problem better. Ning et al. proposed the 
ε-SVR prediction model based on rolling time window, which improved the accuracy of 
coal price prediction model [16]. With the deepening of research, many research results 
show that the combination of SVR model and intelligent algorithm can effectively im-
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Figure 1. The number of works in the literature on energy prediction in the past 10 years.

1.1. Energy Forecasting Model

The ARIMA model and SARIMA model, as classical models in statistical econometric
models, are common methods for energy forecasting. Wang et al. established the ARIMA
model for short-term prediction analysis of coal price and proved the utility of the model [5].
In view of the long memory of coal consumption, Liu et al. proposed the application of
a fractional difference ARIMA model to make the predicted value closer to the actual
value [6]. The SARIMA model is commonly used for energy data with seasonal fluctuation.
Dabral et al. used SARIMA to predict month, week and day sequences, and obtained
good results [7]. Based on the SARIMA model, Sigauke et al. proposed the Reg-SARIMA-
GARCH model, which was successfully applied to peak demand of daily electricity in South
Africa [8]. The research on the ARIMA model and SARIMA model is more than that. Better
prediction results can be obtained by improving the existing model, including wavelet
transform [9], RTS smoothing algorithm [10], genetic algorithm [11], etc. Additionally, the
prediction effect of some combination methods is also better than that of a single statistical
econometric model [12,13]. The statistical econometric models can predict well in many
cases, but they are mostly used to describe linear structure sequences. In addition, such
models require a large number of sample data to get high-precision results, and the data
are required to meet certain distribution rules. Not all of these requirements can be satisfied
in energy forecasting.

Machine learning models are used extensively since they can deal with the complexity
and nonlinearity of energy systems. The BP neural network model, an important model
in machine learning model, originates from imitating the function of the human brain.
Wang et al. found the most suitable neural network by comparing network structures and
cross-validation, and used it to predict solar irradiance [14]. Further, Wen et al. made a
double improvement on the particle swarm optimization algorithm to propose DPSO-BP
model. The results show that the prediction effect of the new model is better than that
of the single BP neural network model [15]. However, the BP neural network model
relies too much on the input data of the model and is easy to fall into local optimization,
while the SVR model can solve this problem better. Ning et al. proposed the ε-SVR
prediction model based on rolling time window, which improved the accuracy of coal price
prediction model [16]. With the deepening of research, many research results show that the
combination of SVR model and intelligent algorithm can effectively improve the model
accuracy, including particle swarm optimization algorithm [17], genetic algorithm [18],
Grey–Wolf optimizer [19], chaotic artificial bee colony algorithm [20], whale optimization
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algorithm [21], etc., further expanding the application scope of SVR model. As a derivative
of the SVM model, the LSSVR model has the same utility as SVR model. Wei et al. used
the optimized GA-LSSVM model to gain high-precision power load prediction results [22].
Besides the above models, ANN is also a common machine learning model. Khwaja et al.
applied the ANN model to monthly power load prediction in order to reduce the prediction
error [23]. Machine learning models effectively capture the nonlinear characteristics of the
data, but they also need a large number of sample data to run. In addition, the relevant
control parameters of the model need to be set before using, which adds complexity.

Limited by the requirements of data volume and data distribution, the use of grey
system models for prediction is excellent. They have low data requirements and can be
widely used in prediction of different types of data. Before the prediction, the grey operator
is used to deal with the system, which is the basis of the grey prediction model. As a
classical operator in grey prediction theory, the grey one-order accumulation generation op-
erator created by Deng Julong can smooth original data and find internal laws of data more
effectively [24]. In recent years, in order to improve the prediction accuracy, the research
on grey operator has gradually increased. Based on the principle of “new information
priority”, Wu et al. established fractional accumulation operators to solve the contradic-
tion between the low-impact solution of new data and the principle of “new information
priority” [25]. On this basis, fractional accumulation operators have been implemented

in many models, such as GM
p
q (1, 1) [26], GM

p
q (2, 1) [27], and NDGM

p
q (1, 1) [28], etc. Con-

sequently, fractional accumulation operators have attracted wide attention. Zeng et al.
introduced fractional accumulation operators into the GM(2,1) model and got effective
prediction results in numerical simulation experiments and application examples [29]. For
the purpose of realizing the maximum data mining in a small amount of information, Jiang
et al. built a fractional reverse accumulation nonlinear grey Bernoulli model so that the
accuracy of the model improved [30]. In addition to single-variable models, fractional
accumulation operators can also produce good performance in multivariable models. After
comprehensively considering various factors affecting the system, Zhang et al. proposed
a multivariable fractional grey model to get more accurate prediction results [31]. The
existing fractional accumulation operator directly accumulates data but it may not reflect
the hidden periodic volatility of the sequence. Based on this, a new fractional periodic
accumulation operator is proposed to improve it. This operator accumulates within each
cycle, not the overall accumulation. It not only fully excavates the data law, but also retains
the periodic fluctuation of the accumulated data.

The grey operator can deeply dig into data rules and improve the prediction effect,
but the choice of model also plays a key role in improving the prediction effect. Consid-
ering the scarcity, complexity, and nonlinearity of the energy sequence, Wang et al. [32]
proposed a new fractional time-delayed grey Bernoulli model and verified the validity of
the new model in three energy-related cases. Liu et al. [33] constructed an optimized grey
system model with weighted fractional accumulation generation operation, and proved the
validity of the proposed model by using the natural gas production of Germany, Italy, and
Canada. Finally, the new model was used to predict natural gas production in China. Liu
et al. proposed an FPGM(1,1,ta) model based on the combination of time power term and
fractional accumulation operator to predict electricity consumption in India and China [34].
The use of electric vehicles represents an effective method to alleviate energy shortage and
environmental problems. Ding et al. proposed a new self-adaptive optimized grey model
which plays an effective role in the annual series prediction of electric vehicles [35]. Most
of the annual energy time series are in a single development trend, which cannot fully
show the data law. However, monthly and quarterly energy time series show seasonal and
nonlinear characteristics. In order to further analyze the laws of energy data in further
detail, many studies have been conducted on these two characteristics in order to provide
more refined management of energy planning. Seasonality is mainly dealt with through
specific methods, including the following six common methods: seasonal factor [36], dy-
namic seasonal adjustment factor [37], dummy variable [38], data grouping method [39],



Sustainability 2022, 14, 3118 4 of 18

CTAGO [40], and cycle accumulation operation [41]. It turns out that using these methods
can effectively eliminate the seasonality of a sequence by adding additional parameters
or steps. Subsequently, Wu et al. combined the fractional accumulation operator with the
Holt–Winters model, and the grey Holt–Winters model constructed could describe the sea-
sonality of the sequence without any processing. The case analysis shows that this model
has superior performance [42]. The grey Holt–Winters model focuses on describing the
seasonal characteristics of the sequence, but does not highlight the nonlinear characteristics
of the sequence. In view of nonlinear characteristics, Zheng et al. introduced an unbiased
NGBM model based on the NGBM model to predict China’s hydropower consumption [43].
Ding et al. introduced grey power indexes into the model structure to construct a new
discrete grey power model and obtained effective results in the empirical analysis [44].
Qian et al. proposed a new structure self-adaptive discrete grey prediction model, which
effectively described the nonlinear and linear characteristics of the sequence [45]. Consid-
ering the nonlinear problem of nuclear energy consumption, Ding et al. applied a novel
structure-adaptive grey model to predict the nuclear energy consumption cases in China
and the United States and verified the effectiveness of the new model [46]. In order to
better predict the sequence of nuclear energy consumption, Ding et al. re-developed an
optimized structure-adaptive grey model. The results showed that the new model had
better prediction results [47]. Zhou et al. constructed an SNGBM(1,1) model based on
Bernoulli equation with nonlinear structure, which can successfully consider nonlinear
and seasonal characteristics in the sequence [48]. Further, Zhou et al. combined dummy
variables, the framework of LSSVR model and grey accumulation operator to propose
GSLSSVR model and successfully applied it to practical cases [49]. These grey models can
obtain satisfactory results in prediction and have different processing methods for seasonal
and nonlinear characteristics of the sequence. However, there may be deficiencies in the
processing process, which mainly have two aspects. On the one hand, seasonal and non-
linear characteristics of monthly and quarterly energy time series appear simultaneously.
Addressing the two features separately may produce certain errors. On the other hand, the
two features are processed simultaneously, but related feature parameters are added to the
model structure. The calculation is added in the later model solving process, which may
cause some errors.

1.2. The Motivation of This Work

Considering the integrity of monthly and quarterly energy time series, this paper
proposes a new fractional grey Holt–Winters model, namely the NOFGHW model, to
further explore the internal laws of energy data. In the new model, a new fractional
periodic accumulation operator is proposed based on the existing fractional accumulation
operator. Originally, this operator not only embodies the principle of “new information
priority”, but also preserves the periodic fluctuation of data. Then, the new operator is
combined with the Holt–Winters model. The Holt–Winters model can identify seasonality
in a sequence. Finally, parameters in the Holt–Winters model and the new operator are
optimized by LBFGS algorithm in a quasi-Newton method. The largest advantage of this
algorithm is that it can deal with nonlinear problems. Figure 2 shows the combination
of the new model. The new model can deal with the seasonal and nonlinear problems
in the sequence at the same time without adding additional parameters related to the
sequence characteristics. In order to verify the effectiveness of the new model, this paper
applies the new model to monthly crude oil production and quarterly industrial electricity
consumption, respectively. The main innovations of this paper are as follows:
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(1) Based on the existing fractional accumulation operators, a new fractional periodic
accumulation operator is proposed in this paper, which has the principle of “new informa-
tion priority”. This operator fully retains the periodic fluctuation of the accumulated data
and can effectively mine the characteristics of monthly and quarterly energy data.

(2) A new optimization method (LBFGS algorithm) is used to find parameters in the
model. This algorithm is a common method to solve nonlinear problems. It is widely used
due to its fast convergence speed and small memory occupation.

(3) Starting from the Holt–Winters model, which can recognize the seasonal character-
istics of sequences, this paper combines it with the new fractional periodic accumulation
operator, and uses the LBFGS algorithm to optimize parameters. In the calculation process,
only the parameters contained in the Holt–Winters model and the order of fractional peri-
odic accumulation operator need to be calculated to describe the seasonal and nonlinear
characteristics of monthly and quarterly energy data at the same time. As a result, the
feature parameters previously added for processing sequence features are reduced, and the
calculation for describing sequence features is reduced. The new model constructed in this
paper provides a simpler method for the prediction of energy time series. The new model
constructed in this paper provides a more convenient method for predicting energy time
series.

(4) In the validation stage of the new model, this paper selects two energy cases,
namely monthly crude oil output and quarterly industrial electricity consumption. These
two cases have the following three characteristics, respectively, including different seasonal
(different degrees), different cycles (monthly and quarterly), and different energy types
(energy production and energy consumption). By analyzing the two cases one by one, it
can be found that the overall effect of the new model is better than that of the comparison
model, which indicates that the model can be widely used in different cases of energy
prediction. Hence, the adaptability of the new model is verified.

The rest of this paper is shown below. In Section 2, the new model NOFGHW, LBFGS
algorithm and corresponding evaluation criteria are introduced in detail. In Section 3, two
empirical cases and solving methods of six model parameters are introduced. Then, the
model results are analyzed to prove the superiority of the new model. Section 4 presents a
summary of the whole paper and future work.

2. Methods

This section discusses the construction process of the new optimized fractional grey
Holt–Winters model (NOFGHW). The new model is composed of the new fractional
periodic accumulation operator, the Holt–Winters model, and the LBFGS algorithm, which
fully demonstrates the advantages of each part. In addition, this section also introduces the
procedure of using LBFGS algorithm and the corresponding model evaluation criteria. The
meanings of symbols, constraints, and variables that appear in this section are tabulated in
the Appendix A.
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2.1. A New Optimized Fractional Grey Holt-Winters Model (NOFGHW)

Step 1. Suppose that X(0) =
(

x(0)(1), x(0)(2), x(0)(3), . . . , x(0)(n)
)

is a nonnegative
primitive sequence with seasonality and nonlinearity, and the period is L(L = 4 or L = 12).
Then, the r-order accumulation sequence can be obtained by fractional periodic accumu-
lation operator, which is recorded as X(r) =

(
x(r)(1), x(r)(2), . . . , x(r)(n)

)
. The fractional

periodic accumulation operator is expressed as:

x(r)(k) =
k

∑
i=(dk/Le−1)L+1

Γ(r + k− i)
Γ(k− i + 1)Γ(r)

x(0)(i), k = 1, 2, 3, . . . , n (1)

where dk/Le represents an integer not less than k/L and r represents fractional order.
The corresponding reduction formula can be expressed as:

x(0)(k) =



(
x(r)
)(−r)

(k) =
(kmodL)−1

∑
i=0

(−1)i Γ(r+1)
Γ(i+1)Γ(r−i+1) x(r)(k− i) kmodL 6= 0, 1

(
x(r)
)(−r)

(k) =
(kmodL)+3

∑
i=0

(−1)i Γ(r+1)
Γ(i+1)Γ(r−i+1) x(r)(k− i) kmodL = 0

x(r)(k) kmodL = 1

, (2)

Step 2. Establish NOFGHW model.

Sk = α
x(r)(k)
Ck−L

+ (1− α)(Sk−1 + bk−1), 0 < α < 1

bk = β(Sk − Sk−1) + (1− β)bk−1, 0 < β < 1, k = L + 1, L + 2, . . . , n

Ck = γ
x(r)(k)

Sk
+ (1− γ)Ck−L, 0 < γ < 1

(3)

The initial value of the model is

SL = x(r)(L);

Ci =
x(r)(i)
L
∑

j=1
x(r)(j)

L

, i = 1, 2, 3, . . . , L;

bL = 1
L

(
x(r)(L+1)−x(r)(1)+x(r)(L+2)−x(r)(2)+···+x(r)(L+L)−x(r)(L)

L

)
.

(4)

where α is data smoothing factor, β is trend smoothing factor, γ is the seasonal change
smoothing factor, S denotes level, b denotes trend, and C denotes seasonal.

Step 3. The new model has four parameters, namely, fractional order r, data smoothing
factor α, trend smoothing factor β and seasonal change smoothing factor γ. We use the
LBFGS algorithm in the quasi-Newton method to optimize them, which is described in
detail in the section of parameter optimization of NOFGHW model. Then, we can get the
parameters D =

[
α̂, β̂, γ̂, r̂

]
. Based on this, the prediction formula of the new model can be

deduced as:
F̂(r)(k + m) = (Sk + mbk)Ck−L+1+(m−1)modL (5)

where m is the number of recursions.
Step 4. The simulation and prediction results obtained in Step 3 are reduced by

Formula (2).
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F̂(0)(k + m) =



(
F̂(r)

)(−r)
(k + m) =

((k+m)modL)−1
∑

i=0
(−1)i Γ(r+1)

Γ(i+1)Γ(r−i+1) F̂(r)(k + m− i)(k + m) modL 6= 0, 1

(
F̂(r)

)(−r)
(k + m) =

((k+m)modL)+3
∑

i=0
(−1)i Γ(r+1)

Γ(i+1)Γ(r−i+1) F̂(r)(k + m− i)(k + m) modL = 0,

F̂(r)(k + m)(k + m) modL = 1

(6)

2.2. Parameter Optimization of NOFGHW Model
2.2.1. Parameter Optimization Calculation Process

In this paper, the data of in-sample simulation stage are used to optimize the parame-
ters, and then the obtained parameters are used to predict the new model. In order to get
the most suitable parameters, we use the following calculation process in the optimization.
According to the calculation process in Section 2.1, the first L data are not simulated, and
the simulation stage starts from L + 1.

The first is the simulated values from L + 1 to L + L:

F̂(r)(L + 1) = (SL + bL)C1;

F̂(r)(L + 2) = (SL+1 + bL+1)C2 = [(1 + β)α
x(r)(L+1)

C1
+(1− α− αβ)SL + (2− α− αβ)bL]C2;

F̂(r)(L + 3) = (SL+2 + bL+2)C3 = [(1 + β)α
x(r)(L+2)

C2
+(1− α− αβ)SL+1 + (2− α− αβ)bL+1]C3;
...

F̂(r)(L + L) = (SL+L−1 + bL+L−1)CL = [(1 + β)α
x(r)(L+L−1)

CL−1

+(1− α− αβ)SL+L−2 + (2− α− αβ)bL+L−2]CL;

Then from 2L + 1 to (i + 1)L + t:

F̂(r)(L + L + 1) = [(1 + β)α
x(r)(L+L)

CL
+ (1− α− αβ)SL+L−1

+(2− α− αβ)bL+L−1]CL+1

= (1 + β)αx(r)(L + L) γx(r)(L+1)+(1−γ)C1SL+1
C1SL+1

+(1− α− αβ)[γ
SL+L−1x(r)(L+1)

SL+1
+ (1− γ)C1SL+L−1]

+(2− α− αβ)[γ
x(r)(L+1)bL+L−1

SL+1
+ (1− γ)C1bL+L−1];

F̂(r)(L + L + 2) = [(1 + β)α
x(r)(L+L+1)

CL+1
+ (1− α− αβ)SL+L

+(2− α− αβ)bL+L]CL+2

= (1 + β)αx(r)(L + L + 1) SL+1[γx(r)(L+2)+(1−γ)C2SL+2]

SL+2[γx(r)(L+1)+(1−γ)C1SL+1]

+(1− α− αβ)[γ
SL+Lx(r)(L+2)

SL+2
+ (1− γ)SL+LC2]

+(2− α− αβ)[γ
x(r)(L+2)bL+L

SL+2
+ (1− γ)bL+LC2];

...

F̂(r)(L + iL + t) = [(1 + β)α
x(r)(L+iL+t−1)

CiL+t−1
+ (1− α− αβ)SL+iL+t−2

+(2− α− αβ)bL+iL+t−2]CiL+t

= (1 + β)αx(r)(L + iL + t− 1) SiL+t−1[γx(r)(iL+t)+(1−γ)CtSiL+t ]

SiL+t [γx(r)(iL+t−1)+(1−γ)Ct−1SiL+t−1]

+(1− α− αβ)[γ
SL+iL+t−2x(r)(iL+t)

SiL+t
+ (1− γ)SL+iL+t−2Ct]

+(2− α− αβ)[γ
x(r)(iL+t)bL+iL+t−2

SiL+t
+ (1− γ)bL+iL+t−2Ct];
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where i ∈
[
1, number o f data in the simulation phase

L − 2
]
, t ∈ [1, L].

From the above derivation process, it can be found that the derivation formula of
L + 1 to L + L stage is different from that of the subsequent stage, which needs to be listed
separately. This is due to the fact that according to Formulas (3) and (4) in Section 2.2, it can
be found that C1 to CL are known and there is no need for iterative calculation. In the latter
stage, C is unknown and needs to be generated by formula iteration for calculation.

2.2.2. Parameter Optimization Process

The LBFGS algorithm can deal with unconstrained nonlinear problems. In the process
of calculation, it will delete the content stored in the previous stage and replace it with the
updated content as required. Therefore, LBFGS algorithm does not occupy a large amount
of memory. The detailed steps of optimization parameters of the algorithm are as follows:

Step 1: Setting the initial vector x0, memory size w and the number of iterations l = 0;
Step 2: Calculating the first step degree g and search direction d of the function;
Step 3: The step size αs is obtained according to the strong wolfe criterion;
Step 4: In terms of the above results, the inverse Hg of Hessian matrix is calculated;
Step 5: Carrying out the next iteration and judging whether the stop conditions are

met. Otherwise, return to step 2.
To further intuitively understand the prediction process of NOFGHW model under

LBFGS optimization, we made a flow chart (as shown in Figure 3).
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2.3. Evaluation Criteria

In order to compare the performance of the model more clearly, this paper adopts the
following five methods to evaluate the effect of the model, which are average percentage
error (APE), average absolute percentage error (MAPES, MAPSP), root mean square error
(RMSES, RMSEP). The formula is as follows:

APE(k) =

∣∣∣∣∣ F̂(0)(k)− x(0)(k)
x(0)(k)

∣∣∣∣∣ ∗ 100%, k = 1, 2, 3, . . . , n + p

MAPES =
1
n

n

∑
k=1

APE(k), MAPES =
1
p

n+p

∑
k=n+1

APE(k)

RMSES =

√
1
n

n

∑
k=1

(
F̂(0)(k)− x(0)(k)

)2, RMSEP =

√√√√ 1
p

n+p

∑
k=n+1

(
F̂(0)(k)− x(0)(k)

)2

where n is sample size and p is the forecasted horizon.

3. Application

To further demonstrate the performance of the new model when predicting a series
with seasonal and nonlinear characteristics, this section uses two cases of monthly crude oil
production and quarterly industrial electricity consumption to evaluate the performance
of the new model. As an energy in energy production, crude oil production has obvious
seasonality and nonlinearity, which can effectively verify the effect of the new model.
Although industrial electricity consumption is not as seasonal as crude oil production, this
case further proves the flexibility of the new model in dealing with different degrees of
seasonality. Furthermore, crude oil production is a monthly case and industrial electricity
consumption is a quarterly case, which can verify the effectiveness of the new model
in sample data of different periods. In addition, these two cases have clearly opposite
characteristics, one representing energy production and the other representing energy
consumption. By studying these two cases, one positive and one negative, the effectiveness
of the new model in energy applications can be fully verified.

3.1. The Experiment Design

In the above analysis, the data of the two cases we use are from Statistics database of
China Economic Network Statistics database (https://db.cei.cn/ (accessed on 4 February
2022)). In the case of monthly crude oil, the cycle is set to eleven, since many domestic data
aggregate the data from January to February during the Spring Festival into an accumulated
value. We use 2000–2018 as the in-sample simulation phase and 2019–2020 as the out-of-
sample prediction phase. In the case of quarterly industrial power consumption, the period
is set to four. We use 2011–2018 as the in-sample simulation phase and 2019–2020 as the
out-of-sample prediction phase. These collected data play a supporting role in case studies.
In addition, in order to clearly show the effect of the new model, we selected OGHW,
SNGBM, SARIAM, LSSVR, and BPNN as comparison models. Among them, the OGHW is
a model formed by combining grey one-order accumulation operator with the Holt–Winters
model and optimizing parameters with the LBFGS algorithm. The SNGBM model is a
grey forecasting model with better effect in seasonal and nonlinear forecasting, while the
SARIMA model is a common model in statistical econometric models. The LSSVR model
is better at dealing with the nonlinearity of sequence. Both the LSSVR model and BPNN
model are machine learning models.

https://db.cei.cn/
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3.2. Parameter Solution

In this section, we make simulations and predictions based on the data collected in
Section 3.1. At the same time, we obtain some parameters for the six models in Section 3.1.
The parameters in the model are explained through the crude oil production case, while
the parameters of the industrial electricity consumption case are shown in the Appendix.
Table 1 shows the detailed parameters of all models in the crude oil case. Among them, the
NOFGHM model and the OGHW model (The OGHW is a model formed by combining grey
one-order accumulation operator with the Holt–Winters model and optimizing parameters
with LBFGS algorithm.) are optimized by the LBFGS algorithm introduced in Section 2.2 to
obtain model parameters α, β, γ. The seasonal fluctuation index fs in the SNGBM model
was calculated by the average method, and the parameter A was obtained by the least
square method. The index r in SNGBM is optimized by cultural algorithm. The SARIAM
model is implemented in EVIEWS software. Both the LSSVR model and the BPNN model
are in the form of multi-dimensional input and single-dimensional output. Therefore,
we need to transform the input single-dimensional sequence into multi-dimensional data
through phase space transformation. In addition, the embedding dimension and delay
time used in the conversion need to be selected and set.

Table 1. Detailed parameters of all models of crude oil production cases.

Models Parameters

NOFGHW α̂ = 7263, β̂ = 0.0070, γ̂ = 0.6832, r̂= 0.1679.

OGHW α̂ = 0.5881, β̂ = 0.0000, γ̂= 0.6189.

SNGBM
fs(1) = 1.7815, fs(2) = 0.9333, fs(3) = 0.9015, fs(4) = 0.9333, fs(5) = 0.9179,
fs(6) = 0.9262, fs(7) = 0.9307, fs(8) = 0.9023, fs(9) = 0.9332, fs(10) = 0.9081,
fs(11) = 0.9319, A = [0.0015, 262.5373], r = 0.1707.

SARIMA SARIMA(1,0,10)(0,1,0)11, AR(1) = −0.2940 ***, MA(10) = −0.1331 *,
AIC = -4.9214, Log L = 487.7607.

LSSVR
Embedding dimensions = 11, time lag = 1, linear kernel, γ ∈ [0.0826, 270,104.1352],
the optimal γ = 12.2672, α1 = −0.1075, α2 = 0.0948, . . . , α196 = 1.0788,
b = −4.8779.

BPNN Optimal embedding dimensions = 11, optimal time lag = 1, number of neurons = 20,
learning rate = 0.01, iterative number = 1000, error goal = 0.05.

Note: (*), (**) and (***) represent the significance levels of the coefficients of 10%, 5% and 1% respectively.

3.3. Result Analysis
3.3.1. Monthly Crude Oil Production

Crude oil is an important energy source, and its product plays an important role
in industry, agriculture, and other fields (such as fuel for transportation, chemical raw
materials, etc.). Additionally, oil demand fell during the severe phase of the COVID-19
pandemic, but as governments around the world control this pandemic, oil consumption
is gradually returning to the a prosperous stage. In China, domestic crude oil production
cannot meet specified requirements, so there is a need to import a lot of crude oil from
abroad. Based on this, we must pay attention to the production of crude oil to avoid the
imbalance between supply and demand. In this paper, NOFGHW model and the five
comparison models mentioned in Section 3.1 are used for prediction, and the evaluation
criteria in Section 2.3 are used to test the effect of the model (as shown in Figures 4 and 5,
Table 2).
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Figure 4. Simulation and forecast graphs of six models for monthly crude oil production cases (Unit:
10,000 tons).
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Figure 5. APE values of monthly crude oil production in the out-of-sample prediction stage of the six
models.

Table 2. Forecast value of crude oil production (Unit: 10,000 tons), APE(%), MAPE(%), RMSE(%).

Month Actual NOFGHW APE OGHW APE SNGBM APE SARIMA APE LSSVR APE BPNN APE

2019-M2 3069.20 3051.23 0.59 3051.15 0.59 3207.97 4.52 3073.44 0.14 3061.05 0.27 3099.15 0.98
2019-M3 1654.20 1615.10 2.36 1597.72 3.41 1679.97 1.56 1617.73 2.20 1613.78 2.44 1655.62 0.09
2019-M4 1571.10 1570.24 0.05 1549.32 1.39 1622.14 3.25 1568.09 0.19 1569.97 0.07 1597.37 1.67
2019-M5 1623.00 1623.01 0.00 1601.67 1.31 1678.74 3.43 1616.62 0.39 1617.55 0.34 1635.72 0.78
2019-M6 1610.00 1608.55 0.09 1595.52 0.90 1650.31 2.50 1604.09 0.37 1605.23 0.30 1697.48 5.43
2019-M7 1628.70 1611.09 1.08 1604.94 1.46 1664.70 2.21 1599.27 1.81 1605.11 1.45 1674.46 2.81
2019-M8 1618.20 1613.10 0.32 1610.41 0.48 1672.11 3.33 1618.24 0.00 1619.85 0.10 1678.36 3.72
2019-M9 1564.30 1567.22 0.19 1566.26 0.13 1620.39 3.59 1529.98 2.19 1533.93 1.94 1523.43 2.61
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Table 2. Cont.

Month Actual NOFGHW APE OGHW APE SNGBM APE SARIMA APE LSSVR APE BPNN APE

2019-M10 1611.30 1626.84 0.96 1634.94 1.47 1675.22 3.97 1626.14 0.92 1627.51 1.01 1643.76 2.01
2019-M11 1570.40 1583.07 0.81 1597.31 1.71 1629.55 3.77 1562.84 0.48 1569.76 0.04 1533.80 2.33
2019-M12 1606.50 1625.73 1.20 1649.56 2.68 1671.63 4.05 1645.45 2.42 1649.85 2.70 1550.02 3.52
2020-M2 3200.20 3065.48 4.21 3091.70 3.39 3194.25 0.19 3095.06 3.29 3080.38 3.74 3058.90 4.42
2020-M3 1656.30 1622.20 2.06 1618.92 2.26 1672.71 0.99 1629.31 1.63 1624.52 1.92 1611.62 2.70
2020-M4 1587.47 1577.21 0.65 1569.86 1.11 1615.05 1.74 1579.26 0.52 1582.85 0.29 1574.74 0.80
2020-M5 1645.60 1630.30 0.93 1622.88 1.38 1671.32 1.56 1628.15 1.06 1631.81 0.84 1633.20 0.75
2020-M6 1624.20 1615.80 0.52 1616.63 0.47 1642.94 1.15 1615.52 0.53 1620.25 0.24 1650.67 1.63
2020-M7 1646.30 1618.39 1.70 1626.14 1.22 1657.19 0.66 1610.67 2.16 1619.36 1.64 1689.07 2.60
2020-M8 1665.10 1620.44 2.68 1631.65 2.01 1664.49 0.04 1629.78 2.12 1634.90 1.81 1738.22 4.39
2020-M9 1609.60 1574.34 2.19 1586.90 1.41 1612.93 0.21 1540.89 4.27 1545.37 3.99 1553.22 3.50
2020-M10 1641.20 1634.29 0.42 1656.46 0.93 1667.44 1.60 1637.73 0.21 1641.49 0.02 1742.17 6.15
2020-M11 1596.50 1590.32 0.39 1618.31 1.37 1621.90 1.59 1573.98 1.41 1581.67 0.93 1566.23 1.90
2020-M12 1626.80 1633.20 0.39 1671.22 2.73 1663.71 2.27 1657.17 1.87 1662.15 2.17 1620.91 0.36
MAPES 1.2490 1.3831 4.8086 1.5667 1.5794 2.4277
RMSES 33.6778 34.3136 103.3027 38.6412 37.4124 51.8965
MAPEP 1.0808 1.5364 2.1898 1.3725 1.2839 2.5069
RMSEP 34.9260 35.1592 48.3058 34.4965 35.8055 55.1239

Note: the maximum APE for each model is bolded.

Figure 4 shows the degree of fitting between the simulated values, predicted values,
and original data of the new model and the five comparison models. In general, the
oil production data show obvious seasonality, and six models are able to describe the
seasonality of the case. Through careful observation, it can be found that the NOFGHW
model is in good agreement with the real value at the low peak and peak data points,
while the SNGBM model with the same seasonality and nonlinearity is not well fitted
at the low peak data points. The fitting effect of the other models at the low peak data
points is also slightly insufficient. In other words, by adding the new fractional periodic
accumulation operator and LBFGS algorithm into the Holt–Winters model, seasonal and
nonlinear features in the sequence can be processed simultaneously and the prediction
accuracy is higher than other models.

Table 2 lists the APE, MAPE, and RMSE values for the six models. In Table 2, there are
two APE values that attract more attention, namely the 2019-M1 point of NOFGHW model
and 2019-M8 point of SARIMA model. The APE value at both points is zero, indicating
that the prediction error of the two models at these points is zero. The maximum APE
value of NOFGHW model in the out-of-sample prediction stage is smaller than that of
SARIMA model, indicating that NOFGHW model has better stability (which can also be
seen from Figure 5). The APE values of the NOFGHW model in Figure 5 are mostly in a
state of small fluctuation and have good stability. It is worth noting that the fluctuation of
the SARIMA model and LSSVR model is also small, but the APE values of both models are
larger than those of the new model at many points, which means that the prediction effect
of the new model is slightly better. The MAPE value in Table 2 is a comprehensive indicator
for the simulation and prediction stages. We discovered that three of the four composite
indicators of the new model are the smallest among all models. In short, the prediction
effect of the new model is better than that of the five comparison models. Although the
RMSE value of the new model in the prediction stage is the second smallest, there is no
significant difference between it and the minimum value of 34.4965, which does not have a
great influence on the prediction results of the model.

In general, the overall performance of the new model is superior to other models both
in terms of graph fitting status and evaluation indicators, which verifies the superiority of
the new model in dealing with both seasonal and nonlinear sequences and its performance
in predicting energy production cases.

3.3.2. Quarterly Industrial Electricity Consumption

Since its reform and opening up, China has vigorously developed its various indus-
tries; China has gradually become an industrial power. The development of industry
promotes the development of national economy and of all walks of life. Therefore, industry
is indispensable to China. In recent years, China’s industrial electricity consumption has
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risen very fast, and the raw materials used for power generation in China are in constant
shortage. In 2020, many places in China have experienced a surge in power curtailment,
and many industrial enterprises have implemented power outage mode, which brings
inconvenience to the development of industry and further affects China’s economic de-
velopment and residents’ life. Therefore, scientific and effective prediction of industrial
electricity consumption can provide a certain basis for the arrangement of power genera-
tion raw materials of relevant departments. In this paper, NOFGHW model and the five
comparison models mentioned in Section 3.1 are used for prediction, and the evaluation
criteria in Section 2.3 are used to test the model effect, as shown in Figures 6 and 7 and
Table 3.
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Figure 6. Simulation and forecast of six models of industrial electricity consumption in the quarter
(unit: billion KWH).
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(unit: billion KWH). 
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Figure 7. APE values of the quarterly industrial electricity consumption in the out-of-sample predic-
tion stage of the six models.
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Table 3. Forecast value of industrial electricity consumption (unit: billion KWH), APE (%), MAPE
(%), and RMSE (%).

Quarter Actual NOFGHW APE OGHW APE SNGBM APE SARIMA APE LSSVR APE BPNN APE

2019-Q1 10,738.00 10,669.57 0.64 10,483.25 2.37 10,433.51 2.84 11,474.12 6.86 11,208.66 4.38 11,719.61 9.14
2019-Q2 11,947.00 11,902.31 0.37 11,671.94 2.30 11,721.35 1.89 13,182.03 10.34 12,167.45 1.85 14,717.78 23.19
2019-Q3 12,528.00 12,474.93 0.42 12,213.86 2.51 12,312.50 1.72 13,600.07 8.56 12,649.03 0.97 12,930.06 3.21
2019-Q4 13,867.00 13,249.82 4.45 12,960.64 6.54 13,169.04 5.03 14,896.65 7.43 13,695.93 1.23 14,299.46 3.12
2020-Q1 9671.00 11,102.61 14.80 10,811.17 11.79 10,801.60 11.69 12,897.81 33.37 12,039.49 24.49 12,741.09 31.75
2020-Q2 12,274.00 12,391.42 0.96 12,034.21 1.95 12,133.89 1.14 14,856.86 21.04 12,803.70 4.32 15,136.20 23.32
2020-Q3 13,066.00 12,990.02 0.58 12,590.03 3.64 12,744.86 2.46 15,305.67 17.14 13,217.02 1.16 13,061.18 0.04
2020-Q4 14,917.00 13,800.14 7.49 13,356.76 10.46 13,630.48 8.62 16,778.35 12.48 14,249.21 4.48 14,567.30 2.34
MAPES 2.5874 2.6093 2.7977 3.6339 3.1896 2.6708
RMSES 400.1221 409.8395 358.7538 477.2389 442.9486 374.5778
MAPEP 3.7143 5.1955 4.4240 14.6505 5.3583 12.0134
RMSEP 680.7043 796.7976 683.1337 1931.3505 913.3109 1827.8879

Note: the maximum APE for each model is bolded.

Compared with the case of crude oil production, the quarterly electricity consumption
case has fewer sample data and weaker seasonally. Figure 6 intuitively shows the fitting
effects of the six models in the simulation and prediction stages. It can be seen from
the figure that all six of the models fit the original data series well in the simulation
stage, demonstrating that they also have excellent performance in the series with weak
seasonality. In the prediction stage, NOFGHW, OGHW, and SNGBM models are closer to
the original data sequence than the other three models. Moreover, the NOFGHW model
almost completely fits the original data series at several data points later in the first quarter
of 2019, while the OGHW and SNGBM models are slightly inferior.

Table 3 lists the APE, MAPE, and RMSE values for the six models. It can be seen from
Table 2 that among the eight predicted values of APE, five of the new models are less than
one, and one of the LSSVR model and BPNN model are less than one, respectively. This
shows that the new model has strong flexibility when dealing with seasonal sequence of
different degrees. Figure 7 illustrates this more clearly. The APE value of the NOFGHW
model in Figure 7 is usually at a low level, and the effect is the best. The second best is the
SNGBM model. SNGBM model is followed by OGHW model, while LSSVR and BPNN
models show a large deviation. The last four rows of values in Table 3 are a comprehensive
indicator for the evaluation of the model simulation and prediction stages. Among them,
the MAPE value in the simulation stage is the second smallest, which is not much different
from the minimum 358.7538. However, three indicators in the new model are the smallest
among all models, especially the indicators in the prediction stage which have a certain
gap compared to other models.

In short, the new model can also play a strong role in energy consumption cases, which
verifies the effect of the new model in dealing with different sample sizes and different
degrees of seasonality. The model therefore has a certain degree of adaptability.

4. Conclusions and Future Work

In this paper, a new fractional periodic accumulation operator is proposed and in-
troduced into the Holt–Winters model. On this basis, the LBFGS algorithm is applied to
optimize the parameters of the model to construct a novel optimized fractional grey Holt–
Winters model, namely the NOFGHW model. In order to further verify the effectiveness
of the new model, two cases of monthly crude oil production and quarterly industrial
electricity consumption are used for empirical analysis, and the remaining five models are
selected as comparison models. Finally, the results show that the new model outperforms
other comparison models, validating six effects of the new model. Firstly, the new fractional
periodic accumulation operator fully preserves the periodic fluctuation of the data after the
accumulation. Secondly, the new model can be directly used in the face of seasonal and
nonlinear energy time series without using a specific method, which verifies the practicality
of the new model. Thirdly, the superiority of the LBFGS algorithm in a quasi-Newton
method in dealing with nonlinear sequence is fully verified. Fourthly, the new model can
produce good accuracy in different degrees of seasonal sequence. Fifthly, the new model
can obtain better results in different cycle energy cases, which verifies the adaptability of
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the new model. Sixthly, whether it is energy production or energy consumption, the new
model can always produce high-precision prediction results. In general, compared with
the traditional model, the new model can more carefully analyze the data rules of energy
time series, and provides a simpler and more convenient method to deal with the seasonal
and nonlinear energy series. By using the new model to predict energy data, it is beneficial
to plan future energy market in advance. Then, the relevant departments ensure a balance
between supply and demand in the energy market in order to avoid wasting resources.

In this paper, the NOFGHW model is constructed by combining a newfractional
periodic accumulation operator, the Holt–Winters model, and the LBFGS algorithm, and
the effectiveness, practicability, superiority, and adaptability of the new model in energy
prediction are verified. It is worth mentioning that the cases selected in this paper have
both seasonal and nonlinear characteristics. However, in reality, not all energy time series
have these two characteristics, and may have other more complex characteristics. Therefore,
the prediction of energy time series with additional characteristics will be the direction
of future research. Furthermore, the question concerning how to use the new model for
seasonal and nonlinear time series in other fields and how to apply the new model to other
fields is also worth investigating further.
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Appendix A

Table A1. Detailed parameters of all models of industrial power consumption cases.

Models Parameters

NOFGHW α̂ = 0.004, β̂ = 0.1573, γ̂ = 0.3689, r̂ = 0.0145.

OGHW α̂ = 0, β̂ = 0.021, γ̂ = 0.3407.

SNGBM fs(1) = 0.8883, fs(2) = 0.9893, fs(3) = 1.0302, fs(4) = 1.0923,
A = [−0.0080,6658.21], r = 0.0246.

SARIMA SARIMA(1,0,0)(0,1,0)4, AR(1) = −0.5519 ***, AIC = −3.2929, Log L = 46.4537.

LSSVR
Embedding dimensions = 4, time lag = 1, linear kernel, γ∈ [0.0047,15257.1676],
the optimal γ = 0.6927, α1 = −0.0612, α2 = −0.0242, . . . , α28 = 0.7417,
b = −1.8317.

BPNN Optimal embedding dimensions = 4, optimal time lag = 1, number of neurons = 7,
learning rate = 0.01, iterative number = 1000, error goal = 0.05.

Note: (*), (**) and (***) represent the significance levels of the coefficients of 10%, 5% and 1% respectively.
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Table A2. The meanings of the symbols, constraints and variables in Section 2.

Symbols, Constraints and Variables Meanings

X(0) The primitive sequence
x(0) The primitive data
n Number of the primitive data (sample size)
L The fractional periodic accumulation sequence
X(r) The fractional periodic accumulation sequence
Γ The gamma function
k Different data points in a sequence
S Level
b Trend
C Seasonal
α Data smoothing factor
β Trend smoothing factor
γ The seasonal change smoothing factor
r Fractional order
α̂ Optimized parameters α̂

β̂ Optimized parameters β̂
γ̂ Optimized parameters γ̂
r̂ Optimized parameters r̂
F̂(r) Predictive values
m The number of recursions
x0 The initial vector
w Memory size
l = 0 The number of iterations
g The first step degree of the function
d Search direction of the function
αs The step size
Hg The inverse of the Hessian matrix
p The forecasted horizon
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