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Abstract: In the context of bioeconomic research approaches, a cascade use of plant raw materials
makes sense in many cases for waste valorization. This not only guarantees that the raw material is
used as completely as possible, but also offers the possibility of using its by-products and residual
flows profitably. To make such cascade uses as efficient as possible, efficient and environmentally
friendly processes are needed. To exemplify the versatile method, e.g., every year 675,000 metric
tons of cocoa bean shell (CBS) accrues as a waste stream in the food processing industry worldwide.
A novel green process reaches very high yields of up to 100% in one extraction stage, ensures low
consumption of organic solvents due to double usage of ethanol as the only organic solvent, is
adaptable enough to capture all kinds of secondary metabolites from hot water extracts and ensures
the usage of structural carbohydrates from precipitation. A Design of Experiments (DoE) was
conducted to optimize the influence of pH value and phase ratio on the yield and purity of the
integrated ethanol/water/salt aqueous-two-phase extraction (ATPS) system.

Keywords: aqueous two-phase systems (ATPS); liquid–liquid extraction (LLE); pressurized hot
water extraction (PHWE); solid–liquid extraction (SLE); natural products; cocoa bean shell (CBS);
precipitation; bioeconomy; total phenolic content (TPC)

1. Introduction

Products based on renewable resources, such as plants, represent a growing market
and the associated industry is an important supplier of versatile products. Applications
include pharmaceutical products, the food, health and nutrition sectors, as well as plant
protection for ecological farming or construction materials, basic chemicals and energy
resources [1–7]. In the context of bioeconomic research approaches, a cascade use of plant
raw materials makes sense in many cases. This not only guarantees that the raw material is
used as completely as possible, but also offers the possibility of using its by-products and
residual flows profitably. To make such cascade uses as efficient as possible, efficient and
environmentally friendly processes are needed.

Pressurized hot water extraction (PHWE) has been studied in the solid–liquid extrac-
tion community for a while and is well-established [8–11]. One of the main advantages is
the utilization of water as a solvent instead of organic solvents, which can help to reduce
the cost of goods (COGs) and global warming potential (GWP) and therefore help to reach
climate neutrality goals [12]. Additionally, PHWE extracts consist of the whole spectrum
of components in the plant material. Besides secondary metabolites, such as polyphenols
and flavonoids, matrix components such as lignin, cellulose and proteins are extracted [13].
However, if there are processing steps after the solid–liquid extraction, they are often
associated with the usage of different organic solvents. Possible steps are precipitation,
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liquid–liquid extraction or chromatography, which usually come with organic solvents
such as ethanol for precipitation, acetonitrile in chromatography or phase-forming solvents
such as ethyl/butyl acetate in liquid–liquid extraction (LLE) [14,15].

Here, a promising approach is to reuse the ethanol, which is needed for the precip-
itation of glucans, in an ethanol/water/salt ATPS to recover the polyphenols from the
precipitated extract [16,17]. The precipitate consists mainly of matrix components which
can be further processed for usage in a variety of applications [18–22].

Every year, 675 kt of cocoa bean shell (CBS) accrues as a waste stream in the food
processing industry worldwide [20] and has high research interest [20,23–31]. As a lignocel-
lulosic biomass, CBS is a potential resource for β-glucans which can be utilized, for example,
as bonding or binding agents. Besides β-glucans, CBS contains a high amount of polyphe-
nols such as catechin and epicatechin [23,28] and methylxanthines such as theobromine and
caffeine. The development of process routes for the use of co-products is essential for the
economic viability of these processes [32,33]. To utilize the full potential of the CBS in the
interest of bioeconomy, a process is developed using only minimal amounts ethanol as the
only organic solvent. The process consists of an extraction with hot water, a precipitation
with ethanol as an anti-solvent and a liquid–liquid extraction from the precipitation super-
natant with salting-out of ethanol. The LLE is compared to a conventional LLE with ethyl
acetate and butyl acetate. As the organic solvent LLE has to be conducted with an aqueous
phase, the LLE has to be either conducted before precipitation or after precipitation and
removal of the ethanol. This results in three possible process configurations, which are
shown in Figure 1. The first process is the one with double utilization of ethanol from
precipitation in an aqueous two-phase extraction (ATPE) with salt.
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2. Materials and Methods
2.1. Extraction Setup

For temperature screening, 1 g of ground CBS was extracted in a 10 mL extraction
column with a flow of 1 mL/min. The extraction plant consists of a pump, a GC oven for
heating, a column for extraction and a water bath for cooling. For maximum yield, 120 mL
of extract was collected as fractions.

For the solvent screening, 2 g of ground CBS is extracted with 40 mL of the re-
spective solvent: 20–100% ethanol, methanol, iso-propanol, MTBE, butyl acetate, ethyl
acetate, toluene and hexane. The vials were placed on a shaking device for 24 h to
reach extraction equilibrium. All solvents were purchased at VWR International GmbH,
30163 Hannover, Germany.

The extraction was carried out as a pressurized hot water/liquid hot water/subcritical
water extraction (PHWE). The extraction plant consists of an extraction column with a
volume of 0.1 L, solvent vessel, heating unit with a heat exchanger, cooling unit with a
heat exchanger, and an extract vessel. Extraction conditions were 140 ◦C at 1 L/h. The
CBS was obtained as dried industrial waste from a project partner. The origin was not
further specified. It was ground and sieved to 630–2000 µm, which is small enough to
guarantee fast mass transfer but big enough to prevent blocking of the extraction column.
The extraction column was filled with 20 g of ground plant material, and 500 mL of extract
was collected. The extraction solvent was deionized water from an in-house deionization
plant. The solvent ratio originates from the temperature screening, in which total yield was
reached after a solvent ratio of 25.

2.2. Liquid–Liquid Extraction

The phase screenings for liquid–liquid extraction were conducted in 50 mL centrifu-
gal vials, supplied by VWR International GmbH, 30163 Hannover, Germany. The ex-
tract/supernatant and solvent were measured into the centrifugal vials in the respective
phase ratios. For the first LLE screenings for partition coefficients, the phase ratio was
50/50. The vials were placed on a shaking device for 2 h to reach extraction equilibrium.

The extracts used were collected as described in Section 2.1. For the ATPS, the extracts
were precipitated with 60 wt.% ethanol, and supernatant was used for LLE. For the ATPS,
a 40 wt.% citrate buffer and a 30 wt.% phosphate buffer were used at the respective pH
values. Due to poor solubility properties at low pH values, phosphate buffers were only
researched at pH 7 and pH 8. The salts were purchased at VWR International GmbH,
30163 Hannover, Germany.

2.3. Analytics

Offline analytics consists of three different analytic methods. For the target components
theobromine, caffeine, catechin and epicatechin, reversed-phase high-performance liquid
chromatography (RP-HPLC) analytics were conducted. The method is modified based
on Rojo-Poveda et al. [28]. For detection, a diode array detector (DAD) is used, which
detects theobromine and caffeine at 272 nm and catechin and epicatechin at 280 nm. For
the separation, a Kinetex Phenyl-Hexyl C18 column (150 mm length × 4.6 mm internal
diameter and 5 µm particle size; Phenomenex, Aschaffenburg, Germany) is used. Injection
volume was 10 µL. The gradient consists of 0.1% formic acid as solvent A and methanol as
solvent B with a flowrate of 1 mL/min. The elution program starts with 10% solvent B up
to 12.5 min. The gradient reaches 80% solvent B at 37.5 min and a step up to 90% solvent B
up to 42.5 min. For equilibration, the partition of solvent B is 10% from 42.5 to 45 min.

The column is heated to 35 ◦C. Methanol and formic acid in HPLC grade were bought
from VWR International GmbH, 30163 Hannover, Germany. For calibration, theobromine,
caffeine, catechin and epicatechin standards of the concentrations between 0.02 and 1 g/L
from Sigma-Aldrich, St. Louis, MO, USA were used. The calibrations for HPLC analysis
and Folin–Ciocalteu test are shown in Figure 2.
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Figure 2. Calibration curves for caffeine, theobromine, epicatechin, catechin and gallic acid equiva-
lents (GAE).

Determination of dry residue is conducted following the method described in the
European pharmacopoeia (2.8.16 dry residue of extracts). An amount of 2 g per sample
was dried in glass vials at 105 ◦C for 2 h, cooled down under a dry atmosphere and the
residual mass was determined gravimetrically.

The total phenolic content of the samples is determined by UV/Vis spectroscopy
using the Folin–Ciocalteu reagent. Gallic acid solutions of concentrations 0.05 g/L, 0.1 g/L,
0.2 g/L, and 0.25 g/L are utilized for the calibration. To prepare the calibration lines, 0.5 mL
of gallic acid solution is mixed with 1.5 mL of Folin–Ciocalteu reagent, which is diluted to
10% of the original concentration beforehand and incubated for 5 min at room temperature.
Then, 1.5 mL of 7% sodium carbonate solution is added, and everything is filled to 10 mL
with HPLC grade water and incubated for 1.5 h. Measurement is conducted at 750 nm in
triplicate. HPLC water is used as a blank sample instead of the gallic acid standards. The
Folin–Ciocalteu reagent was supplied by VWR International, Hannover, Germany.

2.4. Statistical Analysis

The statistical analysis of the results from Design of Experiments (DoE) was conducted
with JMP Statistical Discovery™ by SAS Institute, Cary, NC, USA.

2.5. Calculations

For the characterization of the solid–liquid extraction, the yield is calculated according
to Equation (1), with mTC as the extracted mass of the target component and mCBS as the
mass of ground CBS used in the extraction process.

Yield =
mTC

mCBS
(1)

For characterization of the liquid–liquid extraction there are different target units. The
partition coefficient describes the distribution of the target component in the two phases,
the heavy phase and the light phase. The partition coefficient K is calculated according to
Equation (2), with the concentration of the target component in the light phase cTC,LP and
the concentration of the target component in the heavy phase cTC,HP.

K =
cTC,LP

cTC.HP
(2)

The yield in liquid–liquid extraction is calculated according to Equation (3), with the
mass of the target component in the light phase mTC,LP and in the heavy phase mTC,HP.
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The purity of the liquid–liquid extraction for each component is calculated according to
Equation (4), with the mass of the dry residue in the light phase mDR,LP.

Yield =
mTC,LP

mTC.HP+mTC.LP
(3)

Purity =
mTC,LP

mDR,LP
(4)

3. Results
3.1. Characterization of Solid–Liquid Extraction

The substance system of cocoa shells is first characterized according to a methodical
procedure. Two different extraction methods are investigated. One is the pressurized
hot water extraction (PHWE) and the other is a conventional extraction with organic or
organic–aqueous extractants.

For the coupled glycan and polyphenol extraction based on prior knowledge, PHWE
is the most suitable method, since the high temperature of the water and the associated
slightly acidic properties of the water induce hydrolysis of the carbohydrate skeleton. The
comparison with organic and organic–aqueous extraction agents provides, above all, a
comparative overview of the substance properties of the polyphenols. Information on the
solvents in which the polyphenols of the cocoa shells dissolve well can be informative with
regard to the choice of extraction agent for the subsequent liquid–liquid extraction.

In the characterization, the experimental data are evaluated according to two target
variables. The first is the dry residue. This describes the sum of all non-volatile components
of the extract. In the present case, the main components of the dry residue are the glycans
and the sum of the polyphenols.

The results for the solvent screening are shown in Figure 3. It can be seen that, in
particular, ethanol/water mixtures between 20 and 80% ethanol show high solubilization
properties for the polyphenols compared to the other extraction agents investigated, such
as hexane, ethyl acetate or butyl acetate. All three would be suitable extractants for liquid–
liquid extraction. The yield is calculated as the mass of the respective component in mg
divided by the mass of CBS used in the extraction process.
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In addition to the extracted dry matter, the polyphenols of the cocoa shells are of
interest. The yields achieved in milligrams of polyphenol per gram of extracted cocoa shell
are shown in Figure 4. In addition to the investigated target components described at the
beginning, where the two phenols catechin and epicatechin are considered, as well as the
two methylxanthines theobromine and caffeine, a total phenol content appears here. These
are remeasurements of old samples that were still available. The analysis by means of Folin–
Ciocalteu was established additionally only in the later course of the project. Therefore,
this analytical method has so far only been carried out in this series of measurements. It
can be seen that in the temperature range between 120 ◦C and 160 ◦C, the yields obtained
remain relatively constant. Accordingly, up to an extraction temperature of 160 ◦C, it can
be assumed that no thermal decomposition processes of the investigated components take
place. Based on the sum of extraction properties with respect to glycans and polyphenols,
as well as operational and safety considerations, an extraction temperature of 140 ◦C is
selected for the further extractions. Quercetin was not detected in any of the extracts from
the present cocoa shells.
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3.2. Characterization of Liquid–Liquid Extraction

For the screening of suitable extraction solvents for liquid–liquid extraction, organic
solvents that form a miscibility gap with water are required. Ethyl acetate, butyl acetate,
methyl tert-butyl ether (MTBE), hexane and toluene are chosen for this purpose. The
experiments are performed with volumetric phase ratios of 1:1 to determine the partition
coefficients of the target components. Liquid–liquid extraction of the extracts with hexane
and toluene resulted in emulsion formation in the organic phase with the fats from the
cocoa shell. Accordingly, not only could these samples not be measured, but they also
fall away for further processes considering that these processes could not be carried out.
The further investigations are carried out with different starting extracts, which are based
on considerations from the process synthesis. Here, there are different scenarios at which
point in the process the LLE can be performed:

- Directly after extraction of the glycan–phenol mixture.
- After precipitation of the glycans with ethanol—an ethanol–water mixture is then present.
- After evaporation of the ethanol from the precipitation supernatant.

For LLE with ethanol–water mixtures, the above-mentioned organic extraction agents
can only be used to a limited extent, if at all, because the ethanol content means that no more
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mixture gaps are formed, which is a prerequisite for LLE. However, it is possible to carry out
an aqueous two-phase extraction in an ethanol/water/salt system. In this case, the addition
of salt to an ethanol–water mixture displaces ethanol with a lower water content from the
salt-rich phase. In principle, a wide range of different salts are suitable for this purpose. In
view of environmental compatibility and green extraction processes, a citrate salt is used.
Comparatively, but less green, a phosphate salt is used. The partition coefficients for the
target components are shown in Figure 5. The partition coefficient is calculated with the
concentration in the light phase divided by the concentration in the heavy phase. Here,
large values represent a preferential distribution of the target components in the light phase,
which in all cases is the organic phase, or the ethanolic, low-salt phase. Here, only very low
partition coefficients are obtained for the organic solvents in question. In contrast, large
partition coefficients are achieved for the ethanol/water/salt systems. Here, the citrate
system shows the best results in comparison. The use of this system also has the advantage
that no additional organic extractant needs to be added to the process. Only the ethanol is
used, which is required for precipitation anyway.
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Figure 5. Partition coefficients for solvent screening for liquid–liquid extraction.

Therefore, the ethanol/water/salt systems will be characterized and investigated in
more detail in further trials.

In Figure 6, the results of the phase screening with citrate ATPS at pH 6, 7 and 8,
phosphate ATPS at pH 7 and 8, ethyl acetate and butyl acetate at phase ratios 30/70, 40/60,
50/50, 60/40 and 70/30 (m/m) expressed as feed/solvent are shown. The components
researched are total phenolic content, theobromine, caffeine, catechin and epicatechin. The
yield is calculated as the mass of the respective component in the light phase divided by
the mass of the respective component which is brought into the system with the used CBS
extract. The purity is calculated as the mass of the respective component divided by the
mass of the dry residue within the light phase. The data show that, for all components, the
aqueous two-phase systems reach exceptional high yields of up to 100% in one extraction
stage, whereas the conventional extraction systems with ethyl acetate and butyl acetate
reach only up to a maximum of 50% for caffeine and only up to 30% for the targeted
polyphenols. The data show higher yields for the ATPS at a higher phase ratio, which
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represents a lower consumption of solvent, whereas the organic solvents show a contrary
behavior. So, for better yields in the ATPS, less solvent is used, and for better yields with
organic solvents, a higher amount of solvent is needed. The pH value seems to have a
negligible influence on the yield. Regarding purity, organic solvents reach significantly
higher values. This is because of rather high salt contents in the ATPS in the light, phenol-
rich phase. This can be optimized with an adaption of the extraction system, e.g., higher
ethanol content in the feed. This will be researched in a follow-up study.
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Figure 6. Yields and purities for total phenolic content (a,b), theobromine (c,d), caffeine (e,f), catechin
(g,h) and epicatechin (i,j) in DoE with phase ratio and pH value including ethyl acetate and butyl
acetate as reference.

In Figure 7, the statistical influence of pH value and phase ratio on the yield of phenol
content, theobromine, caffeine, catechin and epicatechin are shown. The black squares in
the plots represent the target values from the experimental data. These results are for the
ATPS with a 40 wt.% citrate buffer. Due to low solubility of phosphate salts at pH 6, no full
factorial DoE could be conducted.
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For total phenolic content, the regression coefficient of the statistical model is 0.98.
The pH value has no significant influence on the extraction yield, where the phase ratio
has a high positive influence on the extraction yield. This behaviour matches with the
observations in Figure 6. For theobromine, the regression coefficient of the statistical
model is 0.96. Both pH value and phase ratio have a significant positive influence on the
extraction yield. The regression coefficient of the statistical model for caffeine yield is 0.72.
According to the P-values, pH value has a significant positive effect, while phase ratio has
no significant effect. However, due to the low R2 and the high scattering of the measured
values in Figure 7e,f, this statement is questionable.

For catechin, the regression coefficient of the statistical model 0.88. Both pH value and
phase ratio have a significant positive influence on the yield of catechin.

The regression coefficient of the statistical model for epicatechin is 0.91. The pH
value has a medium significant positive influence on the yield, whereas phase ratio has a
significant positive influence on the yield of epicatechin.

In Figure 8, the statistical influence of pH value and phase ratio on the purity of total
phenolic content, theobromine, caffeine, catechin and epicatechin are shown.
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For total phenolic content, the regression coefficient of the statistical model is 0.80. The
pH value has a significant positive influence on the extraction yield, whereas the phase
ratio has a low-to-no significant influence on the purity. This behaviour matches with the
observations in Figure 6. For theobromine, the regression coefficient of the statistical model
is 0.89. Both pH value and phase ratio have a significant positive influence on the purity of
theobromine. The regression coefficient of the statistical model for caffeine purity is 0.76.
According to the p-values, pH value and phase ratio have a medium significant positive
effect on the purity of caffeine.

For catechin, the regression coefficient of the statistical model 0.58. Both pH value and
phase ratio have no significant positive influence on the yield of catechin. However, due to
the low R2 and the high scattering of the measured values in Figure 8g,h, this statement
has low confidence.

The regression coefficient of the statistical model for epicatechin is 0.28. Due to the
low regression quality, there is no sophisticated statement to make.

In addition, for yield and purity, there is no significant influence of the interaction
between pH value and phase ratio.

4. Discussion

In the present study, the extraction behaviour of the various target components in
the CBS stock system was investigated. It was shown that the common organic solvents,
with the exception of ethanol–water mixtures, give only poor extraction results. The
comparatively good extraction properties of the ethanol–water mixtures already provided
an indication, in the solvent screening of the SLE, that an ATPE with the ethanolic phase
appears a promising method. Temperature screening showed very good extraction results
for an extraction temperature of 140 ◦C, which is a common extraction temperature for the
extraction of phenolic components.

In a first solvent screening for LLE, the three possible application points of LLE in the
process alternatives are investigated. Whether LLE occurs before or after precipitation had
no effect on the results in the present experiments. On the other hand, particularly strongly
apolar solvents such as toluene or hexane are not suitable for fatty substance systems such
as CBS. However, the potential of ATPE with ethanol, water and salt is confirmed, so that
this process alternative is preferred. The only organic solvent required, ethanol, can even
be used a second time for this purpose from the previous process step, precipitation. This
saves resources and protects the climate; both points should be considered for processes in
the bioeconomy. In the next step, the ATPE was investigated with two different salts. Here,
pH of the salt buffer and the phase ratio were varied. From the statistical experimental
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design, there is a positive influence on the yield for higher phase ratios, i.e., for a low
proportion of the salt buffer. The pH value has a low influence on the yield and only for
some components. The purity also increases for higher phase ratios. Increasing pH also has
a positive effect on purity. For the alternative studies with ethyl acetate and butyl acetate
from the crude extract, it was shown that a high organic phase content increases both the
yield and purity. For the ATPE systems, yields between 80 and 100% are achieved for the
different target components. The organic comparative tests only deliver yields between 20
and 40% in one extraction stage. The comparatively low purities of the ATPE systems are
due to a transition of salt into the light phase. The salt content in the light phase can be
reduced by optimizing the system point. While high phase ratios should be considered to
maximize the yield, pH value can be used to influence the purity of some components.

The precipitation with 60 wt.% ethanol, which was defined in the present study by
a project framework, will be investigated in more detail in follow-up studies. Due to
the double utilization of ethanol in the ATPE, precipitation and LLE are directly linked.
However, it is also conceivable to adjust the ethanol content to the optimum of the LLE
after precipitation with an ethanol content that is optimal for this process step.

5. Conclusions

Following this study, a process is available which integrates the PHWE into an overall
process for cascade utilization for waste valorization in an environmentally friendly, green
and efficient economic manner. The process consists of an extraction with hot water, a
precipitation with ethanol as an anti-solvent and a liquid–liquid extraction from the precip-
itation supernatant with salting-out of ethanol. In this way, both the matrix components
and the secondary plant compounds can be fully utilized by integrating unit operations
appropriately. The versatile green process for waste valorization is shown in Figure 9.
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Figure 9. Overview of the novel process for the recovery of phenolic compounds from natural
product extracts.

• The novel process reaches very high yields of up to 100% in one extraction stage.
• The novel process ensures low consumption of organic solvents due to double usage

of ethanol as the only organic solvent.
• The process is adaptable enough to capture all kinds of secondary metabolites from

hot water extracts and ensures usage of structural carbohydrates from precipitation.
Ethanol is well-known as a precipitant for matrix components from hot water extracts.
The ethanol content in the light phase is adaptable enough to match the solubility
properties of the target component, usually between 50 and 80% ethanol [8,14].

• Follow-up studies will focus on process optimization, research on process analytical
technology and complete dry residue characterization by component groups [13].
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