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Abstract: In terms of having a comprehensive vision toward supplying the water requirements,
a multi-criteria decision-making approach was employed on the Zarrine River Basin (ZRB) in the
northwest of Iran. First, the climate change impacts were analyzed with the Long Ashton Research
Station Weather Generator (LARS-WG) downscaling approach by using General Circulation Models
(GCMs) including the European Consortium Earth System Model (EC-EARTH), Hadley Centre
Global Environment Model version 2 (HADGEM2), Model for Interdisciplinary Research on Climate,
version 5 (MIROC5), and Max Planck Institute Earth System Model (MPI-ESM), from Coupled
Model Intercomparison Project 5 (CMIP5) under Representative Concentration Pathway (RCP4.5,
RCP8.5) scenarios for 2021–2080. Afterward, the downscaled variables were utilized as inputs to the
Artificial Neural Network (ANN) model to predict future runoff under the climate change impact.
Finally, the system dynamics (SD) model was employed to simulate various scenarios for assessing
water balance utilizing the Vensim software. The results of downscaling models suggested that the
temperature of the basin will increase by 0.47 and 0.91 ◦C under RCPs4.5 and 8.5 by 2040, respectively.
Additionally, the precipitation will decrease by 3.5 percent under RCP4.5 and 14 percent under
RCP8.5, respectively. Moreover, simulation results revealed that the water demand in various sectors
will be enormously increased. The contribution of the climate change impact on the future run-off was
a seven percent decrease, on average, over the basin. The SD model, according to presented plausible
scenarios including decreasing agriculture product and shifting irrigation efficiency, cloud-seeding,
population control, and household consumption reduction, reducing meat and animal-husbandry
production, and groundwater consumption control, resulted in a water balance equilibrium over five
years. However, the performance of individual scenarios was not effective; instead, a combination of
several scenarios led to effective performance in managing reduced runoff under climate change.

Keywords: climate change; system dynamics; water resources management; Zarrine River Basin

1. Introduction

Integrated water resource management (IWRM) constitutes one of the most substantial
and inevitable challenges in urban planning. Beyond its problematic nature, finding a
beneficial equilibrium between human and anthropogenic impacts on the environment
has always been the target of sustainable environmental management [1]. One of the
irreparable damages of human beings to nature is global warming and consequently the
climate change. The most prominent concern of IWRM under climate change impact is
achieving the sustainable development goals on watersheds and basins.
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To assess the impacts of climate change on water resources, general circulation models
(GCMs) are widely used [2]. Since GCM data could not be utilized for the impact studies
of climate change directly, downscaling techniques were developed to convert the coarse
resolution data of the GCMs into local scale-specific resolutions. Downscaling tools could
be classified into two statistical and dynamical methods. The Long Ashton Research Station
Weather Generator (LARS-WG) tool is a weather generator which is capable of simulating
temperature and precipitation parameters in climate change conditions and the assessment
of climate change impact [3,4]. Another advantage of LARS-WG is that 15 GCMs’ outputs
with various scenarios have been incorporated into the model to properly deal with the
uncertainties of GCMs. Numerous studies have focused on climate variable downscaling
via LARS-WG.

In this regard, in [5] they used LARS-WG with a HadCM3 GCM model under RCP2.6,
RCP4.5, and RCP8.5 scenarios. The result indicated an increase of 0.77 ◦C for the average
temperature and a decrease of 11 mm for the precipitation, respectively. In [6] they utilized
the LARS-WG to simulate climate change conditions for the 2020. The results indicated
a decrease in annual precipitation and a tendency towards a warmer climate over the
basin of Zolachay in the Urmia Lake basin at northwestern Iran. In [7] they anticipated
future climate change conditions in three arid locations of India by contrasting the baseline
value with the downscaled output of LARS-WG based on seven GCMs. According to the
results, ensemble means of rainfall prediction under seven GCMs showed a 9 to 17 percent
increase over the basin. In [8] they utilized LARS-WG tools to analyze precipitation and
temperature patterns in the historic future period over the Xiangjiang River Basin, China.
The results showed that the annual precipitation pattern in the basin increased and will
probably continue to increase in the future under four GCMs. In [9] they developed the
LARS-WG downscaling model to evaluate precipitation and temperature predictands
under the Representative Concentration Pathway (RCP8.5) scenario over the northwest
of Iran. Results of the study showed that the temperature will increase by 0.1–1.3 ◦C and,
also, precipitation will experience a decreasing trend by ten up to thirty percent by 2040.

Projection of precipitation and temperature for the future can be useful in assessing
hydrologic process in a basin. In this regard, streamflow estimation can be developed using
various hydrological models having benefited from downscaled hydro-climatic variables
such as precipitation and temperature. Therefore, expanding a hydrological model for
further water planning, management, and simulating future runoff based on climate change
conditions is necessary. Hydrological models, regardless of structural diversity, are gen-
erally divided into three broad categories (i.e., black box or system theoretical models,
conceptual models, and physically based white box models) [10]. Artificial neural network
(ANN)-based hydrological models under the category of the black box can achieve optimal
results in the situation where the target system is poorly defined and input data are incom-
plete [11]. The ANN is a precise predictive technique that is capable of detecting intricate
nonlinear relationships. ANN has widely been utilized in order to model the nonlinear
correlation between rainfall of the runoff process [4,12]. In this study, for assessing the
impact of climate change in the near future, predictands, i.e., precipitation and temperature,
as the climatic data of the downscaling models were fed into the ANN-based rainfall-runoff
model. Various studies have shown that ANN-based hydrological models behave better
than traditional hydrological models (conceptual, physically-based, or statistical models)
in runoff prediction while access to physically based data of watersheds is limited [10,13].

In [4] they applied the ANN model to simulate the effects of climate change on the
runoff over the East-Azerbaijan province of Iran. The results showed dramatic reductions
in the flows. In [12] they developed a Rainfall-runoff model by ANN, which represented
fairly proper ability to predict runoff for a semi-arid basin area. In [14] they focused on data
mining techniques based on ANN and their application in runoff forecasting. The results
demonstrated that the ANN models were able to provide a good representation of the
hydrological forecast.
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Due to the dynamic complexity of influential factors in water resource planning and
management, considering the influential factors is of great importance. In this regard,
SD has been used as a decision support tool to aid policymakers achieve sustainable plans,
which can cope with climate change impacts appropriately. So, after evaluating climate
change conditions for the future and simulating future runoff using an ANN-based rainfall-
runoff model and considering sustainable planning, the SD tools were been utilized to
address reliable IWRM.

SD can provide a comprehensive understanding of integrated sub-systems, which are
the reason for the dynamic behavior of the whole system, and permit conducting multiple
scenarios, which results in independent comparisons of numerous management strategies
over time [15]. In [16] they utilized the SD Model to consider the specific factors which
led to the declining trend of the Urmia Lake level. Based on their investigation, the main
reason for inflow fluctuation over the Urmia lake was derived from climate change and
overuse of water resources by 65%. In [17] they utilized the SD model in order to determine
the water demand effects on the downstream flow. According to their result, adopting an
efficient rule of water consumption to decrease the negative impacts of water distribution
on Urmia Lake should be a top priority. In [6] they used an SD approach to determine the
declining level of the Zola reservoir by simulating ANN rainfall-runoff models using the
downscaled data based on (LARS-WG) downscaling tools. Results indicated that under
the climate change condition, noticeable changes in the reliability of the Zola Reservoir
operation were observed. In [18] they assessed the climate change approach and also SD to
determine the sustainability of various scenarios over the Urmia Lake. According to the
results, in order to restore the Urmia Lake level, stakeholders should implement several
mitigation programs on water consumption altogether.

The Zarrine River basin (ZRB), as the main supplier of ecological discharge of Urmia
Lake and also as the supplier of urban water of vicinal cities, is of great importance
regarding the Urmia Lake Restoration Program (ULRP), which researchers benefited from in
their studies [19,20]. Indeed, considering comprehensive research on the ZRB basin not only
affects the water balance of ZRB, but also can influence on Urmia Lake’s reclamation [21].

The main procedure of this research relies on three steps. The first step is developing a
downscaling model (i.e., LARS-WG) to obtain future climatic conditions of ZRB. The second
step represents ANN-based rainfall-runoff modeling to determine ZRB runoff in the future.
The third step demonstrates the SD approach to develop robust and flexible solutions
for water resource management of the ZRB basin, where the comprehensive vision in
sustainable developments under climate change impact and different policies is important.
The main novelty of this study contributed to assess climate change impact on the water
consumption of the ZRB basin, which provides an overview on sustainable development
and discerns the water crisis over the basin.

2. Materials and Methods
2.1. Study Area and Data

The Zarrine River Basin (ZRB) is one of the most substantial basins and an important
inflow source of Urmia Lake, the largest saline lake in Iran. The ZRB, with a total area of
12,025 km2, is located in the southern part of the lake basin, between 45◦46′ E to 47◦23′ E
longitude and 35◦41′ N to 37◦44′ N latitude and includes parts of Kurdistan’s provinces,
with the four cities Miandoab, Shahindezh, Takab, and Bukan (see Figure 1). Generally,
the study area encompasses a mountainous region and the annual precipitation and mean
temperature are 250 mm and 15 ◦C, respectively. Overall, the weather is mild and fine in
spring, dry and semi-hot in summer, humid and rainy during fall, and cold with snowfall
in winter. Through the last decades, drying of the Urmia Lake has become the main
environmental challenge with which the region is grappling. In this way, ZRB plays a
critical role in the reclamation of this vital basin. Additionally, more than one-third of
the area of the basin is cultivated, which includes crop and horticultural cultivated lands,
and most of the water use is devoted to these horticultural cultivated lands. The irrigation
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efficiency for crop and horticultural cultivated lands is about 0.37 and 0.45, respectively,
in the ZRB basin [20].
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Figure 1. Location of the study area.

In terms of developing the downscaling model, large-scale historical climate data were
considered by utilizing GCM models including European Consortium Earth System Model
(EC-EARTH), Hadley Centre Global Environment Model version 2 (HADGEM2), Model for
Interdisciplinary Research on Climate, version 5 (MIROC5), and Max Planck Institute Earth
System Model (MPI-ESM), from Coupled Model Intercomparison Project 5 (CMIP5) under
RCP4.5 and RCP8.5 scenarios (see Table 1). The baseline period of the study was 1975–2005,
where 70 percent of the data (i.e., 1975–1995) was used to calibrate the downscaling model
and 30 percent of the data (i.e., 1996–2005) was applied for validation purposes; moreover,
the projection period was set to 2021–2040.

Table 1. Climate stations and GCM grid point information.

No Global Climate
Model Centre Centre Acronym Country Grid Size

(Approximately)

1 EC-EARTH Numerical weather
prediction ESM Europe 1.1◦ × 1.1◦

2 HadGEM2 UK Met. Office UKMO UK 1.4◦ × 1.9◦

3 MIROC5 Met Research
Institute, Japan NIES Japan 1.2◦ × 2.5◦

4 MPI-ESM Max-Planck Met
Institute MPI-M Germany 1.9◦ × 1.9◦

Four synoptic stations including the Takab, Bukan, Miandab, and Shahindezh stations
were selected to provide observed precipitation and temperature data (see Table 2 and
Figure 1).
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Table 2. The location and the characteristics of observed climate data of four synoptic stations.

Station Code Station Name Longitude
(◦N)

Latitude
(◦E)

Altitude
(m)

Mean
Temperature

(◦C)

Cumulative
Precipitation

(mm)

40728 Takab 36◦24′ 47◦06′ 1817 10.27 300.1
99332 Bukan 36◦32′ 45◦14′ 1386 11.58 362.8
99292 Miandab 36◦58′ 46◦09′ 1371 11.1 279.9
99314 Shahindezh 36◦37′ 46◦31′ 1390 10.9 421

2.2. Methods

The methodology comprised three steps to gain a sustainable water security system.
The first step included downscaling by the LARS-WG approach under RCP scenarios,
and the second step contributed to simulating future runoff via ANN model. In the last
step, an SD approach was developed to provide a comprehensive view of the basin water
resources planning according to the stakeholder’s demand and the accessible surface water,
which are impacted by climate change. All the processes are illustrated in Figure 2.
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2.2.1. LARS-WG Downscaling

To predict temperature and precipitation patterns of the study area in the future,
the downscaling technique was considered by using GCM models including EC-EARTH,
HADGEM2, MIROC5, and MPI-ESM under the RCP4.5 and RCP8.5 scenarios during 2021–
2040 (See Table 1). The LARS-WG is a stochastic weather generator that produces synthetic,
daily time series of climate variables. Regarding this, daily data are directly needed as
input to the LARS-WG model [22]. The LARS-WG tools utilize a semi-empirical distribu-
tion to develop the approximate distribution of minimum and maximum temperatures,
precipitation, and solar radiation.

νi = min{ν : P(νobs ≤ v) ≥ ρi} i = 0, 1, 2, . . . , n (1)

where p0 reflects the probability resulting from observed data {νobs}. Two values including
ρ0 and ρn. were set for each climatic vector as ρ0 = 0 and ρn = 1 with corresponding values
of v0 = min {νobs} and vn = max {νobs}. In order to properly estimate the extreme values of
a climate parameter, some ρi were set close to 0 for extremely low values of the index and
close to 1 for extremely high values; the residual ρi values were evenly distributed on a
probability scale [23].

The LARS-WG method uses minimum and maximum temperature and precipitation,
as well as radiation and/or sunshine, as predictors to generate local scale weather data
(i.e., temperature and precipitation), which were considered as predictands in this study.

2.2.2. Artificial Neural Network

In terms of predicting the runoff for the ZRB basin in the future, the ANN-based
method was used. The ANN is defined as a data-processing system with a parallel dis-
tributing feature inspired by the biological neural system of the human brain [24]. ANN
is capable of simulating nonlinear and time-varying features of the variables at different
scales and accepts multiple inputs that contain various characteristics [25].

Seventy percent of the input and target data were considered for training; the re-
maining thirty percent were utilized for verification. A two-layer feed-forward neural
network (FFNN) was utilized, which is based on a linear combination of the input variables
transformed by a nonlinear activation function. The Levenberg-Marquardt algorithm was
applied for training the network. The FFNN model operates as in Equation (2).

ŷ = f0

[
m

∑
j=1

wkj fh
fh

(
mn

∑
i=1

wjixi + wj0

)
+ wk0

]
(2)

where wji represent the weight within the hidden layer connecting the ith neuron in the
input layer and jth neuron in the hidden layer, wj0 shows the bias for the jth hidden neuron,
fh is the activation function of the hidden neuron, wkj

is the weight within the output layer
connecting the jth neuron in the hidden layer and the kth neuron in the output layer, wk0 is
the bias for the kth output neuron, and f0 is the activation function for the output neuron.
The main goal of the training algorithm was to minimize the sum of the square errors of
the network is represented in Equations (3) and (4).

ek = yk − ŷk (3)

E =
1
2

n

∑
k=1

(
ek
)2

(4)

where ek represents the error of network for pattern, k, n are the number of patterns selected
for training, yk is the target value of the pth pattern, and yk is the output value of the
network for the pth pattern.

After the training process, the simulation step was complemented to predict future
runoff according to projected precipitation and temperature data acquired from the LARS-
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WG downscaling method. Then, the obtained runoff time series for the future was fed into
the SD model to assess water balance in the future.

2.3. System Dynamic

Dynamic modeling is applied as a proper technique to develop a mental model that is
derived from systematic thoughts. The SD tool is a successful method that can operate as the
joined approach for producing an equilibrium between simplification and realism. The tools
which are considered as a branch of systematic thought can be utilized in complicated
systems modeling and applying uncertain issues in system management [26]. The main
variables in the SD relevant to stocks and flows can function as auxiliaries or constants.
Stocks that are state variables can be variable by fluctuating their inflows or outflows. Flow
variables are defined as a rate to change the stock variables. Reports between levels and
flows are associated with auxiliary variables. The stock value which contains an inlet and
outlet at any specific time (t) is considered as Equation (5).

Stock(t) =
tn∫

t0

[ In f low(t)−Out f low(t)dt + Stock(t0)] (5)

where Stock(t) represents stock at time t; Inflow(t) shows inflow at time t; Outflow(t) expresses
outflow at time t, and Stock(t0) is stock at a time (t0).

The main purpose of the SD approach in this study was to alleviate the stress on the
water resource system over the basin and implement various policies to reach sustainable
goals under climate change impacts.

The ZRB model consists of three major factors: 1. Water balance, 2. Population, and 3.
Groundwater level. The water balance factor is the main factor in the model defined as
the accumulation of supply and demand factors. The essential parameters associated
with these sub-categories including supply and demand are runoff and total demand
respectively. The runoff parameter, which was obtained from an ANN-based rainfall-runoff
model for the future, plays a key role in providing net supply for water balance. Owing to
the result of ULRP (2014), agriculture is prime and substantial water is consumed over the
basin [20]. When it comes to the agriculture sector, all the product (i.e., horticulture, crops,
animal-husbandry) were considered as (Tons) and the consumptions were considered as
(MCM). Water demand for consumption variables was calculated by utilizing NETWAT
software, which utilized the FAO–Penman-Monteith method. After the agriculture sector,
considering the drying of the Urmia Lake, environmental demand is the prime output of
the model, whereas according to ULRP (2014)’s investigation, the Zarrine river provides
forty percent of Urmia Lake’s income [20].

2.3.1. The Key Variables of the SD Model

The causal loop diagram (CLDs) is a causal diagram that helps in visualizing how
different variables in a system are causally interrelated. The diagram consists of a set
of words and arrows and a narrative which describes the causally closed situation the
CLD describes. The CLD of the water resources system includes the water balance and
its sub-systems such as population, groundwater volume, water demands, and climate
change impact, which are represented in Figure 3, where the elements of the system are
linked by arrows with negative and positive polarities. A positive link shows the parallel
behavior of variables. In terms of having an increase in the cause variable, the variable that
is affected also increases, while a decrease in the cause variable represents a decrease in the
affected one. A negative link implies an inverse linkage between variables [27].
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The next step encompasses the variables involved in the model. Parameters include
two different types of endogenous and exogenous data. Indeed, endogenous variables
included the variables that exist within the boundary of a system while exogenous variables
exist outside the system. From the technical point of view, an endogenous variable is a kind
of variable that affects (arrows in) and is affected (arrows out) by the system. On the other
hand, an exogenous variable is affected by the other variable. In the simulation model,
all the required data of Table 3 were set to a monthly time scale and, also, the prerequisite
hydrological data such as runoff in future were imposed onto the Vensim environment
based on the outputs of the ANN rainfall-runoff model. All the essential information about
the variables and their resources and units are listed in Table 3.

Table 3. Variables of the ZRB SD model.

Data Source (s) Units Data Source Type Type of Variables

Groundwater consumption Iran Ministry of Energy MCM/month Modeled Endogenous
Natural recharge Survey data MCM/month Modeled Endogenous
Returned water Survey data MCM/month Modeled Endogenous

Groundwater extraction Iran Ministry of Energy MCM/month Modeled Endogenous
Natural discharge Survey data MCM/month Statistical Endogenous

Groundwater volume change Survey data MCM/month Modeled Endogenous
Wastewater coverage Iran Ministry of Energy MCM/month Statistical Endogenous

Total Evaporation Iran Ministry of Energy MCM/month Statistical Endogenous
Demand Survey data-LARS-WG MCM/month Statistical/Mod Endogenous

Water Balance Survey data MCM/month Statistical/Mod Exogenous
Population Statistical Center of Iran Dimensionless Statistical Endogenous

Domestic demand Iran Ministry of Energy MCM/month Modeled Endogenous
Industrial demand Iran Ministry of Energy MCM/month Modeled Endogenous

Horticultural demand Survey data MCM/month Modeled Endogenous
Crop demand Survey data MCM/month Modeled Endogenous

Agricultural demand Survey data MCM/month Modeled Endogenous
Total demand Survey data MCM/month Modeled Endogenous
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Table 3. Cont.

Data Source (s) Units Data Source Type Type of Variables

Withdraw Iran Ministry of Energy MCM/month Modeled Endogenous
Environment Demand Iran Ministry of Agriculture MCM/month Statistical Endogenous

Supply Survey data MCM/month Modeled Exogenous
Surface water percolation Iran Ministry of Energy MCM/month Modeled Endogenous
Wastewater percolation Iran Ministry of Energy MCM/month Statistical Endogenous

Irrigation efficiency Iran Ministry of agriculture MCM/month Statistical Endogenous
Runoff Survey data-ANN MCM/month Modeled Exogenous
Plans Survey data Dimensionless Statistical Exogenous

Crop demand average NETWAT software Millimeter/Mon Statistical Exogenous
Horticultural demand average NETWAT software Millimeter/Mon Statistical Exogenous

In terms of characterizing the system processes, by utilizing CLDs, the stock-flow
diagrams in the Vensim software environment were developed for the study basin (see
Figure 4). All the variables and related sources and units are listed in Table 3.
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2.3.2. Proposed Scenarios for System Dynamic Model

One of the catastrophic events in the history of Iran’s water resources management
during the current century is the drying of Urmia Lake due to mismanagement. ZRB, as the
most significant water resource of the Urmia Lake basin, is the most substantial supplier
of the basin for stakeholders in the agriculture, environment, and drinking water sectors.
Therefore, adaptation policies to reduce water consumption and save as much as possible
in this basin are one of the main targets of suppliers. Among the different scenarios that
can be related to the factors affecting the basin water resources situation, five impartial
and significant restoration plans were considered from various plans of ULRP (2014) to
increase the trend of water balance over the basin [20]. The influential plans are represented
as follows:

Plan 1. Impact of decreasing agriculture product and shifting irrigation efficiency

Agriculture is a water-related sector and because of its high-water demand feature,
managing and allocating water in this basin is essential. Albeit, from the farmers’ point
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of view irrigation, could result in economic concern. Therefore, implementing an efficient
policy for achieving sustainable agriculture is an inevitable step for assessing environmental
sustainability in the basin [28]. Increasing the efficiency of irrigation and decreasing the
agricultural product simultaneously is considered as a first restoration plan. In this way,
a ten percent reduction policy for decreasing agriculture products and shifting irrigation
efficiency was considered.

Plan 2. Impact of Cloud-Seeding

By applying a cloud-seeding approach, precipitation patterns over an area could be
increased for making a significant contribution toward water concerns. Consequently,
runoff inflow will be increased to the ZRB basin. Despite the uncertainty of the cloud-
seeding method due to the climatic pattern of the basin and type of clouds, up to a seven
percent increment of annual precipitation is assumed for the basin according to [29].

Plan 3. Population control and household consumption reduction

Due to the disparity of domestic consumption per capita in Iran with global average
values (average per capita consumption in European countries is about 200 L per per-
son) and the urgent need for environmental awareness to reduce domestic consumption,
the ten percent reduction policy was considered in order to mitigate the water use in
domestic consumption.

Plan 4. Reducing meat and animal-husbandry production

Water saving is important in the livestock sector owing to the importance of virtual
water and water footprint. Numerous liters of water are needed to produce each kilogram
of meat. Therefore, due to the current water crisis and water utilization of the basin,
it seems reasonable to increase public awareness in reducing meat consumption. In this
way, a consequent thirty percent reduction in water consumption of the animal-husbandry
sector would be beneficial.

Plan 5. Groundwater consumption control

The fifth plan involves a reduction of groundwater withdrawal by up to twenty percent
on fertile lands and the elimination of drilling illegal wells and unauthorized use, which
would result in increasing groundwater levels over the basin.

In this study, the admissibility of above-mentioned plans under climate change impact
considering the runoff quantity of Zarrineh River in the future was assessed.

2.4. Evaluation Criteria

Due to examining the efficiency of the proposed downscaling techniques as well as
the ANN rainfall-runoff model, through the training and validation steps, two criteria con-
taining root mean square error (RMSE) and Determination Coefficient (DC) were utilized.

RMSE demonstrated the degree of coincidence between observed and simulated
values, which is the sample standard deviation of the differences among observed and
calculated values. The range of RMSE ranges from 0 up to ∞, whereas with a reduction in
RMSE, the efficiency improves. If the RMSE values tend to be 0, the performance of the
model is well evaluated.

RMSE =

√
∑N

i=1(Ri − Zi)
2

N
(6)

where N is the total number of observations and Ri and Zi are observed and calculated
values, respectively.

Moreover, DC is being used to determine the precision of forecasts. It measures how
well-observed results based on their proportion of total variation are replicated by the
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proposed model and it ranges from −∞ to 1 (Equation (2)). The closer DC is to one, the
higher the accuracy of the model.

DC = 1− ∑T
i=1(Oi − Ci)

2

∑T
i=1
(
Oi −O

)2 (7)

Moreover, three evaluation criteria were considered for assessing the reliability of the
SD model, including the boundary adequacy test, behavior sensitivity test, and extreme
condition test.

The Boundary Adequacy Test is applied if the model contains the relevant structural
relationships that are necessary and sufficient to satisfy the model’s purpose. Consequently,
the boundary adequacy test inquires whether the chosen level of aggregation is appropriate
and if the model includes all relevant aspects of the structure [30].

The behavior sensitivity test examines whether or not plausible shifts in model param-
eters can cause a model to fail behavior tests previously passed. To the extent that such
alternative parameter values are not found, confidence in the model is enhanced [30].

In the extreme condition test, the modeler assigns extreme values to selected model
parameters and compares the generated model behavior to the observed or expected
behavior of the real system under the same extreme conditions [30].

3. Results and Discussion
3.1. Downscaling and Projecting Predictands

The performance of the LARS-WG in downscaling of precipitation and temperatures
according to the EC-EARTH, HADGEM2, MIROC5, and MPI-ESM models as the average
of the stations are reported in Table 4. The results manifested the high performance of
temperature in comparison with precipitation, which is in line with other studies such
as [31–33]. The fact beyond this result can relate to the deterministic entity of temperature
time series and the stochastic property of the precipitation phenomenon, which occurs
randomly. According to the results at Table 4. The HadGEM2 model showed the high-
est performance for downscaling temperature, while theMIROC5 model demonstrated
weak performance in downscaling it. Unlike temperature, the downscaling results for
precipitation showed no significant fluctuation pattern among various GCMs.

Table 4. Results of the downscaling model via LARS_WG according to the EC-EARTH, HADGEM2,
MIROC5, and MPI-ESM models.

Climate Models

Evaluation Criteria

Temperature Precipitation

RMSE (◦C) DC RMSE (mm) DC

HADGEM2 0.20 0.91 36 0.63
EC-EARTH 0.45 0.81 37 0.61

MIROC5 0.60 0.76 40 0.59
MPI-ESM 0.35 0.85 37 0.62

After developing the downscaling model, precipitation and temperature variables for
the 2021–2040 period under RCP4.5 and RCP8.5 scenarios were implemented (see Figure 5).
According to the results, by 2040, the temperature increasing trend will be 0.47 ◦C and
0.91 ◦C under RCPs 4.5 and 8.5, respectively. Therefore, under the pessimistic scenario of
RCP8.5, the mean temperature change will be more severe than the anticipated temperature
under the intermediate scenario of RCP4.5. Moreover, it is noted that the model outcomes
are consistent with the results of the (Sarindizaj and Zarghami, 2018) study, which indicated
an increasing trend for temperature under A1B, A2, and B1 scenarios over the Urmia Lake
for the period of 2011–2030 [18].
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Figure 5. Annual precipitation and temperature pattern under two scenarios, RCP4.5 and RCP8.5,
with respect to the validation period of the baseline.

The result of precipitation projection for future is depicted in Figure 5, where 3.5%
and 14% decreases for precipitation under RCP4.5 and RCP8.5 were observed by 2040.
Overall, considering the average of both scenarios, the precipitation time-series will have a
decreasing trend.

Figure 6 illustrates the monthly fluctuation of precipitation in 2040, where the annual
precipitation will be reduced between May and September, mainly in the summer when
the basin requires more water. As a result, the shortfall in precipitation during summer will
increase water stress, which can lead to the reduction of water in runoff and consequently
water access in various sectors over the basin. Therefore, in order to assess the ZRB’s water
accessibility in the future, the results of the projection for the future under the average of
RCP4.5 and 8.5 scenarios were selected to handle the climate change over the basin, which
is more plausible.
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Figure 6. Monthly precipitation projection of various GCMs under RCPs 4.5 and 8.5 for the future.
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3.2. Rainfall-Runoff Model

The link between climate change impact on precipitation and temperature and surface
runoff was developed by the ANN framework. In this way, the average values of precipi-
tation and temperature over the stations were obtained from the LARS-WG model under
the RCP4.5 and 8.5 scenarios and fed into the ANN model as inputs to simulate the future
runoff of the Zarrine River.

The first seventy percent of the data was used for the training of model and the remain-
ing thirty percent was used for validation. The two-layer feed-forward neural network with
a backpropagation algorithm and the Levenberg–Marquardt scheme were used to model
ZRB runoff. Different hidden neurons based on trial-and-error method, up to 500 epochs,
were examined. The tabulated results in Table 5 showed that the efficient rainfall-runoff
model performance was 0.69 and 0.51 in term of DC for training and validation steps.
Figure 7 illustrates a simulated runoff timeseries which, similar to future precipitation
patterns, has a decreasing trend.

Table 5. Performance results of ANN-based Rainfall-Runoff modeling.

Model
Evaluation Criteria

RMSE (MCM) DC

ANN

train verify train verify
8 13 0.41 0.23
4 9 0.69 0.51
5 11 0.63 0.49
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Figure 7. Runoff pattern according to the ANN-based simulation model.

According to the decreasing trend of runoff in ZRB impacted by climate change at the
basin, it is necessary to have optimal water resources management among the stakeholders
of ZRB. To this end, the SD model using Vensim software was developed according to
water consumption reduction scenarios (restoration plans) proposed by [20] stated in the
material and methods section.

3.3. System Dynamic Model under Different Scenarios

To evaluate the performance of the Vensim model, the boundary adequacy test, ex-
treme condition test, and behavior reproduction test were considered.

In the boundary adequacy test, by evaluating and representing the endogenous and
exogenous variable of the model as given in Table 3, the accuracy of the model structure
was verified.

Assessing extreme condition tests resulted in increasing the SD model structure relia-
bility over a wide range of circumstances. In the extreme condition test, demand at the SD
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model was assumed as equal to zero and infinity. Hence, the inputs of the model in the
absence of demand would decline and rise progressively, as shown in Figure 8.
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Figure 8. Water balance fluctuation by implementing condition test.

In the behavior sensitivity test, simulated models’ behavior was compared with
historical data. The simulated vs observed values for the ground-water level of the basin
are illustrated in Figure 9. The value of RMSE and DC were obtained as 0.36 and 0.91,
which suggests the acceptability of the results. Furthermore, after approving the model’s
verification, the impact of restoration plans comes to the fore.
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Figure 9. Simulated and observed groundwater level.

Due to the substantial importance of the ZRB in Urmia Lake basin and the importance
of the dry land of the lake, policies to reduce water consumption and save as much as pos-
sible in this basin are one of the main suppliers’ targets. As mentioned in methods among
different scenarios affecting the basin, five impartial restoration plans were considered to
increase the trend of water balance over the basin.

The results of influential plans demonstrated that the agriculture section is the chief
driver of the water shortages in this basin; so, due to its high-water demand feature,
considering efficient policies that can reduce water consumption in this sector would result
in massive water saving. These policies are improving the irrigation system, implementing
influential policies in some cultivated land, and reducing some agricultural products, which
led to a thirty percent decrease in water consumption based on SD outputs. It is noted that
educating farmers on how to decrease water consumption as well as making them aware
of catastrophic consequences of water shortage in the future would encourage farmers to
adapt and consider restorations plans.
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Hence, according to Figure 10, Plan 1. (i.e., Impact of decreasing agriculture product
and shifting irrigation efficiency) is the most effective plan to reduce water consumption
in the basin. The remaining plans, including Plan 2. Impact of Cloud-Seeding, Plan 3.
Population control and household consumption reduction, Plan 4. Reducing meat and
animal-husbandry production, and Plan 5. Groundwater consumption control, are not be
as influential as Plan 1. However, according to Figure 10, the ensemble of plans showed
the most effective performance, while individual plans could not meet the requirements of
the basin.
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Figure 10. Impact of restoration plans (i.e., Plan 1. Impact of decreasing agriculture product and
shifting irrigation efficiency, Plan 2. Impact of Cloud-Seeding, Plan 3. Population control and
household consumption reduction, Plan 4. Reducing meat and animal-husbandry production, Plan 5.
Groundwater consumption control) on the ZRB water level in the period of 2021–2040.

3.3.1. Ensembled Plan

Due to the inefficiency of applying individual scenarios in achieving sustainable de-
velopment goals, the simultaneous performance of plans was considered in modeling,
which was named as the ensemble model of plans. According to Figure 10, the ensemble
approach, as the novelty of the current study, is considered to reach a development goal
for the future over the basin by taking advantage of the cumulative effect and synergy of
different scenarios. It is vividly clear that none of the selective models including mitigation
in the agriculture section, cloud seeding, domestic consumption control, reducing meat
consumption, and groundwater withdrawing would be beneficial for restoring the ZRB
water level. These outcomes confirm the results of the study by [21], which showed increas-
ing the irrigation efficiency and reducing the agriculture area were the most influential
plans; however neither of the policies resulted in the restoration of the Urmia Lake level.
Hence, considering all the mentioned plans, water level could remain in equilibrium after a
6-year period according to SD results, as shown in Figure 10, and to maintain equilibrium
between local supply and demand and to preserve it, a cooperative spirit is vital among all
the related authorities. In this regard, only ensemble of plans could be effective whereas
multiple management practices incorporate instead of concentrating on just one plan.

3.3.2. Contribution of the Climate Change Impact on the ZRB Runoff

In terms of investigating the impact of climate change on the ZRB runoff, the “Impact of
Climate Change” parameter was added to the system dynamic model (shown in Figure 11).
As mentioned, in order to calculate the ZRB runoff, the outputs of the LARS-WG were
utilized in the ANN-based rainfall-runoff model, and the results were used as an input
for the SD model as a future simulated runoff. Hence, the water balance in basin was
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simulated at the SD model considering climate change impact and the constant conditions
of the baseline. Results of the SD model in Figure 11 demonstrate that under the pessimistic
scenario of RCP8.5, a drastic decrease was observed in the water balance of the basin;
however, based on the intermediate scenario of RCP4.5, the situation was near to of
baseline conditions without considering the climate change impact. Based on the resource
management capacity of water resources, the occurrence of pessimistic scenarios seems
to be more probable; however, to avoid the pessimistic view, the average of two scenarios
is considered as a negative effect of climate change in the basin, which is equal to a 7%
reduction in water supply of ZRB.
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Figure 11. Impact of climate change on ZRB water level in the period of 2021–2040.

4. Conclusions

This study relied on water resource management to have a visual vision toward
supplying water requirements of the ZRB, and was based on multi-criteria decision-making
under climate change impact. According to the importance of ZRB in the basin, which is
the main water supplier of the Urmia Lake and is one of the chief parts of the agriculture
sector of North-West Iran, it is of great importance to have focused on this basin due to the
increasing water demand of the basin on the one hand and more limited water resources
due to the impact of climate change on the other hand.

For evaluating the future climate change pattern of the study area, the LARS-WG
downscaling model using EC-EARTH, HADGEM2, MIROC5, and MPI-ESM GCM models
was developed under RCP4.5 and 8.5 scenarios for 2021–2040. According to the average
results of RCP4.5 and 8.5 scenarios, it was determined that the temperature of the basin
will increase by 0.7 ◦C and the precipitation will decrease by 9%. The decreasing trend
of precipitation in the future of the basin can influence the hydrologic cycle, which sub-
sequently impact river flows, leading to water stress in the basin. Hence, an ANN-based
rainfall-runoff model was developed to model the future Runoff of the Zarrine River. There-
fore, the results of this part of the study would be beneficial for managers in order to take
sustainable actions in securing and preserving the water supply. Because of the dynamic
complexity of water resource management and implementing influential factors, the SD
was developed to simplify a comprehensive understanding of integrated sub-systems.
The ZRB’s SD model produces an integrated simulation of the intricate part of the basin
according to the impact of various restoration plans, including Plan 1. Impact of decreasing
agriculture product and shifting irrigation efficiency, Plan 2. Impact of Cloud-Seeding,
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Plan 3. Population control and household consumption reduction, Plan 4. Reducing meat
and animal-husbandry production, and Plan 5. Groundwater consumption control, where
the ensemble of plans could meet the requirements of basin supply. So, the results of study,
based on various scenarios, can help managers and stakeholders to have a wide vision
toward not only the ZRB but also for the Urmia Lake drying out crisis. Optimum allocation
of water resources and planning to improve the present situation to meet the requirements
of the future is an inevitable step to reach sustainable development goals. Additionally,
the climate change impact, which is the main novelty of this study, was evaluated over
the ZRB runoff. The contribution of the climate change impact on the future runoff was
reported as a 7% decrease, applying the average of climate scenarios over the basin. Al-
though the climate change impact over ZRB runoff in comparison to agriculture sector
demand was negligible, by paying attention not only to the agriculture sector, which is the
most essential sector, but also to other sectors simultaneously, sustainable development
goals can be achieved.

It seems that in order to fulfill the requirements of water resources to get through the
crisis, a widely accepted consciousness is required to act properly. Precise and reliable
water resource planning is the foremost management issue to ensure an optimal water
allocation system for the future.
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