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Abstract: A technology assessment is conducted for battery electric and conventional fossil-fueled
passenger vehicles for three Australian scenarios and seven Australian states and territories. This
study uses a probabilistic life-cycle assessment (pLCA) to explicitly quantify uncertainty in the LCA
inputs and results. Parametric input distributions are developed using statistical techniques. For
the 2018 Australian electricity mix, which is still largely fossil fuels based, the weight of evidence
suggests that electric vehicles will reduce GHG emission rates by 29% to 41%. For the ‘fossil fuels
only’ marginal electricity scenario, electric vehicles are still expected to significantly reduce emission
rates by between 10% and 32%. Large reductions between 74% and 80% are observed for the more
renewables scenario. For the Australian jurisdictions, the average LCA GHG emission factors vary
substantially for conventional vehicles (364–390 g CO2-e/km), but particularly for electric vehicles
(98–287 g CO2-e/km), which reflects the differences in fuel mix for electricity generation in the
different states and territories. Electrification of the Tasmanian on-road fleet has the largest predicted
fleet average reduction in LCA greenhouse gas emissions of 243–300 g CO2-e/km. A sensitivity
analysis with alternative input distributions suggests that the outcomes from this study are robust.

Keywords: motor vehicle; greenhouse gas emissions; battery electric; life cycle; LCA; Monte Carlo;
bootstrap; truncated distribution; BEV; ICEV

1. Introduction

To properly assess greenhouse gas (GHG) emissions performance of different vehicle
technologies, a holistic and systematic method is required that evaluates all aspects of a
vehicle’s life and its associated impacts (cradle-to-grave). Life-cycle assessment or LCA
is a method used to quantify the environmental impacts of a product’s manufacture,
operational use and end-of-life [1]. LCA can help clarify potential trade-offs between
different environmental impacts and between different stages of the life cycle [2]. The
comprehensive scope of LCA is useful in avoiding problem shifting from one life-cycle
phase to another, from one region to another, or from one environmental problem to
another [3].

There are different types of environmental impacts that can be assessed with LCA such
as GHG emission impacts, toxicity, mineral resource depletion and land use [4,5]. Given
the complexity and detailed consideration of the various aspects of a vehicle’s life, LCA
studies often incur restrictions in scope. For instance, LCA studies can focus on specific en-
vironmental impacts (e.g., greenhouse gas emissions only) or have a broader consideration
of environmental impacts but focus on a few specific vehicle makes/models [5,6]. LCA
studies can be set up in different ways, naturally with several underlying assumptions.
LCA considers processes that are complex, location specific and vary in time, as well as
over time (trends). It is therefore not surprising that LCA studies have caused diverging
arguments about the environmental performance of the technology that is assessed [4,7].
Significant differences in LCA results have been reported for similar electricity generation
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technologies, reflecting differences in local conditions as well as differences in LCA meth-
ods and assumptions [3]. Given the complex, localized and dynamic nature of life-cycle
impacts, it is important that the uncertainty in LCA results is quantified and that LCA
results are regularly updated and improved.

Over the past 25 years or so, LCA has been deployed extensively to compare the
environmental impacts of vehicles [8]. Of particular interest is the global move to electric
vehicles with the aim to significantly reduce greenhouse gas emissions from road trans-
port. Various studies have compared GHG life-cycle emissions of fossil-fueled internal
combustion engine vehicles (ICEVs) for either (plug-in) hybrid electric vehicles (PHEVs
or HEVs) [1,9–11], battery electric vehicles (BEVs) [5,12–16] or a wider range of vehicle
technologies [3,4,6,7,17–22]. Although the majority of LCA studies have used determinis-
tic approaches and may quantify uncertainty (or sensitivity) using a scenario modelling
approach [1,5,9,10,14–20,22], a limited number of studies have deployed a probabilistic
approach to LCA to explicitly account for substantial variability and uncertainty in input
information [6,11,12,21]. Twenty years ago, one study [12] demonstrated the use of Monte
Carlo simulation within a life-cycle framework. The authors stated: “A great deal of effort
is spent debating the ‘most appropriate’ value to select for a given input variable to include
how long a vehicle or battery will last or what the air emission factor should be. All these
variables have uncertainty and variability associated with them. Monte Carlo simulation
is a tool well suited to understand the magnitude of the uncertainties and variability that
are difficult to observe using deterministic methods.” It is noted that some variation in
application of uncertainty analysis exists. For instance, one study used an uncertainty
analysis as a separate exercise after a deterministic LCA was conducted [23]. In another
study, probability distributions were used for one particular aspect of the LCA only [13].

There are benefits of using a probabilistic LCA approach as compared to a determinis-
tic LCA [6,12]. It provides the decision maker with a range of potential and representative
outcomes along with the predicted chance of their occurrence. pLCA facilitates incorpora-
tion of scarce input information and input information of varying or unclear quality that
can be contradictory. It enables incorporation of expert judgement and can estimate the
uncertainty based on a broad range of viewpoints. The approach is relatively fast using
the best available information, without the need for compilation of often expensive and
time-consuming input data. Moreover, study details are presented and accessible and
the pLCA method is transparent. These points were all identified as general issues after
a review of 51 EV life-cycle studies [8]. Finally, it guides improvement efforts towards
specific aspects of the LCA assessment that matter, therefore providing clear direction to
improve the accuracy of the LCA outcomes cost-effectively.

Nevertheless, the results of probabilistic LCA rely on assumptions underlying prob-
abilistic input distributions, which are in turn affected by the availability of relevant
information. In addition, the robustness of the results also depends on the formulation of
the LCA model.

This study will deploy a probabilistic LCA approach to compare GHG life-cycle
emissions of fossil-fueled internal combustion engine vehicles (ICEVs) and battery electric
vehicles (BEVs) in Australia. It will demonstrate how this alternative approach results
in a relatively rapid development of an LCA, which can be readily updated with new
information and can progressively be refined and/or expanded, if so desired. In comparison
with a limited number of previous probabilistic LCA studies, this study considers a wider
range of possible distributions and includes the use of additional statistical techniques such
as bootstrap resampling.

The focus of this study is on passenger vehicles in the Australian on-road fleet, which
is quite unique and different from the commonly assessed US, EU or Asian fleets in terms
of distributions of vehicle size and fuel type, emission standards and fuel quality [24–27].
For instance, a comparison with on-road fleets in the EU, USA and Japan confirms that
new Australian passenger vehicles are distinctly different and underperforming in relation
to CO2 emission rates and fuel economy [25]. The results of this study will inform policy
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makers about the current and future emission reduction potential of electrification of the
transport sector. It is noted that there are many types of environmental impacts that can
be assessed with LCA such as toxicity, mineral resource depletion, total life-cycle cost and
land use [4,5,28], whereas the scope of this study is restricted to an assessment of GHG
emission impacts.

2. Materials and Methods
2.1. Probabilistic LCA (pLCA)

A probabilistic LCA (pLCA) approach estimates uncertainty and variability in model
predictions and quantifies non-linear interactions. Probabilistic analysis yields quantitative
insight into both the possible range and the relative likelihood of values for model out-
puts [29]. The method is particularly useful to determine the robustness of study outcomes,
which is important when comparing different technology options. Probabilistic LCA can
also be used to identify which aspects of the LCA are most uncertain and warrant further
targeted examination. This assists with cost-effective use of available resources to further
improve LCA results.

The results of a probabilistic analysis rely critically on the probabilistic definitions
of model input variables. These definitions are affected by limitations on the availability
and the quality of available information and data. In this study, the probabilistic definition
of input variables is based on statistical analysis of empirical data and results from peer-
reviewed scientific studies, wherever available.

2.2. Model Definition

The life-cycle GHG emission factor is used as the assessment variable (functional
unit). This variable normalizes the amount of GHG emissions per vehicle kilometer driven
and is expressed as CO2-e/vehicle km. Carbon dioxide equivalent (CO2-e) emissions
are computed by multiplying emissions of a particular greenhouse gas with its Global
Warming Potential (GWP) and taking the sum of these emissions. Five GHG emission life-
cycle aspects are considered: (1) production of the vehicle (manufacturing of non-battery
components, manufacturing of the BEV battery), (2) production of (fossil) fuels for ICEVs
(extraction, transport and fuel refining), (3) production of electricity for BEVs (extraction
and transport of fossil fuels, electricity generation, electricity distribution losses and power
generation infrastructure), (4) on-road operation or use of the vehicle (ICEV fossil-fuel use,
BEV energy use, and BEV battery charging losses) and (5) disposal and recycling of the
vehicle at the end of its life.

The life-cycle GHG emission factors eICEV and eBEV are computed with two additive
models and sub-models (if applicable). In Equations (1) and (3), ei,j is used to represent a
GHG emission factor (CO2-e/km) for life-cycle aspect I and vehicle type j.

eICEV = evehicle,ICEV + einfra,ICEV + eupstream,ICEV + eroad,ICEV + edisposal,ICEV (1)

evehicle,ICEV = WICEV ϕv,ICEV/M (2)

eBEV = evehicle,BEV + einfra,BEV + eupstream,BEV + eroad,BEV + edisposal,BEV (3)

evehicle,BEV = ((WBEV −WBAT) ϕv,BEV + θb ϕb)/M (4)

einfra,BEV = ε σs/(ηg ηb) (5)

eupstream,BEV = ε φs/ηb (6)

eroad,BEV = ε ωs/(ηg ηb) (7)

where WICEV = ICEV vehicle weight (kg), WBEV = BEV vehicle weight (kg), WBAT = BEV
battery weight (kg), ϕv,ICEV and ϕv,BEV are the respective carbon intensities of vehicle
production (g CO2-e/kg vehicle), ϕb = carbon intensity battery production (g CO2-e/kWh
battery capacity), θb = battery capacity (kWh), M = lifetime vehicle mileage, σs = GHG emis-
sion intensity electricity infrastructure (g CO2-e/kWh generated) for scenario s, φs = GHG
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emission intensity upstream fuels for electricity generation (g CO2-e/kWh consumed
‘at the power point’) for scenario s, ωs = GHG emission intensity electricity generation
(g CO2-e/kWh generated) for scenario s, ηg = grid transmission efficiency (−), ηb = battery
recharging efficiency (−) and ε = real-world electricity use BEV (kWh/km).

This study investigates fleet average impacts. Therefore, fleet averaged input data are
used, such as mean vehicle weight and the associated probability distribution of this mean
value. The pLCA method can similarly be applied to specific vehicles, if so desired, but
this is beyond the scope of this study. This would require the use of vehicle-specific input
data (for instance, Tesla Model 3 battery capacity and weight), rather than fleet averaged
input information.

2.3. Input Distribution Development

The model variables in Equations (1) and (3) are defined as parametric distributions,
which represent the probabilities of all possible values in sample space [29]. A probability
model is typically represented mathematically as a probability distribution in the form of
either a probability density function (PDF) or cumulative distribution function (CDF) with
associated parameters (scale, shape, minimum, maximum, etc.).

Quantitative data were used when available to develop the input distributions, sup-
plemented with information from the available scientific literature. Quantitative data are
either empirical data, reported data in the scientific literature or software output. A number
of statistical techniques were used to develop the input distributions, namely bootstrap
analysis, Monte Carlo simulation and parametric distribution fitting.

For LCA aspects where empirical input data were available, the data were used either
directly as sampling distributions or sampling distributions were developed using bootstrap
analysis. The statistical bootstrap technique produces resampled input distributions for
a statistic of interest—for instance, the mean or median [30]. The bootstrap simulation
creates an approximate but asymptotically accurate sampling distribution from the original
data through repeated resampling with replacement and calculation of the statistic of
interest [31]. From this distribution (non-symmetric), standard errors and confidence
intervals are typically derived. The boot R package was used to perform the bootstrap
analysis [32].

The sampling distributions were used to fit truncated parametric distributions by
maximum likelihood [33]. They include the following candidates: Uniform (U: a, b),
Triangular (T: a, b, c), Normal (N: m, s), Lognormal (L: m, s), Weibull (W: s, s), Gamma
(G: s, r) and Exponential (E: s). The non-standard beta distribution (B: s, s) and the skew
t-distribution (S: m, s, a, df) were also included to allow for additional flexibility in the
fitting process [34,35]. The Dirac Delta function (D: m) is used to describe a constant value.
Appendix A provides further information regarding the range, parameters and PDFs of
the distributions. The location-scale t-distribution was also offered as candidate, but was
not selected as the best fit throughout the analysis. Truncation is applied to the fitted
distributions using the ‘truncdist’ R package by setting a lower limit a and an upper limit
b [36]. This explicit definition of a plausible range prevents the use of unrealistic values in
the pLCA. The R packages ‘fitdistr’ and ‘fitdistrplus’, ‘extraDistr’, ‘sn’ and ‘truncdist’ were
used in the optimized fitting process [34,36–38].

The most appropriate parametric distribution was determined by comparing all fitted
parametric distributions with the sampling data input values. This was performed visually
using quantile–quantile (QQ) plots for all fitted distributions and by applying the Cramer
Von Mises test statistic [39]. A QQ plot is a graphical method for comparing two probability
distributions by plotting their quantiles against each other.

For model aspects where insufficient quantitative input data were available, two
simplified distributions were used and parameters were estimated based on literature
review. The uniform (rectangular) distribution is a probability distribution, which is simply
defined by a lower limit a and an upper limit b of a plausible range. A uniform distribution
represents equal probability between two end points. This distribution is appropriate if
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only information on the lower and upper limit values are available [40]. The triangular
probability distribution (T: a, b, c) is a continuous probability distribution, which is defined
by a lower limit a and an upper limit b of a plausible range, as well as the most plausible
estimate c. The triangular distribution is appropriate for situations in which the exact form
of a distribution is not precisely known, but in which values toward the middle of the range
of possible values are considered more likely to occur than values near either extreme [41].
The triangular probability distribution can be asymmetrical.

In a Monte Carlo simulation, random samples are taken from input distributions
many times (100,000–1,000,000) and propagated through the appropriate model to create
probability output distributions [42]. This way, not only are expected values estimated, but
also the associated variability and uncertainty. The process is a mathematical analogue of
an experiment, which is repeated many times to provide an accurate description of the
variability in the output estimate. Monte Carlo simulation is applied in two different ways.
First, it is used to combine different sampling distributions and create an output sampling
distribution for the GHG emission factor (CO2-e/km) for a particular life-cycle aspect and
vehicle type. Second, Monte Carlo simulation is used to propagate the uncertainty and
variability reflected in the parametric input distributions to the model outputs eICEV and
eBEV. The output PDFs express both central tendencies and the variability in the output
variables arising from the variation in the input variables. Uncertainty in the outputs is
defined as a 95% confidence interval (CI) of the mean value and is stated as a value range
(asymmetric confidence interval) or a percentage (symmetric confidence interval).

2.4. Scenario Definitions

Some model variables are inter-dependent (for instance, infrastructure and upstream
fuel). These dependencies are accounted for by defining three scenarios for Australia
with different input distributions. In addition, Scenario 1 (current situation) is further
detailed by Australian state and territory (Figure 1). Using data from the Australian Energy
Statistics [43], Table 1 presents the percentage of electricity generated by fuel type.
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Table 1. Percentage of electricity generated by fuel type for each scenario or jurisdiction [24].

Scenario, Jurisdictions Coal Gas Oil Nuclear Hydro Wind Biomass Solar

Australia Current (SC1) 58.4% 20.0% 1.9% 0.0% 6.0% 6.7% 1.3% 5.6%
Australia Marginal Electricity (SC2) 73.0% 24.0% 3.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Australia More Renewable (SC3) 5.0% 5.0% 0.0% 0.0% 30.0% 25.0% 5.0% 30.0%
New South Wales (NSW) Current 80.7% 3.3% 0.5% 0.0% 3.0% 5.2% 1.6% 5.7%
Victoria (VIC) Current 70.8% 6.8% 0.4% 0.0% 5.6% 10.0% 1.5% 4.9%
Queensland (QLD) Current 73.8% 14.1% 1.4% 0.0% 1.5% 0.6% 1.9% 6.8%
Western Australia (WA) Current 23.8% 61.5% 5.8% 0.0% 0.5% 4.4% 0.3% 3.7%
South Australia (SA) Current 0.0% 48.5% 1.1% 0.0% 0.1% 38.2% 0.6% 11.5%
Tasmania (TAS) Current 0.0% 5.3% 0.2% 0.0% 83.2% 9.7% 0.2% 1.4%
Northern Territory (NT) Current 0.0% 78.6% 17.8% 0.0% 0.0% 0.0% 0.2% 3.4%

Scenario 1 (SC1) reflects the Australian Electricity mix and on-road passenger vehicle
fleet in the 2018–2019 financial year (1 July 2018–30 June 2019). Australia uses more fossil
fuels than many other countries such as the EU, USA, Canada, Japan, India, China, South
Korea, Russia and Brazil [44]. At the other end of the spectrum, Norway currently uses
mainly renewable energy (98%), and is an example of what Australia could be like after
transformation to a sustainable energy system is completed.

Scenario 2 (SC2) is a ‘marginal electricity’ scenario, which is 100% fossil fueled and
assumes an Australian electricity mix of 73% coal, 24% gas and 3% oil. The use of average
GHG emissions from electricity generation (SC1) may produce misleading results and it
has been suggested that the use of marginal emissions from electricity generation is more
accurate [15,45]. The marginal grid fuel mix typically has a higher emissions intensity than
the average grid mix. Marginal electricity production reflects emissions from fossil-fueled
power plants, which may be turned on to meet new demand from EV charging. Renewable
energy sources are generally fully utilized and will not change their generation output
in the short term when BEV penetration increases. In the short term, primarily coal and
natural gas plants may increase generation in response to new loads, which is reflected in
this scenario.

Scenario 3 (SC3) is an Australian ‘More Renewable Energy’ scenario, which assumes
an Australian electricity mix of 5% coal, 5% gas, 30% hydro, 25% wind, 5% biomass and 30%
solar. A more renewable Australian electricity grid mix has a substantially lower emissions
intensity than the current largely fossil fuel-based grid mix, as will be discussed later.

3. Input Distributions

This section describes in detail how the parametric input distributions for the technol-
ogy assessment are developed.

3.1. Overview of Input Distribution Definitions

Table 2 presents an overview of the parametric input distributions used in the proba-
bilistic technology assessment. The bootstrap sampling distributions and fitted parametric
distributions are shown in Figure 2. A detailed discussion regarding the development of
the parametric input distributions in Table 2 is provided in the following sections.

3.2. Vehicle Manufacturing

GHG emissions per vehicle produced depends on make/model and manufacturing
location, and more generally on type of materials used, vehicle size and weight and
emission intensity of the energy used in vehicle production. For electric vehicles, an
important aspect is battery production, which produces significant amounts of GHG
emissions. The parametric input distributions for life-cycle GHG emission factors for
vehicle manufacturing (evehicle,ICEV and evehicle,BEV) were developed by defining the input
distributions for models 2 and 4 (Section 2.2) as follows.
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Table 2. GHG emission factor (g CO2-e/km) input distribution definitions.

Life-Cycle
Aspect *

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

P ICEV evehicle,ICEV Triangular, T (40.38, 44.98, 58.61) 45.00 40.00–59.00
P BEV evehicle,BEV Non-standard beta, B (7.30, 8.73) 59.00 39.00–83.00
I ICEV einfra,ICEV Uniform, U (0.20, 2.50) 1.30 0.20–2.50
I BEV einfra,BEV Non-standard beta, B (5.81, 10.44) ** (a) 5.07 0.74–10.76
U ICEV eupstream,ICEV Uniform, U (35.90, 72.00) 51.40 35.90–72.00
U BEV eupstream,BEV Lognormal, L (2.53, 0.53) ** (b) 14.18 1.00–49.00
O ICEV eroad,ICEV Normal, N (265, 3) ** (c) 265.00 259.00–272.00
O BEV eroad,BEV Non-standard beta, B (5.81, 10.44) ** (d) 175.00 142.00–215.00
D ICEV edisposal,ICEV Uniform, U (0.10, 2.00) 0.50 0.20–2.50
D BEV edisposal,BEV Uniform, U (0.10, 2.00) 0.50 0.20–2.50

* P = production; I = infrastructure; U = upstream (Fuels); O = operation; D = disposal. ** Distribution definition
varies and depends on scenario or jurisdiction; Scenario 1 is shown here as an example. (a) Refer to refer to below
table: Infrastructure GHG emission factor (g CO2-e/km) distribution definitions for Australian BEVs by scenario
or jurisdiction. (b) Refer to below table: Upstream GHG emission factor (g CO2-e/km) distribution definitions for
Australian BEVs by sce-nario or jurisdiction. (c) Refer to below table: On-road GHG emission factor (g CO2-e/km)
distribution definitions for Australian ICEVs by scenario or jurisdiction. (d) Refer to below table: On-road GHG
emission factor (g CO2-e/km) distribution definitions for Australian BEVs by scenario or jurisdiction.
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For ICEV production, a plausible range for GHG emission intensity is 4.0–6.5 kg CO2-e/kg
of passenger vehicle, with a typical value of 5 kg CO2-e/kg vehicle [46], (T: 4.0, 6.5, 5.0).
The average weight of an Australian passenger vehicle is 1800 kg, with an estimated
uncertainty (95% confidence interval) of 1% [24] (U: 1783, 1817). A study into worldwide
BEV characteristics (n = 218) reported an average BEV vehicle mass of 1689 kg with an
uncertainty of ±4% [47] (U: 1625, 1753). The fleet average weight for Australian BEVs is
comparable with a value of 1600 kg [26]. GHG emissions for battery production need to be
estimated separately and added. Battery manufacturing emissions are likely to fall between
41 and 156 kg CO2-e per kWh of battery capacity, with a current average of approximately
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100 kg CO2-e per kWh [5,48] (T: 41, 156, 100). Average worldwide BEV battery capacity is
estimated to be 46 kWh with an uncertainty of 8% [47] (U: 42, 50). BEV weight is corrected
for the weight of the battery. A plausible range for battery energy density is assumed to
be 0.12–0.16 kWh per kg of battery [7,49–51]. Using the plausible range in BEV battery
capacity of 42–50 kWh, average battery weight is estimated to be 335 kg, which is 20% of
total BEV vehicle weight (T: 265, 413, 335).

LCA studies have typically used lifetime PV mileage between 150,000 and 200,000 km,
and even up to 320,000 km [21]. Although there were initial doubts about the durability of
BEV batteries, batteries retain more than 90% of the original capacity beyond 200,000 km [5].
Normalizing for a lifetime mileage of 200,000 km and combining the input distributions
through a Monte Carlo simulation (Equations (2) and (4)), production of an average Aus-
tralian passenger vehicle is estimated to produce, on average, 48 g CO2-e/km for ICEVs
(plausible range 40–59) and 59 g CO2-e/km for BEVs (plausible range 39–83). A triangular
and non-standard beta distribution provides the best maximum likelihood fit to the sam-
pling distributions for ICEV and BEV manufacturing, respectively (Table 2 and Figure 2).
The results suggest that for the Australian market, BEV production produces on average
approximately 20% more GHG emissions as compared with conventional fossil-fueled
passenger vehicles, adding approximately 10 g CO2-e per km to total life-cycle emissions for
BEVs. Previous studies have used 35 to 46 g CO2-e/km for ICEVs and 37 to 95 g CO2-e/km
for BEVs [4,15,46,48]. This study estimates a higher carbon footprint for Australian ICEVs,
which is explained by the large proportion of large and heavy fossil-fueled passenger
vehicles, as compared to, for instance, the EU market. The estimate for BEVs is within the
ranges reported in other studies mentioned previously.

3.3. On-Road Driving ICEVs

The Australian Fleet Model (AFM) was used to create an input file for the vehicle emis-
sions software COPERT Australia, reflecting the Australian on-road fleet for base year 2018.
AFM is a fleet turnover simulation software that estimates the on-road vehicle population
and total (vehicle) kilometers travelled (VKT) for 1240 vehicle classes for a prespecified
base years [27]. The COPERT Australia software v1.3.5 was used to create an Australian
motor vehicle emission inventory for base year 2018. The software predicts emissions for
226 Australian vehicle classes and accounts for the effects of driving behavior, meteorol-
ogy and fuel quality [52–54]. COPERT Australia predicts total GHG emissions from road
transport in 2018 as 85.1 million metric tons of CO2-e, which is close to 85.2 million tons of
CO2-e reported by the Australian Greenhouse Emissions Information System (AGEIS) [55],
a difference of 0.1%.

An average fuel consumption rate of 80.4 g/km (10.7 L per 100 km) is predicted for
passenger vehicles by AFM/COPERT Australia. The corresponding GHG emissions factor
for the on-road passenger vehicle (PV) fleet in 2018 is 257 g CO2-e/km. The GHG to fuel
ratio is 3.192. Analysis of the AFM/COPERT Australia results shows that average GHG
emission rates are 247 g CO2-e/km for petrol vehicles and 318 g CO2-e/km for diesel
vehicles. Diesel passenger vehicles have GHG emissions per kilometer that are 28% higher
than their petrol counterparts. A recent study found that the main reason for this is that
Australian diesel PVs are, on average approximately 40% heavier than petrol PVs [24].
Other diesel vehicle design parameters also adversely affect CO2 emission rates, including
a higher proportion of 4WD vehicles, 15% higher engine capacity and a low portion of
CVT transmissions [24]. A (weighted) bootstrap analysis [31] using travel (VKT) by vehicle
class as weights, estimates an uncertainty in this fleet average emission factor (ICEV) of
approximately ±15%. These bootstrap results are similar to the reported uncertainty in
fuel consumption of Australian PVs by the Australian Bureau of Statistics (ABS) of 5%
to 11% [56]. A non-standard beta distribution (B: 9.89, 16.86) provides the best fit to the
bootstrap sampling distribution of the fleet average emission factors with truncation at
225 and 298 g CO2-e/km.
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The ABS publishes the Survey of Motor Vehicle Use or SMVU [56], which includes a
time-series of average rate of fuel consumption (liters/100 km) by jurisdiction and vehicle
type. The ABS also reports the relative standard error (RSE). The standard error is a measure
of the spread of estimates around the “true value” and RSE is the standard error that is
expressed as a percentage of the estimate. The plausible range is defined as the 99.7%
confidence interval (assuming a normal distribution), which is estimated as ±3 RSE. Fuel
consumption (FC) and RSE data were retrieved from the SMVU [56] for passenger vehicles
and for each jurisdiction. The average fuel density was calculated for each jurisdiction
from total reported fuel consumption in mass and volume units in the SMVU. Average fuel
density is used to convert units in L/100 km to g/km. Fuel consumption in g/km was then
converted to g CO2-e/km by multiplication of a factor of 3.192 mentioned earlier.

The average fuel consumption varies from 10.6 L/100 km (VIC) to 11.6 L/100 km
(WA), which corresponds to 81 to 89 g fuel/km and 260 and 283 g CO2-e/km, respectively.
The highest fuel consumption rate of 90 g/km (11.3 L/100 km) and corresponding GHG
emission factor of 286 g CO2-e/km is reported for NT due to the high proportion of diesel
use in this jurisdiction and resulting higher fuel density (Table 1). The plausible range for
truncation varies between ±7% and ±14%, depending on the jurisdiction. The relative
uncertainty in the converted ABS figures is assumed to be ± 3 RSE and follow a truncated
normal distribution (N: 3.192 × FC, RSE × 3.192 × FC). For Australia as a whole, the
uncertainty is reportedly smaller (±4%) and defined with a truncated normal distribution
for the GHG emission factor (N: 265, 3). The distributions, typical values and truncation
limits are shown in Table 3.

Table 3. On-road GHG emission factor (g CO2-e/km) distribution definitions for Australian ICEVs
by scenario or jurisdiction.

Fuel Type Distribution Typical
Value

Plausible
Min–Max Value

Scenario 1 (Australia 2018/19) Normal, N (265, 3) 265 256–275
Scenario 2 (Marginal Electricity) Normal, N (265, 3) 265 256–275
Scenario 3 (More Renewable Electricity) Normal, N (265, 3) 265 256–275
NSW Normal, N (264, 7) 264 242–286
VIC Normal, N (260, 7) 260 240–279
QLD Normal, N (271, 7) 271 249–293
SA Normal, N (260, 7) 260 241–280
WA Normal, N (283, 7) 283 262–303
TAS Normal, N (265, 8) 265 240–289
NT Normal, N (286, 13) 286 247–326

The GHG emissions factor for the Australian on-road passenger vehicle (PV) fleet
derived from the SMVU (265 g CO2-e/km) is 3% higher than the value predicted by
COPERT Australia/AFM (257 g CO2-e/km). The SMVU based GHG emission factor and
associated uncertainty are used in the probabilistic technology assessment as this method
enables prediction of these emission factors for all scenarios or jurisdictions. The results
from the COPERT Australia/AFM method will be used to test the sensitivity of the study
outcomes. The input distributions for on-road ICEV GHG emission factors are shown in
Table 3 and Figure 3.

3.4. Electricity Production and Consumption

Indirect emissions due to electricity generation need to be estimated to quantify GHG
emissions for BEVs. The Australian Energy Statistics (AES) provide data on the fuel mix
used for electricity generation, which includes fossil-fueled power plants and generation
by households and businesses [43,57]. In 2018/19, Australia’s total electricity production
of 263 TWh was mostly produced with fossil fuels (coal 60%, natural gas 20%) and 19%
was produced with renewable energy sources (solar, wind, hydro, biomass), as was shown
in Table 1.
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The National Greenhouse Accounts (NGA) provide ‘Scope 2’ GHG emission inten-
sities for electricity consumption in Australia and for each state and territory [58]. The
GHG emission intensity reflect the electricity fuel mix (fossil fuels, renewables) and in-
clude grid transmission losses. For Australia, the average GHG emission intensity for
electricity production is reported to be 760 g CO2-e/kWh for the 2018–2019 financial year.
However, the values vary between jurisdictions with 160 g CO2-e/kWh for Tasmania to
960 g CO2-e/kWh for Victoria, as is shown in Figure 1.

The uncertainty in the NGA figures is not published. It is therefore assumed that the
uncertainty is similar to the uncertainty in total fuel consumption by jurisdiction reported
by the Australian Bureau of Statistics [56]. Similar to Section 3.3, the plausible range is
defined as the 99.7% confidence interval, which corresponds to ±3 RSE reported by the
ABS. The reported 99.7% CI varies between ±10 and ±13%, depending on the jurisdiction.
The relative uncertainty in the published NGA figures is assumed to be ±15% and follow
a truncated normal distribution, N (NGA, 0.05 NGA). For Australia the uncertainty is
reportedly smaller (±4.7%) with a corresponding truncated normal distribution, N (NGA,
0.015 NGA). The input distributions for electricity consumption are shown in Figure 4.
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To estimate GHG emission intensities for Scenario 2 (marginal electricity) and Sce-
nario 3 (more renewables), industry data were collected and analyzed. Industry reports
electricity production and Scope 1 and 2 GHG emissions to the Clean Energy Regulator
or CER [59], which includes fossil fuels, as well as renewables. The data are published
at generation facility level but exclude generators that are too small to report under the
National Greenhouse and Energy Reporting Act 2007 (NGER Act). The CER data were
collected for the 2018–2019 financial year (n = 345 grid-connected facilities) and used to
estimate GHG emission factors and the associated variability and uncertainty for each
energy source (biomass, coal, gas, hydro, oil, solar, wind). A (weighted) bootstrap analysis
of the CER data shows that the average grid-connected emission intensity for Australia is
730 g CO2-e/kWh generated, which is 4% lower than the NGA factor (760 g CO2-e/kWh)
likely due, in part, to grid losses that are not yet reflected.

Consumed electricity needs to account for energy losses due to transmission and
conversion of electricity (grid losses). A plausible range for transmission and conversion
losses is estimated to be 5–10%, with a typical value of 6% [45,60,61]. Note that efficiency
is computed as 100% minus loss (%). The (weighted) bootstrap analysis was repeated for
the seven fuel types. The bootstrap data were combined with a uniform input distribution
for grid losses (U: 1.05, 1,10) through a Monte Carlo simulation to create sampling distri-
butions for the average grid-connected emission intensity for each fuel type in Australia.
The sampling distributions were then used to determine the best parametric distribution
through maximum likelihood fit. The results are shown in Table 4 and Figure 5.
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Table 4. GHG emission intensities (g CO2-e/kWh consumed) distribution definitions for grid-loss
corrected electricity generation by fuel type in Australia.

Fuel Type Distribution Typical
Value

Plausible
Min–Max Value

Biomass Lognormal, L (4.27, 0.67) 89.00 27.00–295.00
Coal Non-standard beta, B (7.69, 17.85) 1023.00 913.00–1201.00
Gas Lognormal, L (6.30, 0.04) 545.00 467.00–635.00
Hydro Normal, N (0.23, 0.12) 0.23 0.00–0.80
Oil Triangular, T (638, 1430, 1824) 1430.00 638.00–1824.00
Solar Gamma, G (8.23, 12.42) 0.66 0.14–1.85
Wind Lognormal, L (−0.69, 0.24) 0.52 0.23–1.25
Scenario 2 Skewed t, S (882.01, 27.39, 1.33, 385.26) 900.00 826.00–983.00
Scenario 3 Skewed t, S (78.66, 4.52, 2.87, 27.08) 82.00 74.00–96.00

To determine the emission intensity for Scenarios 2 and 3, the fuel type distributions
in Table 4 were combined in a Monte Carlo simulation using the corresponding fuel type
proportions (Table 1). Skewed t distributions provide the best maximum likelihood fit to
the sampling distributions for Scenarios 2 and 3 (Table 4 and Figure 5).

3.5. On-Road Driving BEVs

It has been common practice to use type approval laboratory (NEDC, New European
Drive Cycle) based measurements of BEV electricity usage reported by vehicle manufactur-
ers. However, NEDC-based data are known to underestimate on-road electricity usage of
BEVs by approximately 25 to 35% [5]. Fleet average energy consumption for Australian
BEVs is estimated to be 0.19 kWh/km in real-world driving conditions [62]. This value is
in line with other studies, which have reported real-world electricity consumption of 0.15
to 0.21 kWh/km for individual BEVs of different weights and sizes [45,47,49]. A plausible
range for mean BEV real-world energy consumption in Australian conditions is therefore
0.18–0.21 kWh/km, with a typical value of 0.19 kWh/km. A triangular distribution is
assumed for average BEV real-world energy consumption (T: 0.18, 0.19, 0.21).

Used electricity by BEVs needs to account for energy losses due to battery recharging.
A plausible range for battery charging losses is 5–27%, with a typical value of approxi-
mately 15% [5,60,63–67]. Efficiency is computed as 100% minus loss (%) and a triangular
distribution is assumed for battery charging efficiency (T: 0.73, 0.85, 0.95).

Combining this information with input distributions for electricity generation emission
intensity (Section 3.4) in a Monte Carlo simulation estimates an on-road GHG emission fac-
tor for BEVs in Australia (Scenario 1) of 175 g CO2-e/km (95% confidence interval = 155–198).
For the alternative scenarios with a different fuel/energy mix, the normalized values are
207 g CO2-e/km (95% CI = 183–236) for Scenario 2 and 19 g CO2-e/km (95% CI = 17–22) for
Scenario 3. For the Australian jurisdictions, the emission factors are NSW: 182 g CO2-e/km
(95% CI = 156–210), VIC: 221 g CO2-e/km (95% CI = 191–256), QLD: 184 g CO2-e/km
(95% CI = 159–213), SA: 69 g CO2-e/km (95% CI = 59–80), WA: 154 g CO2-e/km
(95% CI = 133–179), TAS: 37 g CO2-e/km (95% CI = 32–43) and NT: 131 g CO2-e/km
(95% CI = 113–151). There are large differences in greenhouse gas emission rates from
BEVs with Victoria being the highest with 221 g CO2-e/km and Tasmania the lowest with
37 g CO2-e/km, a factor of six difference. This reflects the different electricity generation
systems in use in Australia with Victoria mainly relying on brown coal and Tasmania using
mainly using hydro power (Table 1). The sampling distributions were used to determine
the best theoretical distribution through maximum likelihood fit. The results are shown in
Table 5 and Figure 6.
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Table 5. On-road GHG emission factor (g CO2-e/km) distribution definitions for Australian BEVs by
scenario or jurisdiction.

Fuel Type Distribution Typical Value Plausible Min–Max Value

Scenario 1 (Australia 2018/19) Non-standard beta, B (6.16, 12.20) 175 144–219
Scenario 2 (Marginal Electricity) Non-standard beta, B (5.86, 10.53) 207 170–258
Scenario 3 (More Renewable Electricity) Lognormal, L (2.94, 0.07) 19 14–25
NSW Non-standard beta, B (8.43, 17.03) 182 142–230
VIC Non-standard beta, B (10.88, 24.20) 221 172–284
QLD Non-standard beta, B (8.61, 16.72) 184 144–232
SA Non-standard beta, B (9.70, 20.15) 69 53–90
WA Non-standard beta, B (8.63, 17.20) 154 121–204
TAS Non-standard beta, B (8.80, 19.70) 37 29–48
NT Non-standard beta, B (8.29, 16.14) 131 103–172
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3.6. Infrastructure for Electricity Generation

Commissioning and decommissioning of fossil-fueled power plants, fossil fuel pro-
cessing facilities (refineries, fuel storage) and renewable energy sources (wind farms, solar
plants, hydro power, etc.) cost energy and generate GHG emissions. Infrastructure GHG
emissions are particularly relevant for renewable energy sources. Raw data from a com-
prehensive LCA review of 33 LCA studies [3] were requested, kindly provided and used
to estimate the plausible ranges for infrastructure related GHG intensity per kWh of elec-
tricity (generated) by fuel type. The LCA data were used to determine the best parametric
distribution through a maximum likelihood fit. When the sample size was too small or
when a satisfactory fit could not be obtained, a uniform distribution was assumed. The
results are shown in Table 6.
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Table 6. GHG emission intensities (g CO2-e/kWh generated) distribution definitions for commission-
ing and decommissioning electricity generation infrastructure by fuel type.

Fuel Type Distribution Typical Value Plausible Min–Max Value

Biomass Uniform, U (0.04, 2.00) 0.45 0.04–2.00
Coal Uniform, U (0.8, 46.0) 8.00 0.80–46.00
Gas Triangular, T (0.60, 1.85, 3.10) 1.85 0.60–3.10
Hydro Uniform, U (3.10, 20.00) 7.40 3.10–20.00
Oil Triangular, T (1.00, 2.20, 3.00) 2.20 1.00–3.00
Solar Exponential, E (0.015) 67.94 20.00–190.00
Wind Uniform, U (3.00, 41.00) 18.93 3.00–41.00

The fuel type distributions in Table 6 were combined in a Monte Carlo simulation with
the distributions that were discussed earlier for grid losses (U: 1.05, 1,10), BEV real-world
energy consumption (T: 0.18, 0.21, 0.19) and battery charging efficiency (T: 0.73, 0.95, 0.85),
using the fuel type percentages as weights (Table 1). The sampling distributions were used
to determine the best parametric distribution through maximum likelihood fit. The results
are shown in Table 7 and Figure 7.

Table 7. Infrastructure GHG emission factor (g CO2-e/km) distribution definitions for Australian
BEVs by scenario or jurisdiction.

Fuel Type Distribution Typical Value Plausible Min–Max Value

Scenario 1 (Australia 2018/19) Non-standard beta, B (2.26, 3.00) 5.07 0.74–10.76
Scenario 2 (Marginal Electricity) Normal, N (4.35, 2.38) 4.35 0.21–9.77
Scenario 3 (More Renewable Electricity) Lognormal, L (1.99, 0.41) 7.93 2.00–19.72
NSW Non-standard beta, B (1.97, 2.77) 6.07 0.66–13.60
VIC Non-standard beta, B (2.33, 3.32) 5.73 0.65–12.92
QLD Non-standard beta, B (1.95, 2.73) 5.66 0.61–12.66
WA Non-standard beta, B (3.05, 4.41) 2.61 0.52–5.59
SA Non-standard beta, B (2.70, 5.98) 4.35 1.00–10.47
TAS Non-standard beta, B (2.31, 2.88) 3.18 0.83–6.11
NT Gamma, G (8.44, 7.95) 1.06 0.38–2.39

3.7. Infrastructure for Fossil Fuels

For oil refineries, no information could be found to derive an infrastructure GHG
emission factor distribution, and the distribution is defined using an alternative approach.
It is assumed that GHG emissions due to commissioning and decommissioning of a refinery
is similar to an oil-fueled power generation facility. The plausible range then lies between
1.0 and 3.0 g CO2-e/kWh electricity generated (Table 6). The energy content of crude oil is
taken as 45.3 MJ/kg fuel [58], which equates to 12.6 kWh/kg fuel. Power plant efficiency is
expected to be between 38 and 48%. Combining this information produces an estimate for
fossil fuel infrastructure of 5 to 18 g CO2-e per kg of fuel produced. To account for additional
uncertainty the plausible range is extended to 2 to 30 g CO2-e per kg of fuel produced.
Using the average on-road fuel consumption of 80 g per km for PVs (refer to Section 3.3)
then computes an average GHG emission intensity range for refinery infrastructure of
approximately 0.2–2.4 g CO2-e per km. A uniform distribution was assumed for einfra,ICEV
(U: 0.2, 2.5). This range is uncertain, but the error of omission (assuming zero emissions
intensity) is considered to be larger than the error in the estimated range.

3.8. Upstream Emissions for Fossil Fuels

Extraction, transport, production and distribution of refined fossil fuels such as petrol
and diesel require energy and produce GHG emissions. Published well-to-wheel data in
the international literature suggest that up to 14 to 28% of the contained energy in the fuels
is consumed within the chain, with an estimated average value of 20% [1,3–5,49,50,61].
Combining this range with predicted average fuel consumption for the Australian PV
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fleet (Section 3.3), results in an estimate of 35.9 to 72.0 g CO2-e/km, and a typical value of
51.4 g CO2-e/km. A uniform distribution was assumed for eupstream,ICEV (U: 35.9, 72.0).
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3.9. Upstream Emissions for Electricity Generation

Upstream emissions for electricity generation are GHG emissions due to upstream
extraction, transport, production and distribution of the fossil fuels used in electricity gener-
ation. The National Greenhouse Accounts (NGA) provide ‘Scope 3′ GHG emission factors
for electricity production in Australia [58]. Scope 3 accounts for extraction and production
of purchased materials and transport of purchased fuels. For Australia, the average up-
stream GHG emission intensity for consumed electricity is reported as 80 g CO2-e/kWh for
the 2018–2019 financial year. This is 10% of the combined Scope 2 and 3 emission intensity.

Upstream emission rates vary greatly among jurisdictions with a minimum of
10 g CO2-e/kWh (WA) and a maximum of 120 g CO2-e/kWh (Queensland). A similar
range has been reported in other studies. For instance, upstream emissions for different
subregion grids in the USA vary between 27 and 140 g CO2-e/kWh [45]. Given the com-
plexity in quantifying upstream emission factors, the uncertainty in Scope 3 NGA emission
factors is expected to be larger than the uncertainty in Scope 2 NGA emission factors for
electricity production (5–13%, refer to Section 3.4), which is based on reported fuel use data.

A bootstrap analysis using the upstream USA data (n = 27) and Australian upstream
data (n = 7) suggests that the uncertainty (95% CI) in the average upstream emission
intensity is approximately ±15% and ±40%, respectively.

The bootstrap sampling distributions were presented as mean bootstrap values divided
by the grand mean and subsequently used to determine the best parametric uncertainty
distribution through maximum likelihood fit. The Australian data suggest a truncated
(min = 0.20, max = 1.80) normal distribution (N: 1.00, 0.22) for the Australian data and a
truncated (min = 0.75, max = 1.30) skewed t distribution (S: 0.94, 0.09, 1.49, 216.93) for the
USA data. The distributions are shown in Figure 8.
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Given the small sample size of the Australian data, the uncertainty distribution based
on the USA data is considered to be more reliable and realistic. The skewed t distribution
is therefore used to quantify the uncertainty in the NGA Scope 3 GHG emission factors
for electricity production in Australia. These NGA Scope 3 uncertainty distributions were
combined in a Monte Carlo simulation with the distributions for battery charging efficiency
(T: 0.73, 0.95, 0.85) and BEV real-world energy consumption (T: 0.18, 0.19, 0.21). The
sampling distributions were used to determine the best parametric distribution through
maximum likelihood fit. The results are shown in Table 8 and Figure 9.

Table 8. Upstream GHG emission factor (g CO2-e/km) distribution definitions for Australian BEVs
by jurisdiction based on NGA data.

Fuel Type Distribution Typical Value Plausible Min–Max Value

Scenario 1 (Australia 2018/19) Non-standard beta, B (14.19, 53.81) 18.42 12.80–26.00
Scenario 2 (Marginal Electricity) - - -
Scenario 3 (More Renewable Electricity) - - -
NSW Lognormal, L (2.91, 0.09) 18.39 13.00–26.00
VIC Skewed t, S (21.04, 2.86, 1.62, 233.11) 22.99 16.00–32.00
QLD Skewed t, S (25.19, 3.48, 1.67, 102603.40) 27.57 20.00–38.00
WA Lognormal, L (0.83, 0.09) 2.30 1.70–3.30
SA Lognormal, L (2.77, 0.09) 16.10 11.75–22.75
TAS Skewed t, S (4.21, 0.58, 1.64, 2061567.00) 4.61 3.30–6.60
NT Non-standard beta, B (14.35, 40.67) 11.48 7.60–16.00

An alternative calculation uses data from the previously discussed LCA meta-study [3].
This study also reported GHG emission intensities for “fuel provision from the extraction of
fuel to the gate of the plant”. These LCA data were used to determine the best parametric
distribution through a maximum likelihood fit. The results are shown in Table 9. It is noted
that renewable generation of electricity has an upstream GHG emission intensity of zero
(D: 0).

As in previous steps, the fuel type distributions in Table 9 were combined in a Monte
Carlo simulation with the distributions for grid losses (U: 1.05, 1,10), battery charging
efficiency (T: 0.73, 0.95, 0.85) and BEV real-world energy consumption (T: 0.18, 0.21, 0.19),
using the fuel type percentages as weights (Table 1). The sampling distributions were used
to determine the best parametric distribution through maximum likelihood fit. The results
are shown in Table 10 and Figure 10.
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Table 9. GHG emission intensities (g CO2-e/kWh generated) distribution definitions for upstream
electricity generation infrastructure by fuel type.

Fuel Type Distribution Typical Value Plausible Min–Max Value

Biomass Exponential, E (0.028) 35.30 1.00–87.00
Coal Lognormal, L (3.81, 0.98) 66.45 7.00–230.00
Gas Normal, N (105.25, 73.29) 105.25 0.56–280.00
Hydro Dirac, D (0.00) 0.00 0.00–0.00
Oil Gamma, G (5.02, 0.20) 25.60 11.00–38.00
Solar Dirac, D (0.00) 0.00 0.00–0.00
Wind Dirac, D (0.00) 0.00 0.00–0.00

Table 10. Upstream GHG emission factor (g CO2-e/km) distribution definitions for Australian BEVs
by scenario or jurisdiction.

Fuel Type Distribution Typical Value Plausible Min–Max Value

Scenario 1 (Australia 2018/19) Lognormal, L (2.53, 0.53) 14.18 1.00–49.00
Scenario 2 (Marginal Electricity) Lognormal, L (2.73, 0.54) 17.69 1.00–58.00
Scenario 3 (More Renewable Electricity) Weibull, W (2.65, 2.81) 2.49 0.15–6.50
NSW Skewed t, S (2.50, 11.02, 25.32, 4.46) 13.04 1.50–54.50
VIC Skewed t, S (3.00, 10.25, 15.23, 5.20) 12.53 1.40–46.00
QLD Lognormal, L (2.54, 0.57) 14.94 1.70–52.00
WA Non-standard beta, B (2.53, 4.51) 21.28 1.00–58.00
SA Non-standard beta, B (2.03, 3.72) 13.81 0.15–40.00
TAS Weibull, W (1.90, 1.68) 1.49 0.02–4.40
NT Non-standard beta, B (2.06, 3.61) 23.34 0.70–62.50

When the typical values in Tables 8 and 10 are compared, it is clear that the two
methods generate substantially different results for the jurisdictions, but that the order
of magnitude is similar. The NGA based method generates typical values between 2 and
28 g CO2-e/km, whereas the LCA meta-study method generates slightly lower typical val-
ues between 1 and 23 g CO2-e/km. The biggest difference is observed for Western Australia
(WA) where the NGA Scope 3 factor has a low value of approximately 2 g CO2-e/km but it
is unclear why this should be so, given the largely fossil-fueled fuel mix used in this state.
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The upstream GHG emission factor distribution definitions in Table 10 appear to
generate a more consistent picture. In addition, the LCA meta-study method enables
prediction of these emission factors for Scenarios 2 and 3 for which the NGA does not
provide information. The results from the LCA meta-study method (Table 10) will therefore
be used in the probabilistic technology assessment. The results from the NGA based method
(Table 8) will be used to test the sensitivity of the study outcomes. It has conservatively been
assumed that the proportion of BEV users that generate their own sustainable electricity
(solar panels) for battery recharging is zero.

3.10. Vehicle Recycling and Disposal

The assessment of recycling and disposal impacts in an LCA can be prohibitively
difficult for a product as complex as a vehicle. GHG emissions from vehicle end-of-life
have been found to be small as compared to the operational use phase and are therefore
often ignored or included in the vehicle manufacturing LCA aspect [1,68,69]. Moreover, the
end-of-life material recycling process of vehicles and batteries will (partly) offset emissions
during manufacturing process [21]. Generally, a vehicle’s end-of-life impact (recycling and
disposal) has a limited contribution in terms of environmental impacts [70]. The impact is
dependent on the extent of recycling of vehicle materials.

The Australian Fleet Model shows that approximately 14 million passenger vehicles
were active in the Australian on-road fleet in 2018 and that approximately 96% survives
each subsequent base year. So, approximately 4% of the vehicles are scrapped, which
equates to 560,000 vehicles. The average weight of an Australian PV is 1800 kg, which
means that approximately 1 million metric tons of vehicles are scrapped and recycled each
year in Australia. A general energy consumption of 66 kWh/ton has been assumed for the
recycling process [70].

Using this value in combination with a grid-connected average emission intensity of
760 g CO2-e/kWh (Section 3.4) and the upstream GHG emission intensity of 80 g CO2-e/kWh
(Section 3.8), a total of 840 g CO2-e/kWh, estimates 55,884 ton of CO2-e emissions each year
due to vehicle recycling. Dividing this value by total VKT (560,000 vehicles times lifetime
mileage of 200,000 km), results in a GHG emission rates due to disposal of 0.5 g CO2-e/km.
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A plausible range of 0.1 to 2.0 g CO2-e/km has been assumed for vehicle recycling and
disposal. The same value is used for ICEVs and BEVs and a uniform distribution was
assumed for edisposal,ICEV and edisposal,BEV (U: 0.1, 2.0).

It is possible that recycling and disposal of BEVs have a higher GHG impact than ICEVs
due to batteries. However, BEVs also have a lighter weight than Australian ICEVs, reducing
the impact. In addition, BEV batteries can have a second use as stationary applications to
act as a storage buffer for fluctuating renewable electricity generation. This can decrease the
vehicle’s carbon footprint caused by the battery by 50% [5]. The recovering and recycling
of the materials used in BEV batteries has increased significantly due to the high costs of
the raw materials for their production [70]. In any case, the differences between BEVs and
ICEVs regarding end-of-life recycling or disposal processes are considered to be trivial due
to the relatively small impact of this LCA aspect on overall GHG emissions.

4. Results and Discussion
4.1. Probabilistic Technology Assessment

The parametric distributions for the five life-cycle aspects and two vehicle types were
developed in Section 3 (Tables 2, 3, 5, 7 and 10). The reasoning for the MC simulations
was slightly different for the full probabilistic LCA, because some life-cycle aspects con-
tain common inputs. Where this was the case (einfra,BEV, eupstream,BEV, eroad,BEV, refer to
Section 2.2), a lumped emission factor distribution was developed for the three life-cycle
aspects combined (Appendix B, Table A2). In the development of the lumped emission
factor distributions, the common inputs were first drawn from elicited distributions in each
MC simulation and then the life-cycle aspects were computed and then summed, with
a new parametric distribution fitted for their sum. These parametric input distributions
along with the appropriate parametric distributions fitted in Section 3 were combined in
ten separate Monte Carlo simulations with a million simulations for the three Scenarios
and seven jurisdictions. The results of the probabilistic technology assessment for the ten
simulations are shown in Table 11.

Table 11. LCA GHG emission factors (g CO2-e/km) for ICEVs and BEVs by scenario or jurisdiction,
including associated uncertainty (95% confidence interval), percent change, probability that any BEV
simulation exceeds the minimum value for ICEVs and overlap of confidence intervals.

Scenario/
Jurisdiction

LCA GHG ICEV
g CO2-e/km

(95% CI)

LCA GHG BEV
g CO2-e/km

(95% CI)

Relative
Difference %

(95% CI)

Probability BEV >
ICEV

Scenario 1 (Australia Current) 369 (349 to 390) 237 (221 to 255) −36 (−41 to −29) 0.0 *
Scenario 2 (Marginal Electricity) 369 (349 to 390) 289 (256 to 328) −22 (−32 to −10) 3.6 × 10-4 *
Scenario 3 (More Renewable Electricity) 369 (349 to 390) 85 (74 to 96) −77 (−80 to −74) 0.0 *
NSW 368 (344 to 393) 261 (227 to 301) −29 (−39 to −17) 3.0 × 10-6 *
VIC 364 (340 to 389) 287 (257 to 325) −21 (−31 to −9) 5.4 × 10-4 *
QLD 375 (351 to 400) 256 (226 to 288) −32 (−41 to −22) 0.0 *
WA 387 (363 to 412) 231 (209 to 255) −40 (−47 to −33) 0.0 *
SA 364 (340 to 389) 143 (126 to 161) −61 (−66 to −55) 0.0 *
TAS 369 (343 to 395) 98 (87 to 109) −74 (−77 to −70) 0.0 *
NT 390 (357 to 423) 218 (194 to 246) −44 (−52 to −35) 0.0 *

* Upper 95% confidence limit BEV simulations < lower 95% confidence limit ICEV simulations.

Explicitly accounting for variability and uncertainty in fleet average GHG emission
factors in all relevant life-cycle aspects of ICEVs and BEVs, and the results suggest that, on
average, electric passenger vehicles are expected to significantly reduce average life-cycle
GHG emission rates for passenger vehicles across all scenarios and all jurisdictions, but
that the extent of the reduction in GHG emissions and associated uncertainty varies.

For the current (2018/19) Australian electricity mix (Scenario 1), which is still largely
fossil fuels based, the weight of evidence suggests that BEVs will reduce GHG emission
rates by 36%, on average, and between 29% and 41%. The last column shows that the
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probability that BEVs exceeds the minimum predicted ICEV LCA GHG emission factor is
zero, which means that none of the million simulations generated a higher emission rate for
BEVs as compared with ICEVs. This suggests that it is highly unlikely that electrification
will lead to an adverse policy outcome: an increase in LCA GHG emissions at the fleet level.

For the worst-case ‘fossil fuels only’ marginal electricity scenario (Scenario 2), the
probabilistic analysis shows that electric passenger vehicles are still expected to significantly
reduce average GHG emission rates for passenger vehicles. The weight of evidence suggests
that, on average, BEVs will reduce GHG emission rates by between 10% and 32% (mean
reduction: 22%) for a 100% fossil-fueled marginal electricity mix. There is a small chance of
0.04% that the average BEVs will create equal or higher LCA emissions per kilometer of
driving when compared with ICEVs. However, the confidence intervals do not overlap as
indicated with the * symbol in the last column.

As of 2018, Australia used more fossil fuels than many other countries such as the
EU, USA, Canada, Japan, India, China, South Korea, Russia and Brazil [44]. This is despite
the huge potential for renewables in Australia and associated economic and security
benefits. Australia may well become a renewable superpower with sufficient political will
and support [71]. A more renewable Australian electricity grid mix (Scenario 3) has a
substantially lower emissions intensity than the current largely fossil fuel-based grid mix.
The probabilistic analysis predicts that electric passenger vehicles are expected to provide
large reductions in average LCA GHG emission rates for passenger vehicles. The weight
of evidence suggests that the average battery electric vehicle will reduce GHG emission
rates by between 74% and 80% (mean reduction: 77%). In the entire MC analysis, there was
no simulated BEV mean emission factor which was above the minimum simulated ICEV
mean emission factor.

For the Australian jurisdictions, the fleet average LCA GHG emission factors vary sub-
stantially for ICEVs (364–390 g CO2-e/km), but particularly for BEVs (98–287 g CO2-e/km),
which reflects the differences in fuel mix for electricity generation in the different states
and territories (Table 1). As a consequence, the potential reduction in LCA GHG emissions
per vehicle kilometer through electrification of the on-road fleet is different, as is shown in
Figure 11. Figure 11 presents box plots for each scenario or jurisdiction showing the results
of the probabilistic analysis for the absolute and relative differences in fleet average GHG
emission rate distributions of BEVs and ICEVs.

Electrification of the Tasmania (TAS) on-road fleet has the largest emission reduction
with a predicted reduction of 272 g CO2-e/km (243–300 g CO2-e/km), closely followed
by South Australia (SA) with 222 g CO2-e/km (191–252 g CO2-e/km). It demonstrates
that electrification in two Australian states will already achieve large reductions in GHG
emissions from passenger vehicles of 74% (TAS) and 61% (SA), respectively.

At the other end of the spectrum, the smallest absolute reduction, although still significant,
is predicted for Victoria (VIC) and New South Wales (NSW), with 77 (32–117 g CO2-e/km)
and 108 g CO2-e/km (60–151 g CO2-e/km), respectively, for the current situation. Elec-
trification in these two Australian states is expected to achieve significant reductions in
2018/2019 in GHG emissions from passenger vehicles of 21% (VIC) and 29% (NSW), re-
spectively. However, these values will improve substantially as the electricity generation
system is further decarbonized. This is evident from the positive results that were obtained
for Scenario 3 (more renewables), Tasmania and South Australia.

There is a negligible chance of 0.05% in Victoria and 0.0003% in New South Wales that
BEVs will create equal or higher LCA emissions per kilometer of driving when compared
with ICEVs. Additionally, the confidence intervals do not overlap, indicating that this
result is not plausible and meaning that electrification are expected to generate greenhouse
emission reduction benefits. For the other jurisdictions, Scenarios 1 and 3, none of the
million simulations, spanning the full range of possible outcomes, resulted in BEVs having
higher LCA emissions per kilometer of driving when compared with ICEVs, and the
computed probability of this occurring is therefore zero.
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Despite the unique characteristics of the Australian on-road fleet, the results from this
study appear to align well with general findings published in the international scientific
literature [8,28]. For instance, a review of 51 environmental life-cycle assessments [8]
concluded that BEVs powered by coal-fired electricity appear to perform better than
conventional ICEVs in terms of GWP.

4.2. Sensitivity Analysis

Alternative parametric distributions were developed for (a) the on-road ICEVs and
(b) upstream BEV LCA aspects.

(a) Using COPERT Australia and the Australian Fleet Model, a non-standard beta dis-
tribution (B: 9.89, 16.86) with truncation at 225 and 298 g CO2-e/km was developed
for on-road ICEVs (Section 3.3). The alternative parametric distribution was used in a
repeat of the probabilistic technology assessment for the current (2018/19) Australian
electricity mix (Scenario 1). The results are presented in Appendix C. The mean LCA
GHG emission factor for ICEVs is reduced from 369 to 356 g CO2-e/km (3.5%), com-
pared to the probabilistic technology assessment in Section 4.1. The overall predicted
effect of electrification (Figure 11) is similar. Section 4.1 predicted that BEVs will reduce
GHG emission rates by 36% on average and by between 29% and 41%. Using COPERT
Australia and the Australian Fleet Model as an alternative input, it is predicted that
BEVs will reduce GHG emission rates by 33% on average and by between 26% and
40%, a similar result. The probability that BEVs exceeds the minimum predicted
ICEV LCA GHG emission factor is zero for both simulations, which means that none
of the million simulations generated a higher emission rate for BEVs as compared
with ICEVs.
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(b) Alternative upstream GHG emission factor distributions for Australian BEVs were
developed using Scope 3 data from the National Greenhouse Accounts and overseas
publications (Section 3.8). The alternative parametric distributions (Table 8) were
used in a repeat of the probabilistic technology assessment, including development
of alternative lumped emission factor distributions (Appendix B, Table A3). The
results are presented in Appendix D. The mean LCA GHG emission factors for BEVs
vary by approximately ±15%, compared to the probabilistic technology assessment in
Section 4.1. The largest change is observed for NT, where the mean BEV GHG emission
factor is reduced by 14% from 218 to 188 g CO2-e/km. For the majority of jurisdictions,
this difference is typically approximately ±5% or less. The overall predicted effect
of electrification (Figure 11) is remarkably stable as is shown in Figure A2, which
suggests that the results from the probabilistic analysis are robust.

4.3. Expansion and Refinement

This study has focused on quantifying GHG emissions performance and associated
uncertainty for Australian passenger vehicles specifically at the fleet level.

The LCA model can readily be expanded to conduct simulations at a higher level of
detail. For instance, the Australian Fleet Model can be used to quantify input distributions
for a more disaggregated fleet definition such as small, medium and large passenger cars
and compact and large SUVs. An even more detailed analysis specifically considering
vehicle make and model is also possible. This expansion would lead to more detailed
simulations and can be used to explore various what-if scenarios, for instance by exploring
different purchasing behavior scenarios and assessing the impacts on GHG emission
performance for both BEVs and ICEVs.

Another possible expansion is to conduct the analysis for trucks and buses, to include
other emerging zero emission technologies such as hydrogen vehicles, biofuels and e-fuels
and/or to consider other units of assessment such as costs per kilometer (total cost of
ownership), air pollutant emissions per km and total life-cycle cost.

Existing LCA software tools such as SimaPro and Open LCA [28] can be readily
integrated in the probabilistic LCA framework presented in this paper. They can, for
instance, be used to further refine the LCA model definition and subsequently provide the
necessary input data for the development of input distributions in the probabilistic LCA.

The pLCA approach presented in this paper is versatile, highly flexible and cost-
effective in its application, as well as relatively fast, transparent and intuitive. These
features are useful in a time where action to reduce greenhouse gas emissions is urgent and
robust and scientifically sound methods to assess a range of technologies are required for
cost-effective policy development.

5. Conclusions

Life-cycle assessment (LCA) is a powerful and holistic method. However, given the
complexity and wide scope of LCAs, it is important to quantify and report variability and
uncertainty in the study outcomes. This study uses probabilistic LCA (pLCA) to explic-
itly model and assess uncertainty in the inputs and results. A technology assessment is
conducted for battery electric and conventional fossil-fueled passenger vehicles for three
Australian scenarios (current, marginal electricity and more renewables) and seven Aus-
tralian states and territories. Parametric input distributions were developed by applying
statistical techniques to available empirical input data, software output and published data.

The results suggest that electric passenger vehicles are expected to significantly reduce
fleet average life-cycle GHG emission rates (g CO2-e/km) for passenger vehicles for all
Scenarios and for all jurisdictions, but that the extent of the reduction in GHG emissions
and associated uncertainty varies. For the current (2018/19) Australian electricity mix
(Scenario 1), which is still largely fossil fuels based, the weight of evidence suggests that
BEVs will reduce GHG emission rates by 36% on average (95% confidence interval: 29% to
41%). For the worst-case ‘fossil fuels only’ marginal electricity scenario (Scenario 2) electric



Sustainability 2022, 14, 3444 23 of 29

passenger vehicles are still expected to significantly reduce average GHG emission rates
for passenger vehicles between 10% and 32%. Large reductions by between 74% and 80%
in fleet average LCA GHG emission rates for passenger vehicles through electrification are
predicted for more renewables (Scenario 3).

For the individual Australian states and territories, the fleet average LCA GHG emis-
sion factors vary substantially for ICEVs (364–390 g CO2-e/km), but particularly for BEVs
(98–287 g CO2-e/km), which reflects the differences in fuel mix for electricity generation
in the different states and territories. Electrification of the Tasmania (TAS) on-road fleet
has the largest emission reduction with a predicted absolute value of 272 g CO2-e/km
(243–300 g CO2-e/km), closely followed by South Australia (SA) with 222 g CO2-e/km
(191–252 g CO2-e/km). This demonstrates that electrification in two Australian states will
already achieve large reductions in GHG emissions from passenger vehicles of 74% (TAS)
and 61% (SA), respectively.

Typically, none of the million simulations resulted in (fleet average) BEVs having
higher LCA emissions per kilometer of driving when compared with (fleet average) ICEVs.
In a few cases, the study found a negligible probability (equal or less than 0.05%) that
BEVs will create equal or higher LCA emissions per kilometer of driving when compared
with ICEVs, but generally none of the simulations indicated an adverse policy outcome
for electrification. This means that after considering the complete vehicle life cycle, the
weight of evidence strongly suggests that rapid electrification of the Australian on-road
fleet away from fossil fuels is a safe and effective policy measure to reduce greenhouse gas
emissions from road transport. A sensitivity analysis with alternative input distributions
demonstrated that the outcomes from this study are robust.
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Appendix A. Distribution Definitions

Table A1. Distribution definitions.

Name Range Parameters Probability Density Function (PDF)

Uniform—U(x:a,b) a ≤ x ≤ b a: Minimum,−∞ < a < b
b: Maximum, a < b < −∞

1
b−a

Triangular—T(x:a,b,c) a ≤ x ≤ b
a: Minimum,−∞ < a < b
b: Maximum, a < b < −∞
c: Mode, a ≤ c ≤ b


2(x−a)

(b−a)(c−a) , x ≤ c
2(b−x)

(b−a)(c−a) , x > c

Normal—N(x:m,s) −∞ ≤ x ≤ +∞ m: Mean,−∞ < m < ∞
s: Standard deviation, 0 < s < ∞

1√
2πs

exp
(
− 1

2s2 (x−m)2
)

Lognormal—L(x:m,s) 0 ≤ x ≤ +∞ m: Log-mean, −∞ < m < ∞
s: Scale, 0 < s < ∞

1
x
√

2πs
exp

(
− 1

2s2 (ln(x)−m)2
)

Weibull—W(x:s,k) 0 ≤ x ≤ +∞ s: Scale, 0 < s < ∞
k: Shape, 0 < s < ∞

k
s
( x

s
)k−1 exp

(
−
( x

s
)k
)

https://www.transport-e-research.com/
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Table A1. Cont.

Name Range Parameters Probability Density Function (PDF)

Gamma—G(x:s,k) 0 ≤ x ≤ +∞ s: Scale, 0 < s < ∞
r: Rate, 0 < s < ∞

rs

Γ(s) xs−1 exp(−rx)

Exponential—E(x:s) 0 ≤ x ≤ +∞ s: Scale, 0 < s < ∞ r exp(−rx)

Non-Standard
Beta—B(x:s,k,a,b) a ≤ x ≤ b

s: Scale, 0 < s < ∞
k: Shape, 0 < k < ∞
a: Minimum,−∞ < a < b
b: Maximum, a < b < −∞

Γ(s+k)
Γ(s)Γ(k)

(
x−a
b−a

)s−1(
1− x−a

b−a

)k−1

Skew t—S(x:m,s,a,d) −∞ ≤ x ≤ +∞

m: Mean,−∞ < m < ∞
s: Scale, 0 < s < ∞
a: Skew, 0 < a < ∞
d: Degrees of freedom, 0 < d < ∞

2t(x : m, s, d)T
(

az
√

d+1
d+z2 : 0, 1, d

)
,

where
t(x : m, s, d) =
Γ( 1

2 (d+1))
√

πd1
2 d

(
1 +

( x−m
s
)2
)− v+1

2

z = (x−m)/s), and T(x : m, s, d)
is the cumulative distribution function. *

Dirac Delta—D(x:m) −∞ ≤ x ≤ +∞
Practically x = m m: Location,−∞ < m < ∞

{
∞, x = m
0, x 6= m

* See [35] for more details.

Appendix B. Lumped GHG Distributions

Table A2. Lumped (infra, upstream, road) GHG emission factor (g CO2-e/km) distribution definitions
for Australian BEVs by scenario or jurisdiction.

Fuel Type Distribution Typical Value Plausible Min–Max Value

Scenario 1 (Australia 2018/19) Non-standard beta, B (8.91, 29.73) 194.00 153.00–257.00
Scenario 2 (Marginal Electricity) Skewed t, S (210.66, 25.20, 1.96, 19870.21) 229.00 177.00–306.00
Scenario 3 (More Renewable Electricity) Non-standard beta, B (5.32, 24.15) 29.00 20.00–46.00
NSW Skewed t, S (182.18, 25.83, 1.91, 19344.81) 200.00 148.00–281.00
VIC Skewed t, S (209.99, 23.74, 2.07, 379.39) 227.00 184.00–300.00
QLD Lognormal, L (5.27, 0.08) 196.00 156.00–263.00
WA Non-standard beta, B (7.26, 16.91) 177.00 136.00–251.00
SA Non-standard beta, B (7.26, 16.91) 86.00 62.00–127.00
TAS Non-standard beta, B (6.53, 11.81) 38.00 31.00–49.00
NT Non-standard beta, B (5.83, 12.95) 163.00 122.00–238.00

Table A3. Lumped (infra, upstream, road) GHG emission factor (g CO2-e/km) distribution definitions
for Australian BEVs by scenario or jurisdiction used in Section 4.2 based on alternative parametric
upstream distributions (Table 8).

Fuel Type Distribution Typical Value Plausible Min–Max Value

Scenario 1 (Australia 2018/19) Non-standard beta, B (5.30, 9.63) 195.00 165.00–242.00
Scenario 2 (Marginal Electricity) - - -
Scenario 3 (More Renewable Electricity) - - -
NSW Non-standard beta, B (9.37, 16.99) 206.00 161.00–265.00
VIC Non-standard beta, B (5.32, 9.49) 245.00 205.00–297.00
QLD Non-standard beta, B (5.81, 10.54) 237.00 198.00–288.00
WA Non-standard beta, B (4.63, 8.22) 164.00 137.00–201.00
SA Non-standard beta, B (8.32, 14.88) 90.00 75.00–109.00
TAS Non-standard beta, B (7.26, 12.69) 45.00 37.00–55.00
NT Non-standard beta, B (4.59, 8.11) 130.00 111.00–157.00
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Appendix C. Sensitivity Analysis Using Alternative On-Road ICEV Distribution

Table A4. LCA GHG emission factors (g CO2-e/km) for ICEVs and BEVs by scenario or jurisdiction,
including associated uncertainty (95% confidence interval), percent change, probability that any BEV
simulation exceeds the minimum value for ICEVs and overlap of confidence intervals.

Scenario/
Jurisdiction

LCA GHG ICEV
g CO2-e/km

(95% CI)

LCA GHG BEV
g CO2-e/km

(95% CI)

Relative
Difference %

(95% CI)

Probability BEV >
ICEV

Scenario 1 (Australia Current) 356 (332 to 381) 237 (221 to 255) −33 (−40 to −26) 0.0 *

* Upper 95% confidence limit BEV simulations < lower 95% confidence limit ICEV simulations.
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Appendix D. Sensitivity Analysis Using Alternative Upstream BEV
GHG Distributions

Table A5. LCA GHG emission factors (g CO2-e/km) for ICEVs and BEVs by scenario or jurisdiction,
including associated uncertainty (95% confidence interval), percent change, probability that any BEV
simulation exceeds the minimum value for ICEVs and overlap of confidence intervals.

Scenario/
Jurisdiction

LCA GHG ICEV
g CO2-e/km

(95% CI)

LCA GHG BEV
g CO2-e/km

(95% CI)

Relative
Difference %

(95% CI)

Probability BEV >
ICEV

Scenario 1 (Australia Current) 369 (349 to 390) 250 (231 to 270) −32 (−25 to −39) 0.0 *
Scenario 2 (Marginal Electricity) - - - -
Scenario 3 (More Renewable Electricity) - - - -
NSW 368 (344 to 393) 258 (238 to 280) −30 (−37 to −22) 0.0 *
VIC 364 (340 to 389) 298 (276 to 323) −18 (−26 to −9) 6.1 × 10-5 *
QLD 375 (351 to 400) 290 (268 to 314) −23 (−30 to −14) 0.0 *
WA 387 (363 to 412) 220 (202 to 240) −43 (−49 to −37) 0.0 *
SA 364 (340 to 389) 147 (135 to 160) −60 (−64 to −55) 0.0 *
TAS 369 (343 to 395) 104 (93 to 115) −72 (−75 to −68) 0.0 *
NT 390 (357 to 423) 188 (173 to 204) −52 (−57 to −46) 0.0 *

* Upper 95% confidence limit BEV simulations < lower 95% confidence limit ICEV simulations.
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