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Abstract: Based on data from 121 countries, the study assesses the dynamic effect and causality path
of the government epidemic prevention policies and human mobility behaviors on the growth rates
of COVID-19 new cases and deaths. Our results find that both policies and behaviors influenced
COVID-19 cases and deaths. The direct effect of policies on COVID-19 was more than the indirect
effect. Policies influence behaviors, and behaviors react spontaneously to information. Further, masks
give people a false sense of security and increase mobility. The close public transport policy increased
COVID-19 new cases. We also conducted sensitivity analysis and found that some policies hold
robustly, such as the policies of school closing, restrictions on gatherings, stay-at-home requirements,
international travel controls, facial coverings, and vaccination. The counterfactual tests suggest
that, as of early March 2021, if governments had mandated masking policies early in the epidemic,
the cases and deaths would have been reduced by 18% and 14% separately. If governments had
implemented vaccination policies early in the pandemic, the cases and deaths would have been
reduced by 93% and 62%, respectively. Without public transportation closures, cases and deaths
would have been reduced by 40% and 10%, respectively.

Keywords: COVID-19; policies; human mobility behaviors; dynamic effect; masks; causality

1. Introduction

COVID-19 is one of the most serious infectious diseases that have happened world-
wide in a century and has greatly endangered human health. As of early November
2021, there were more than 246.59 million cumulative cases of COVID-19 and more than
4.99 million cumulative deaths worldwide. As the pandemic has spread globally, govern-
ments have implemented differentiated interventions [1]. Some of these countries have
adopted containment strategies, such as China, South Korea, and Thailand. Such countries
have followed the principles of early detection, early reporting, early investigation, early
isolation, and early treatment, with surveillance and tracking management measures for
cases and close contacts and mandatory closure measures when necessary [2]. Others have
adopted mitigation strategies, such as the United States, the United Kingdom, France, Swe-
den, and Japan. Mitigation measures emphasize herd immunity, prioritizing hospitalization
of patients with severe cases [3].

An important outstanding issue, however, is that countries are showing different
effectiveness of anti-epidemic outcomes, even when the circulating viruses are the same
and the prevention policies are similar. For example, among countries using the mitigation
strategy, Japan and Sweden show significant anti-epidemic outcomes, but not the United
States, Britain, and France. Thus, the effectiveness of anti-epidemic may be influenced by
other factors in addition to policies.

Factors influencing the effectiveness of anti-epidemic outcomes have been analyzed
in studies from different aspects. Some scholars considered meteorological factors and air
pollution, such as temperature [4], humidity [5], wind speed [6], PM2.5 [7,8]. Some scholars
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took economic, social, cultural, and government policy factors into account. For example,
economic development level [9], human development index [10], level of trust [11], family
structure and social habits [12], and government policy [13,14]. What is more, some
scholars considered demographic factors, such as age structure [15], population size, and
density [16]. Others analyzed the individual factors—for example, multi-morbidity [17]
and human mobility behavior [18].

Although the existing literature has analyzed the factors influencing the effectiveness
of anti-epidemic outcomes from several aspects, few studies have considered the causal
relationship between multiple factors in the analysis. Currently, the following questions
remain to be addressed. What are the reasons for the wide disparities in the effectiveness of
anti-epidemic outcomes across countries at a global scale? To what extent has government
intervention influenced the effectiveness of anti-epidemic outcomes? Is this effect direct or
indirect? What are the causal relationships and pathways? What would have happened to
the anti-epidemic outcomes if the government had not taken certain measures? Answering
the above questions scientifically from the perspectives of economics and sociology is
of great theoretical significance for gaining a deeper understanding of the COVID-19
pandemic and response strategies and for assessing the effectiveness of vaccination and
non-pharmaceutical intervention policies. At the practical level, clarifying the pathways of
governmental epidemic prevention policies on the case growth rate and death growth rate
are of great practical significance for governments to further improve epidemic prevention
measures, accumulate experience in epidemic prevention, improve people’s health and
reduce economic losses.

The purpose of this study is to quantify the reasons for the differences in the anti-
epidemic outcomes of different countries based on data from 121 countries, taking into
account factors such as government epidemic prevention policies, human mobility behavior,
information, and national characteristics, and to measure the causal path among these
variables. Then we attain the direct and total effects of government epidemic prevention
policies on anti-epidemic outcomes, as well as the indirect impact of government epidemic
prevention policies on anti-epidemic outcomes by affecting human mobile behaviors and
other variables. On this basis, this paper dynamically simulates confirmed cases and deaths
in various countries under counterfactual policies such as mandatory wearing masks,
implementing vaccine policy, and not shutting down public transport policy. We have
further verified the effectiveness of different anti-epidemic policies.

In this study, we attempt to empirically study the factors and paths influencing the
anti-epidemic outcomes after considering the causal relationships among variables. First,
we construct a dynamic panel structural equation model on the anti-epidemic outcomes
with full consideration of country characteristics, government policies on epidemic pre-
vention, human mobility behaviors, and information factors. Then, the paper derived
the model equations for the pathways among variables by combining the dynamic panel
structural equation model and the improved SIRDS epidemic model. Finally, we con-
ducted the empirical analysis, robustness tests, and counterfactual tests by using data from
121 countries.

This paper has the following three main innovations. One is the innovation of research
content. We not only focus on the causal relationships among anti-epidemic outcomes,
government policies on epidemic prevention, human mobility behaviors, information
variables, and confounding factors but also consider the effects of vaccination and non-
pharmaceutical intervention policies on anti-epidemic outcomes at the same time. Most
of the studies examined the effects of only certain types of factors on the effectiveness
of anti-epidemic. These factors include vaccination policies and confounding factors
such as climatic, economic, and social factors. However, the anti-epidemic outcomes are
influenced by multiple factors, and their determination is complex. Therefore, if the causal
relationships of multiple factors are not systematically considered when studying the anti-
epidemic outcomes, the results of their analysis may be biased. In addition, during the
early stages of the COVID-19 outbreak, non-pharmaceutical intervention policies were the
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primary means for governments to eliminate the spread of the epidemic. With the successful
clinical trials of the COVID-19 vaccines, vaccination became an important pharmacological
intervention policy for governments to respond to the COVID-19. Therefore, it is necessary
to consider both vaccination policies and non-pharmacological interventions in the analysis.
The second innovation is the research method. We improved the susceptible–infected–
recovered–dead (SIRD) epidemic model to obtain a SIRDS epidemic model applicable to the
characteristics of the COVID-19 pandemic. The traditional SIRD epidemic model assumes
that recovered individuals have lifelong immunity. However, in reality, COVID-19 patients
still have the possibility of being re-infected after recovery. Combining this feature, we
obtained the SIRDS infectious disease model based on the SIRD infectious disease model,
assuming that a proportion of recovered individuals will turn susceptible. In addition, we
combine a variety of other methods to analyze the research topic; these methods include
dynamic panel structural equation models, econometric analysis methods, and machine
learning. The third innovation is about the application of the research. We simulate the
dynamic influences of different counterfactual policies on the anti-epidemic outcomes
across countries. The difference between the anti-epidemic outcomes under counterfactual
and real policies indirectly assesses the implementation effect of the policy.

This paper is organized as follows: Section 2 reviews relevant literature. Section 3
describes the model specification and data sources. Section 4 presents the empirical results.
Section 5 follows with a sensitivity analysis. Section 6 simulates the impact of counterfactual
policies on health. Finally, Section 7 presents our conclusions.

2. Literature Review

Scholars have studied the spread of the COVID-19 virus in many aspects. The existing
literature related to this article can be divided into four categories.

The first category of literature studies the impact of economic, social, and environmen-
tal factors on COVID-19 transmission. Coker et al. [19] find that each unit increase in PM2.5
concentration results in a 9% increase in COVID-19 mortality. Bretschger et al. [8] conclude
that improving air quality and reducing obesity both contribute to reducing the negative
impact of the COVID-19 pandemic. Vera-Valdés [11] describes how alcohol consumption is
positively associated with confirmed cases and deaths. Moosa and Khatatbeh [16] suggest
that case rate and death rate are influenced by different factors, with case rate depending
on the urban population and death rate depending on the age structure and population
density. Ang et al. [20] attain two main conclusions. First, social factors are more effective
than economic factors. Second, more cases and deaths in countries with high human
freedom degrees. Moreover, some scholars analyze the impact of COVID-19. Łuczak and
Kalinowski [21] study the epidemiological situation of the COVID-19 in Europe and use
the entropy method to assess the uncertainty of the epidemiological status. They find that
Europe has three epidemic states of COVID-19, namely stable, unstable, and expanding.
Dudek and Śpiewak [22] analyze the effects of the COVID-19 pandemic on the sustainable
food system. They find that the COVID-19 disrupted the functioning of Poland’s food
system. Kalinowski et al. [23] conducted a subjective evaluation of family social security
during COVID-19 and find that the effectiveness of Poland’s public policy needs to be
improved. Churski et al. [24] assess the social and economic impact of COVID-19, find
that the epidemic affected vulnerable groups such as migrant workers, and proposed
strategies applicable to migration in the labor market. Robinson et al. [25] study the impact
of COVID-19 on the industrial food system in the United States, find that the epidemic
provided opportunities for small producers.

The second category of literature examines the impact of non-pharmacological inter-
ventions on COVID-19 transmission. Lai et al. [26] come to that early detection and isolation
of cases are more effective than travel restrictions. Second, without non-pharmaceutical
interventions, confirmed cases in China would have increased 67-fold by 29 February 2020.
Awaidy and Mahomed [27] obtain two main conclusions. First, early implementation of
lockdowns is important in mitigating a large-scale COVID-19 outbreak in Oman. Second,
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without non-pharmaceutical interventions, the entire population of Oman would have been
infected within 65 days. Chen and Qiu [28] use panel data from nine countries/regions to
simulate different scenarios to study the impact of non-pharmaceutical intervention policies
on COVID-19 transmission. They attain two conclusions. First, mandatory school closures,
masks, and centralized quarantine have similar effects on containing the spread of the
outbreak. Second, the United States and Singapore need to strengthen non-pharmaceutical
interventions to control the spread of the disease, while other countries should phase out
these measures to reduce economic costs.

Other scholars analyze the mediating variables of non-pharmacological interventions
to curb the spread of COVID-19. Lemaitre et al. [29] study the impact of non-pharmaceutical
interventions on the transmission rate of COVID-19 in Switzerland. They conclude that
the main reason for the decline in infection rate is behavioral change rather than natural
immunity. Amuedo-Dorantes et al. [30] compare the COVID-19 epidemic curves in different
regions and conclude that the main reason for the slowdown in the spread of COVID-19 is
intervention measures, not the improvement of health care capacity.

In addition, some scholars evaluate and compare the effectiveness of different non-
pharmaceutical interventions. Banholzer et al. [31] attain that restriction on gatherings has
the best effect, followed by closing public venues and schools, while stay-at-home orders
have the least effective. Jayaweera et al. [32] find that lockdown and isolation measures
are the most effective, while hand hygiene and masking are the least effective. Amuedo-
Dorantes et al. [33] attain that adoption of a safer-at-home order or non-essential business
closure the day before infection doubles reduce COVID-19 mortality by 1.9%.

The third category of literature finds the impact of human mobility behaviors on
COVID-19 transmission. Fritz and Kauermann [34] conclude that decreasing mobility
and social connections reduce infection rates. Zheng et al. [35] find that reducing mobility,
focusing on personal protection, and increasing social distances are more effective measures
to prevent the epidemic. Moreover, scholars also study the impact of non-pharmaceutical
interventions on mobility. Mamelund et al. [36] separately investigated the influence
of non-pharmaceutical interventions on the magnitude and speed of mobility changes
during the COVID-19 pandemic. They find that lockdowns, school closures, and business
closures have a greater impact on changes in mobility, while lockdowns and restrictions
on gatherings have a greater impact on the rate of change in mobility. In addition, there
are scholars studying transportation after the outbreak of the COVID-19. Some literature
analyzes new mobility services and their functioning during the pandemic. For example,
Turoń et al. [37] propose sustainable traffic management recommendations for cities and
transport service operators by studying the main factors affecting the electric shared
mobility industry during and after the COVID-19 lockdown. Some other literature focuses
on the practices used by new mobility service operators during the pandemic. Turoń and
Kubik [38] find that car-sharing systems and ride-sharing services have mostly adapted
their business models to pandemic changes.

The fourth category of literature explains the impact of vaccination policies on COVID-19
transmission. Marín-Hernández et al. [39] find that vaccination policies reduce COVID-19
mortality, and combining vaccination policies and non-pharmacological interventions
would be effective in mitigating disease transmission. Giordano et al. [40] conduct a
scenario analysis of COVID-19 deaths in Italy from April 2021 to January 2022. They
suggest that non-pharmacological interventions have a greater impact on the epidemic
than vaccination-alone and that the combination is more effective.

By combing the literature, the spread of COVID-19 is influenced by multiple factors,
and any single level of analysis would be biased. There is no single action that can
completely defeat the epidemic, and it is necessary to consider multiple factors mentioned
above in the analysis. Chernozhukov et al. [14] examine the transmission pathways of the
COVID-19 in the U.S. state from multiple perspectives. However, the paper did not use
cross-country data. As a global public health emergency, the selection of a single country or
region for the study of COVID-19 would ignore the influence of other aspects. Second, the
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authors did not consider the impact of vaccination policies, but it is a key factor in curbing
the spread of the epidemic.

We systematically consider the causality of the above factors to study the impact
and pathways of government interventions on anti-epidemic outcomes. By referring
to the literature, this paper will expand in two aspects. First, using daily data from
121 countries, we will explore the causal pathways influencing the spread of the COVID-19
by considering a combination of country characteristic variables, information variables,
government epidemic prevention policies, human mobility behaviors, and anti-epidemic
outcomes. Second, consider both vaccination and non-pharmaceutical intervention policies
in government epidemic prevention policies.

3. Model Specification and Data Sources
3.1. Model Specification
3.1.1. Causal Model and Its Structural Equation Form

Combined with literature and reality, the COVID-19 anti-epidemic outcomes are
influenced by multiple factors. The causal model combines the dynamic panel structural
equation model and econometrics. Through some mediator variables, the complicated
relationship among variables is expressed, and how variables affect each other is described.
In addition, the model can effectively deal with the endogeneity problem and does not
need to use estimation methods such as IV, 2SLS, GMM, etc. In this paper, the model
allows for government epidemic prevention policies to have direct or indirect effects on
health outcomes, and these effects do not conflict. The model also allows changes in
the government epidemic prevention policies and information to affect human mobility
behaviors. These all help us to quantify the relationship among variables.

The variables are not only directly influenced by changes in behaviors and policies
but may also be indirectly influenced by policies through changes in behavior. In addition,
the variables may release new information that can influence future policies and even
trigger dynamic changes over multiple periods. Referring to Chernozhukov et al. [14], we
plot the pathway relationships among confounding factors, information variables, policies,
behaviors, and anti-epidemic outcomes in Figure 1.

Figure 1. Causal path diagram. Note: c refers to country, t refers to time, l indicates time lag.

From Figure 1, we know that confounding factors Wc,t, information variables Ic,t,
policies Pc,t, and behaviors Bc,t jointly affect anti-epidemic outcomes Hc,t+l.

(1) Confounding factors Wc,t influence information variables Ic,t, government epidemic
prevention policies Pc,t, human mobility behaviors Bc,t, and anti-epidemic outcomes
Hc,t+l, as shown by the four purple directed lines in Figure 1.

(2) Information variables Ic,t influence government epidemic prevention policies Pc,t,
human mobility behaviors Bc,t, and anti-epidemic outcomes Hc,t+l, as shown by the
three yellow directed lines in Figure 1.

(3) As shown by the two green directed lines in Figure 1. Government epidemic pre-
vention policies Pc,t not only directly affects human mobility behaviors Bc,t and anti-
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epidemic outcomes Hc,t+l, but also indirectly affects anti-epidemic outcomes through
behavioral variables.

(4) Human mobility behaviors Bc,t have a direct effect on the anti-epidemic outcomes
Hc,t+l, as shown by the brown directed line in Figure 1.

The causal path among the variables in Figure 1 can be represented by the following
model. Equation (1) represents the direct effects of behaviors Bc,t, policies Pc,t, informa-
tion variables Ic,t and confounding factors Wc,t on health outcomes Hc,t+l in period t + l.
Equation (2) shows the direct effects of governmental prevention policies Pc,t, information
variables Ic,t, and confounding factors Wc,t on behaviors Bc,t in period t. Equation (3)
expresses the direct effects of information variables Ic,t, and confounding factors Wc,t on
governmental prevention policies Pc,t in period t.

Hc,t+l = α′Bc,t + π′Pc,t + µ′ Ic,t + δ′HWc,t + εH
c,t (1)

Bc,t = β′Pc,t + γ′ Ic,t + δ′BWc,t + εB
c,t (2)

Pc,t = η′ Ic,t + δ′PWc,t + εP
c,t (3)

where α represents the coefficient vector of the direct effect of behaviors on anti-epidemic
outcomes. π represents the coefficient vector of the direct effect of policies on anti-epidemic
outcomes. µ represents the coefficient vector of the direct effect of information variables on
anti-epidemic outcomes. β represents the coefficient vector of the direct effect of policies on
behaviors. γ represents the coefficient vector of the direct effect of information variables on
behaviors. η represents the coefficient vector of the direct effect of information variables on
policies. δH, δB, and δP are the coefficient vectors of the direct effects of confounders on anti-
epidemic outcomes, behaviors, and policies, respectively. εH, εB, and εP are unobservable
random error terms.

Combining Equations (1) and (2), we obtain the total effect (sum of direct and indirect
effects) of policies and information variables on anti-epidemic outcomes when considering
the causal path among variables.

Hc,t+l = (α′β′ + π′)Pc,t + (α′γ′ + µ′)Ic,t + δ′Wc,t + εc,t (4)

The effect of policies and information variables on health variables can be represented
by the Equation (5) if the causal path between variables is not considered.

Hc,t+l = φ′Pc,t + ϕ′ Ic,t + δ̃′Wc,t + εc,t (5)

where φ, ϕ, and δ̃ represent the coefficient vectors of the total effect of policies and infor-
mation variables. Confounding factors on anti-epidemic outcomes when causal pathways
among variables are not considered, respectively. ε represents the unobservable random
error term.

3.1.2. SIRDS Epidemic Model

In this paper, anti-epidemic outcomes include the new case growth rate and new death
growth rate. When the health outcome is the new case growth rate

Hc,t = ∆ ln(∆Cc,t)

where c denotes country. t denotes time. C denotes the cumulative number of confirmed
cases. ∆C indicates the number of new cases.

According to the SIRDS epidemic model, we can now abbreviate Equations (1) and (4)
as Equation (6).

∆ ln(∆Cc,t) = X′c,t−14θ + δT∆ ln(Tc,t) + ξc,t (6)
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where X denotes behaviors, policies, information variables, and confounding factors.
Fourteen days represents the time lag between infection and new cases [14,41]. T is the
number of tests. ξ represents the unobservable random error term.

The setting and interpretation of Equation (6) relies on the SIRDS epidemic model,
which is our improvement on the SIRD epidemic model. In the SIRD epidemic model, the
population can be divided into four categories: susceptible, infected, recovered, and dead,
and the model assumes that individuals have lifelong immunity to the disease. However,
in reality, immunity to some diseases gradually decreases or even disappears over time.
For example, the possibility of reinfection exists for recovered COVID-19 patients. In this
case, we obtained a modified SIRDS epidemic model based on the SIRD model, assuming
that a proportion of recovered individuals will turn susceptible (see Figure 2).

Figure 2. SIRDS epidemic model.

The SIRDS epidemic model can be represented by the following equation.

.
St = −

pt It

N
St + uRt (7)

.
It =

pt It

N
St − qIt (8)

.
Rt = (1− k)qIt − uRt (9)

.
Dt = kqIt (10)

where t denotes time. p denotes the infection rate. N is the total population. S is the number
of susceptible persons. I is the number of infected persons. R represents the number of
cured persons. D is the number of dead persons. q is the sum of the recovery rate and
mortality rate. k denotes the mortality rate of the infected. u denotes the rate at which
recovered persons become susceptible due to loss of immunity.

New cases can be expressed as
.
Ct = τt It (11)

where τ indicates the detected infection rate.
We can attain C and D while we cannot attain I. Thus, combining Equations (8) and (11),

we obtain Equation (12) after eliminating I.

..
Ct
.
Ct

=
pt

N
St − q +

.
τt

τt
(12)

By specifying pt
N St as a linear function of Xc,t−14θ and correlating the detection rate τ

with the number of detections T, we can set up an empirical model using the discrete-time
analog of Equation (12).

∆ ln(∆Cc,t)︸ ︷︷ ︸
..
Ct.
Ct

= X′c,t−14θ + ξc,t︸ ︷︷ ︸
pt
N St−q

+ δT∆ ln(Tc,t)︸ ︷︷ ︸
.
τt
τt
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It is similar when the anti-epidemic outcomes represent the growth rate of new deaths.

Yc,t = ∆ ln(∆Dc,t)

..
Dt
.

Dt
=

..
Ct
.
Ct
−

.
τt

τt
=

pt

N
St − q

∆ ln(∆Dc,t) = X′c,t−21θ + ξc,t

where 21 days represents the time lag between infection and new deaths [14,41].

3.1.3. Counterfactual Policy Analysis

Based on the above model, we also want to know what would happen to anti-epidemic
outcomes if the government did not adopt certain epidemic prevention policies. To do this,
we set up some counterfactual policies P∗c,t, and simulate the anti-epidemic outcomes of
these policies. Except for the counterfactual policies, the rest is the same as the previous
model. Figure 3 depicts the causal path diagram under the counterfactual policies.

Figure 3. Causal path diagram under the counterfactual policy.

According to the parameters in the model, it is possible to iteratively calculate the
dynamics of anti-epidemic outcomes when the counterfactual policy P∗c,t is implemented.
The model in Figure 3 can be approximated in the following form.

H∗c,t+l = (α′β′ + π′)P∗c,t + (α′γ′ + µ′)I∗c,t + δ′Wc,t + εc,t

when ∆Ci0 > 0, the new cases at time t can be calculated by the following equation.

∆C∗c,t/∆Cc,0 = exp(
t/l

∑
m=1

H∗c,ml)

∆Cc,t/∆Cc,0 = exp(
t/l

∑
m=1

Hc,ml)

On this basis, we can also obtain the ratio of counterfactual new cases to real new
cases at t.

∆C∗c,t/∆Cc,t = exp(
t/l

∑
m=1

(Y∗c,ml −Yc,ml))

Counterfactual estimates for deaths are similar to those for confirmed cases.

3.2. Data Source

Considering the availability of data, we select the panel data of 121 countries (see
Table 1) from 17 February 2020 to 7 March 2021 for the empirical analysis. We chose the
standard correlated random effects estimation method for the following two reasons. First,
the study time in this paper is short, and the sample is taken from the aggregate. Second,
regarding characteristic variables that do not vary over time, the random effects estimation
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approach assumes that such variables affect the explanatory variables and allows the vari-
ables to appear in the model. Both of these points suggest that the random effects estimation
method is more suitable for the model in this paper. At this point, the random effects can
be parameterized as a function of observable characteristic variables, and the confounding
variables Wc,t include country-level random effects and time random effects. Among them,
the country-level random effects are modeled as a function of the country characteristic
variables, and the time random effects are modeled as a function of the quarterly dummy
variables and their interaction terms with the country characteristic variables.

Table 1. List of the 121 countries used in this paper.

Country Country Country Country

Angola Fiji Mali Serbia
Argentina Finland Malta Singapore
Australia France Mexico Slovakia
Austria Gabon Moldova Slovenia
Bahrain Georgia Mongolia South Africa
Bangladesh Germany Morocco South Korea
Barbados Ghana Mozambique Spain
Belarus Greece Myanmar Sri Lanka
Belgium Guatemala Namibia Sweden
Belize Haiti Nepal Switzerland
Benin Honduras Netherlands Tajikistan
Bolivia Hungary New Zealand Tanzania
Bosnia and Herzegovina India Nicaragua Thailand
Botswana Indonesia Niger The Bahamas
Brazil Iraq Nigeria Togo
Bulgaria Ireland Norway Trinidad and Tobago
Burkina Faso Israel Oman Turkey
Cambodia Italy Pakistan Uganda
Cameroon Jamaica Panama Ukraine
Canada Japan Papua New Guinea United Arab Emirates
Cape Verde Jordan Paraguay United Kingdom
Chile Kazakhstan Peru United States
Colombia Kenya Philippines Uruguay
Costa Rica Kuwait Poland Venezuela
Croatia Kyrgyzstan Portugal Vietnam
Czechia Laos Qatar Yemen
Denmark Latvia Romania Zambia
Ecuador Lebanon Russia Zimbabwe
Egypt Lithuania Rwanda
El Salvador Luxembourg Saudi Arabia
Estonia Malaysia Senegal

When considering the multi-collinearity problem, the country characteristics vari-
ables include “pop density”, “aged 70 order”, “cardiovascular”, “diabetes”, and “GDP
per capita”. These data are obtained from the Our Word in Data (OWID) database. The
anti-epidemic outcomes Hc,t+l included the growth rate of new cases and the growth rate of
new deaths. These data are from the OWID database. The behaviors Bc,t include “work-
places”, “retail”, “transit”, and “grocery”, which are derived from the “Google COVID-19
Community Mobility Reports”. These variables reflect the percentage change in the number
of visits and length of stay in these places compared to the base period (The baseline is the
median of the same day of the week from 3 January to 6 February 2020). The government
vaccination policy variables include “school closing”, “cancel public events”, “restrictions
on gatherings”, “close public transport”, “stay at home requirements”, “international travel
controls”, “testing”, “contact tracing”, “facial coverings”, and “vaccination”. These data
are from the Oxford COVID-19 Government Response Tracker (OxCGRT) database. We
use the lag terms of some variables to reflect the information variables Ic,t; these variables
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include the growth rate of new cases, the growth rate of new deaths, new cases, and new
deaths. Since the latter two are absolute numbers, we take logarithms for them. The data
from the OWID database. Based on the results of the SIRDS model, the growth rate of new
tests should also be considered in the direct and total effects model of the growth rate of
new cases.

The data processing process is as follows. The health, behavior, policy, and information
variables are daily data and are highly volatile. To eliminate the non-smoothness of the data,
we aggregate the daily data to weekly data. Weekly data have the following advantages
over daily data. First, white noise can be removed. Second, the cyclical fluctuations
associated with particular days (e.g., reporting days, testing days, etc.) can be reduced.
Third, weekly data (e.g., reduction in new cases over two weeks) are key indicators for
government policymakers to implement policies. These data are processed as follows. First,
for the health and test variables, we sum the daily number of new cases, daily number
of new deaths, and daily number of detections from day t to t-6, respectively. On this
basis, we obtained the weekly growth rates of new cases, the weekly growth rates of new
deaths, and the weekly growth rates of new tests. Second, we attained the weekly policy
and behavioral variables through 7-day moving averages from t to t-6 days. Third, for the
country-level variables, we use annual data to approximate weekly data.

4. Empirical Analysis
4.1. The Effect of Policies and Information on Behaviors

The empirical results of the Equation (2) are shown in Table 2. The results suggest that
behaviors are not only influenced by policies but also respond to information released on
cases and deaths growth. We reached similar conclusions whether we used information
from confirmed cases (Table 2a) or deaths (Table 2b). First, the school closing, close public
transportation, and stay-at-home requirements policies significantly reduce people going
to workplaces, retail, transit, and grocery stores. The international travel controls policy
significantly reduces people going to transit. Second, the public events cancellation and
vaccination policies do not affect people going to workplaces, retail, transit, and grocery.
Third, the facial coverings policy significantly increases people going to workplaces, retail,
transit, and grocery. Fourth, in Columns (1) and (2) of Table 2, the coefficients of “logdc”
and “logdd” are significantly negative. This indicates that all other factors being equal, a
1% increase in the number of new cases decreases the percentage change in the number
of visits to workplaces and retail compared to the base period by 0.009% and 0.014%,
respectively. If there is a 1% increase in new deaths, the percentage change in the number
of visits to workplaces and retail compared to the base period decreases by 0.009% and
0.015%, respectively. These show that the increase in the number of new cases and deaths
has led to a growing awareness of the dangers of the COVID-19.

Table 2. The effect of policies and information on behaviors.

(a) Cases as Information Workplaces Retail Transit Grocery

school closing −0.078 *** −0.085 *** −0.074 ** −0.067 *
(0.022) (0.028) (0.029) (0.036)

cancel public events 0.005 −0.024 −0.025 −0.023
(0.020) (0.026) (0.027) (0.031)

restrictions on gatherings −0.056 *** −0.045 −0.051 −0.040
(0.021) (0.032) (0.035) (0.035)

close public transport −0.033 *** −0.068 *** −0.053 *** −0.042 ***
(0.013) (0.016) (0.020) (0.015)

stay at home requirements −0.050 *** −0.067 *** −0.080 *** −0.045 **
(0.010) (0.016) (0.024) (0.018)

international travel controls −0.023 −0.017 −0.052 ** −0.0004
(0.024) (0.029) (0.024) (0.027)
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Table 2. Cont.

(a) Cases as Information Workplaces Retail Transit Grocery

testing −0.061 *** −0.039 −0.068 ** −0.042
(0.017) (0.030) (0.032) (0.033)

contact tracing 0.031 * 0.048 ** −0.003 0.041 **
(0.018) (0.020) (0.022) (0.019)

facial coverings 0.077 *** 0.100 *** 0.095 *** 0.088 ***
(0.015) (0.024) (0.021) (0.019)

vaccination 0.011 0.002 −0.016 0.020
(0.017) (0.023) (0.029) (0.021)

dlogdc 0.015 *** 0.013 *** 0.010 *** 0.003
(0.002) (0.003) (0.003) (0.003)

logdc −0.009 *** −0.014 *** −0.003 −0.002
(0.003) (0.003) (0.004) (0.003)

country variables YES YES YES YES
quarter × country variables YES YES YES YES

observations 44,891 44,891 44,891 44,891
adjusted R2 0.4043 0.5179 0.4641 0.3676

(b) Deaths as Information Workplaces Retail Transit Grocery

school closing −0.082 *** −0.090 *** −0.074 ** −0.067 *
(0.022) (0.028) (0.029) (0.035)

cancel public events 0.003 −0.025 −0.021 −0.022
(0.021) (0.026) (0.027) (0.030)

restrictions on gatherings −0.063 *** −0.054 * −0.053 −0.041
(0.021) (0.032) (0.035) (0.035)

close public transport −0.033 ** −0.065 *** −0.050 ** −0.042 ***
(0.013) (0.016) (0.020) (0.015)

stay at home requirements −0.050 *** −0.063 *** −0.075 *** −0.044 **
(0.010) (0.016) (0.024) (0.018)

international travel controls −0.033 −0.028 −0.058 ** −0.003
(0.025) (0.030) (0.025) (0.027)

testing −0.075 *** −0.061 ** −0.071 ** −0.045
(0.017) (0.028) (0.031) (0.032)

contact tracing 0.026 0.039 * −0.005 0.039 **
(0.018) (0.020) (0.021) (0.019)

facial coverings 0.071 *** 0.097 *** 0.093 *** 0.086 ***
(0.015) (0.023) (0.020) (0.019)

vaccination 0.007 0.006 −0.015 0.019
(0.017) (0.023) (0.029) (0.022)

dlogdd −0.0002 −0.0005 −0.003 −0.003 *
(0.002) (0.002) (0.002) (0.002)

logdd −0.009 *** −0.015 *** −0.006 −0.003
(0.002) (0.003) (0.004) (0.003)

country variables YES YES YES YES
quarter × country variables YES YES YES YES

observations 44,891 44,891 44,891 44,891
adjusted R2 0.4017 0.5247 0.4666 0.3689

Note: Standard errors clustered by country are in parentheses, which are computed by bootstrap random sampling
2000 times. * p < 0.1; ** p < 0.05; *** p < 0.01.

4.2. The Direct Effect of Policies, Behaviors, and Information on Cases and Deaths Growth

The empirical results of the Equation (1) are shown in Table 3. In Table 3a, l is taken as
14 days. In Table 3b, l is taken as 21 days.
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Table 3. The direct effect of policies, behaviors, and information on cases and deaths growth.

(a) Cases dlogdc (b) Deaths dlogdd

lag(school closing, 14) −0.233 *** lag(school closing, 21) −0.174 ***
(0.060) (0.059)

lag(cancel public events, 14) −0.093 * lag(cancel public events, 21) −0.079 *
(0.048) (0.048)

lag(restrictions on gatherings, 14) 0.023 lag(restrictions on gatherings, 21) −0.015
(0.042) (0.036)

lag(close public transport, 14) 0.054 *** lag(close public transport, 21) 0.038 *
(0.019) (0.021)

lag(stay at home requirements, 14) 0.037 lag(stay at home requirements, 21) 0.023
(0.032) (0.029)

lag(international travel controls, 14) −0.253 *** lag(international travel controls, 21) −0.336 ***
(0.087) (0.113)

lag(testing, 14) −0.235 * lag(testing, 21) −0.029
(0.139) (0.106)

lag(contact tracing, 14) −0.082 * lag(contact tracing, 21) −0.027
(0.044) (0.043)

lag(facial coverings, 14) −0.133 *** lag(facial coverings, 21) −0.126 ***
(0.044) (0.039)

lag(vaccination, 14) −0.158 *** lag(vaccination, 21) −0.144 ***
(0.045) (0.041)

lag(workplaces, 14) 0.474 *** lag(workplaces, 21) 0.399 ***
(0.140) (0.125)

lag(retail, 14) 0.168 lag(retail, 21) 0.079
(0.152) (0.123)

lag(transit, 14) 0.148 lag(transit, 21) 0.246 **
(0.106) (0.102)

lag(grocery, 14) −0.412 *** lag(grocery, 21) −0.323 ***
(0.116) (0.103)

lag(dlogdc, 14) 0.048 *** lag(dlogdd, 21) 0.050 ***
(0.017) (0.012)

lag(logdc, 14) −0.028 *** lag(logdd, 21) −0.021 ***
(0.006) (0.004)

dlogtests 0.019 **
(0.009)

country variables YES country variables YES
quarter × country variables YES quarter × country variables YES

observations 42,472 observations 42,350
adjusted R2 0.1082 adjusted R2 0.0455

Note: Standard errors clustered by country are in parentheses, which are computed by bootstrap random sampling
2000 times. * p < 0.1; ** p < 0.05; *** p < 0.01.

Based on the empirical results, the paper draws the following conclusions. First, we
analyzed the direct effect of government epidemic prevention policies on health outcomes.
The international travel controls policy reduces the future growth rates of new cases and
deaths by 25.3% and 33.6%, respectively. The school closing policy reduces the future
growth rates of new cases and deaths by 23.3% and 17.4%, respectively. The vaccination
policy reduces future growth rates of new cases and deaths by 15.8% and 14.4%, respectively.
The facial coverings policy reduces future growth rates of new cases and deaths by 13.3%
and 12.6%, respectively. The public events cancellation policy reduces the future growth
rates of new cases and deaths by 9.3% and 7.9%, respectively. The testing and contact tracing
policies reduce the growth rate of future confirmed cases by 23.5% and 8.2%, respectively,
but do not have a significant impact on the future new deaths growth rate. The direct effect
of the restrictions on gatherings and stay-at-home requirements policies on future health
outcomes is not significant, as they may indirectly affect health outcomes through changes
in human mobility behaviors. However, the direct effect of the close public transport policy
on anti-epidemic outcomes was 5.4% and 3.8% higher in the growth rate of new cases and
deaths, respectively.

Second, we attained the direct effect of human mobility behaviors on anti-epidemic
outcomes. The coefficient of “workplaces” with a 14-day lag is significantly positive. It
indicated that a 1% decrease in the percentage change in the number and length of stay of
people going to workplaces compared to the base period led to a decrease in the growth
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rate of new cases after 14 days 0.47%. The coefficients of “workplaces” and “transit” with a
lag of 21 days are significantly positive. It meant that the percentage change in the number
of visits to workplaces and transit was 1% lower than that of the base period, and the
growth rate of deaths decreases by 0.4% and 0.25% after 21 days, respectively. However, a
1% decrease in the percentage change in the number and length of stay of people going to
grocery compared to the base period would result in a 0.41% and 0.32% increase in the rate
of new cases and deaths, respectively, in the future.

Third, we studied the direct effect of information on anti-epidemic outcomes. The
coefficients on the lagged growth rates of new cases and deaths are significantly positive,
indicating that a 1% increase in the growth rate of new cases would result in a 0.048%
increase in the growth rate of new cases 14 days later and a 1% increase in the growth
rate of current new deaths would result in a 0.05% increase in the growth rate of deaths
21 days later. The coefficients of lagged “logdc” and “logdd” are both significantly negative,
indicating that a 1% increase in new cases would result in a 0.028% decrease in the rate of
growth of new cases 14 days later. If the number of new deaths increases by 1%, the growth
rate of new deaths decreases by 0.021% after 21 days.

Fourth, the paper explained the direct effect of tests on new cases. The coefficient
on the growth rate of testing is significantly positive, indicating that a 1% increase in
the growth rate of testing rate is associated with a 0.019% increase in the growth rate of
new cases.

4.3. The Total Effect of Policies and Information on Cases and Deaths Growth When Causal
Pathways Are Not Considered

By estimating the Equation (5), we obtained the total effect of policies and information
on cases and deaths growth when causality among variables was not considered (see
Table 4).

Based on the empirical results, the paper draws the following conclusions. First, the
paper stated the total effect of policies on health outcomes when causal pathways are
not considered. As shown in Table 4, the policies of international travel controls, school
closing, testing, vaccination, facial coverings, public events cancellation, and contact tracing
reduced the growth rate of future new cases by 27.1%, 26.8%, 26.1%, 17.1%, 11.5%, 8.4%, and
7.8%, respectively. The policies of international travel controls, school closing, vaccination,
and facial coverings decreased the rate of future new deaths by 36.2%, 21.7%, 15.5%, and
11.1%, respectively. It indicated the effectiveness of these prevention policies, whereas the
close public transport policy increased the rate of future new cases by 3.8%, indicating that
the policy was not effective in general.

Second, we explained the total effect of information on health outcomes when causal
pathways are not considered. As seen in Table 4, the coefficients on the lagged growth
rates of new cases and deaths are significantly positive, indicating that a 1% increase in
the growth rate of new cases leads to a 0.057% increase in the growth rate of new cases
14 days later. A 1% increase in the growth rate of new deaths leads to a 0.052% increase
in the growth rate of new deaths 21 days later. The coefficients on the lagged logarithm
of both new cases and deaths were significantly negative, indicating that a 1% increase
in new cases results in a 0.035% decrease in the growth rate of new cases 14 days later. A
1% increase in new deaths results in a 0.026% decrease in the growth rate of new deaths
21 days later.

Finally, we demonstrated the total effect of tests growth rate on the growth rate of new
cases. The coefficient on the growth rate of tests was significantly positive, indicating that
a 1% increase in the growth rate of testing would increase the growth rate of new cases
by 0.019%.
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Table 4. The total effect of policies and information on cases and deaths growth when causality
among variables is not considered.

(a) Cases dlogdc (b) Deaths dlogdd

lag(school closing, 14) −0.268 *** lag(school closing, 21) −0.217 ***
(0.066) (0.065)

lag(cancel public events, 14) −0.084 * lag(cancel public events, 21) −0.075
(0.051) (0.051)

lag(restrictions on gatherings, 14) −0.0005 lag(restrictions on gatherings, 21) −0.044
(0.045) (0.039)

lag(close public transport, 14) 0.038 * lag(close public transport, 21) 0.023
(0.020) (0.022)

lag(stay at home requirements, 14) 0.010 lag(stay at home requirements, 21) −0.007
(0.031) (0.028)

lag(international travel controls, 14) −0.271 *** lag(international travel controls, 21) −0.362 ***
(0.093) (0.119)

lag(testing, 14) −0.261 * lag(testing, 21) −0.066
(0.143) (0.109)

lag(contact tracing, 14) −0.078 * lag(contact tracing, 21) −0.028
(0.043) (0.045)

lag(facial coverings, 14) −0.115 ** lag(facial coverings, 21) −0.111 ***
(0.046) (0.040)

lag(vaccination, 14) −0.171 *** lag(vaccination, 21) −0.155 ***
(0.044) (0.042)

lag(dlogdc, 14) 0.057 *** lag(dlogdd, 21) 0.052 ***
(0.017) (0.012)

lag(logdc, 14) −0.035 *** lag(logdd, 21) −0.026 ***
(0.006) (0.004)

dlogtests 0.019 **
(0.009)

country variables YES country variables YES
quarter × country variables YES quarter × country variables YES

observations 42,472 observations 42,350
adjusted R2 0.1025 adjusted R2 0.0417

Note: Standard errors clustered by country are in parentheses, which are computed by bootstrap random sampling
2000 times. * p < 0.1; ** p < 0.05; *** p < 0.01.

4.4. The Direct, Indirect, and Total Effects of Government Epidemic Prevention Policies and
Information on Anti-Epidemic Outcomes

Now, we explain the indirect and total effects of policies and information on cases and
deaths growth. We also compared the average effect and differences among considering
the causal paths and not.

The results are shown in Table 5. Column (1) is derived from Table 3 and represents
the direct effect of policies on cases and deaths growth when behaviors are unchanged.
Column (2) is the indirect effect of government vaccination policy on cases and deaths
growth by changing behaviors. The coefficients of Column (2) can be calculated from
Tables 2 and 3. Column (3) is the total effect of policies on cases and deaths growth when
considering the causal pathway. The coefficients of Column (3) are obtained by summing
Columns (1) and (2). Column (4) is derived from Table 4 and refers to the total effect
of policies on cases and deaths growth when causal pathways are not considered. The
coefficient in Column (5) is the average of Columns (3) and (4). The total effect of policies on
cases and deaths growth is responded from the average when causal paths are considered
and not. The coefficient in Column (6) is the difference between Columns (3) and (4),
reflecting the difference between the two estimated results.

The results for Columns (1) and (4) of Table 5 have been analyzed previously, and the
results for the remaining columns are explained as follows. First, we studied the indirect
effect of policies and information on health outcomes. By changing human mobility be-
havior, the policies of school closing, stay-at-home requirements, testing, restrictions on
gatherings, and close public transport reduced the growth rate of new cases by 3.5%, 2.8%,
2.8%, 2.5%, and 1.8%, respectively. The policies of testing, school closing, restrictions on
gatherings, stay-at-home requirements, international travel controls, and public transporta-
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tion closing reduced the growth rate of new deaths by 3.7%, 3.6%, 2.9%, 2.9%, 2.9%, and
1.7%, respectively. A 1% increase in the growth rate of new cases increases the growth rate
of future new cases by 0.01%. A 1% increase in new cases decreases the growth rate of new
cases by 0.006% after 14 days. A 1% increase in new deaths decreases the growth rate of
new deaths by 0.005% after 21 days.

Table 5. The direct, indirect, and total effects of policies and information on cases and deaths growth.

(a) Cases Direct Effect Indirect
Effect

Total Effect
Average DifferenceConsidering

Causal Pathways
Not Considering
Causal Pathways

school closing −0.233 *** −0.035 ** −0.268 *** −0.268 *** −0.268 *** 0.000
(0.059) (0.014) (0.064) (0.065) (0.064) (0.005)

cancel public events −0.093 * 0.004 −0.089 * −0.084 * −0.087 * −0.005
(0.048) (0.012) (0.051) (0.051) (0.051) (0.005)

restrictions on gatherings 0.023 −0.025 ** −0.002 −0.000 −0.001 −0.002
(0.042) (0.012) (0.045) (0.045) (0.045) (0.005)

close public transport 0.054 *** −0.018 * 0.036 * 0.038 * 0.037 * −0.001
(0.019) (0.010) (0.021) (0.021) (0.021) (0.003)

stay at home requirements 0.037 −0.028 *** 0.009 0.010 0.009 −0.002
(0.032) (0.009) (0.030) (0.030) (0.030) (0.003)

international travel controls −0.253 *** −0.021 −0.274 *** −0.271 *** −0.273 *** −0.003
(0.087) (0.014) (0.095) (0.093) (0.094) (0.005)

testing −0.235 * −0.028 ** −0.263 * −0.261 * −0.262 * −0.002
(0.136) (0.011) (0.140) (0.140) (0.140) (0.006)

contact tracing −0.082 * 0.005 −0.077 * −0.078 * −0.077 * 0.001
(0.043) (0.011) (0.043) (0.042) (0.042) (0.004)

facial coverings −0.133 *** 0.032 *** −0.102 ** −0.115 ** −0.108 ** 0.013 ***
(0.042) (0.011) (0.044) (0.044) (0.044) (0.005)

vaccination −0.158 *** −0.005 −0.163 *** −0.171 *** −0.167 *** 0.008
(0.044) (0.010) (0.044) (0.043) (0.043) (0.008)

dlogdc 0.048 *** 0.010 *** 0.057 *** 0.057 *** 0.057 *** −0.000
(0.016) (0.002) (0.017) (0.017) (0.017) (0.001)

logdc −0.028 *** −0.006 *** −0.034 *** −0.035 *** −0.034 *** 0.001
(0.006) (0.002) (0.006) (0.006) (0.006) (0.001)

(b) Deaths Direct Effect Indirect
Effect

Total Effect
Average DifferenceConsidering

Causal Pathways
Not Considering
Causal Pathways

school closing −0.174 *** −0.036 *** −0.210 *** −0.217 *** −0.214 *** 0.007
(0.059) (0.013) (0.063) (0.064) (0.064) (0.006)

cancel public events −0.079 * 0.001 −0.078 −0.075 −0.077 −0.003
(0.045) (0.012) (0.048) (0.049) (0.048) (0.005)

restrictions on gatherings −0.015 −0.029 ** −0.044 −0.044 −0.044 0.000
(0.037) (0.012) (0.040) (0.040) (0.040) (0.005)

close public transport 0.038 * −0.017 * 0.021 0.023 0.022 −0.001
(0.022) (0.009) (0.023) (0.023) (0.023) (0.002)

stay at home requirements 0.023 −0.029 *** −0.007 −0.007 −0.007 0.000
(0.029) (0.009) (0.028) (0.028) (0.028) (0.003)

international travel controls −0.336 *** −0.029 ** −0.365 *** −0.362 *** −0.363 *** −0.003
(0.113) (0.013) (0.119) (0.118) (0.119) (0.005)

testing −0.029 −0.037 *** −0.066 −0.066 −0.066 −0.000
(0.103) (0.010) (0.106) (0.107) (0.106) (0.007)

contact tracing −0.027 −0.001 −0.028 −0.028 −0.028 0.001
(0.042) (0.009) (0.043) (0.043) (0.043) (0.004)

facial coverings −0.126 *** 0.031 *** −0.095 ** −0.111 *** −0.103 *** 0.017 ***
(0.039) (0.011) (0.040) (0.041) (0.040) (0.006)

vaccination −0.144 *** −0.007 −0.150 *** −0.155 *** −0.153 *** 0.005
(0.041) (0.010) (0.042) (0.041) (0.041) (0.009)

dlogdd 0.050 *** 0.0004 0.050 *** 0.052 *** 0.051 *** −0.002 **
(0.012) (0.001) (0.012) (0.012) (0.012) (0.001)

logdd −0.021 *** −0.005 *** −0.026 *** −0.026 *** −0.026 *** 0.001
(0.004) (0.002) (0.004) (0.004) (0.004) (0.001)

Note: The direct effect is given by π in the Equation (1). The indict effect is given by α from Equation (1) times β
from Equation (2). The total effect of considering causal pathways is π + βα. The total effect, regardless of the
causal path, is calculated by Equation (5). Standard errors clustered by country are in parentheses, which are
computed by bootstrap random sampling 2000 times. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Second, we depicted the total effect of policies and information on cases and deaths
growth rate when considering the causal pathway. The policies of international travel
controls, school closing, testing, vaccination, facial coverings, public events cancellation,
and contact tracing reduce future growth rates of new cases by 27.4%, 26.8%, 26.3%, 16.3%,
10.2%, 8.9%, and 7.7%, respectively. The policies of international travel controls, school
closing, vaccination, and facial coverings reduce the growth rate of future new deaths by
36.5%, 21%, 15%, and 9.5%, respectively. However, the closure of public transport policy
increases the growth rate of future new cases by 3.6%. There was a significantly positive
coefficient on the lagged growth rate of new cases and deaths, indicating that a 1% increase
in the growth rate of new cases increases the growth rate of confirmed cases by 0.057%
14 days later. A 1% increase in the growth rate of new deaths would result in a 0.05%
increase in the growth rate of deaths 21 days later. The coefficients of “logdc” and “logdd”
are significantly negative. A 1% increase in new cases reduces the growth rate of new cases
by 0.034% after 14 days. A 1% increase in current new deaths reduces the growth rate of
new deaths by 0.026% after 21 days.

Then, we demonstrated the total effect of policies on cases and deaths growth in terms
of means considering causal pathways and not (Column (5) of Table 5). The policies of
international travel controls, school closing, testing, vaccination, facial coverings, public
events cancellation, and contact tracing reduce future growth rates of new cases by 27.3%,
26.8%, 26.2%, 16.7%, 10.8%, 8.7%, and 7.7%, respectively. The policies of international travel
controls, school closing, vaccination, and facial coverings reduce the growth rate of future
new deaths by 36.3%, 21.4%, 15.3%, and 10.3%, respectively. A 1% increase in the growth
rate of new cases would increase the growth rate of future new cases by 0.057%. A 1%
increase in the growth rate of new deaths would increase the growth rate of future new
deaths by 0.051%. If the number of new cases increases by 1%, the growth rate of new cases
decreases by 0.034% after 14 days. A 1% increase in current new deaths is associated with a
0.026% decrease in the growth rate of new deaths after 21 days.

Finally, the reasonableness of the structural equation model setting can be judged
based on the difference in Column (6) of Table 5. The results show that the differences
between the coefficients of the governmental epidemic prevention policies are small, except
for the difference between the two estimated results of facial coverings policy, which
indicates that the causal paths we explored are reasonable.

5. Sensitivity Analysis

To ensure the robustness of the model estimation results, we performed sensitivity
analysis. First, we excluded special samples. Second, we changed other variables consid-
ering the lack of appropriate substitution for the explanatory variables, behaviors, and
policies. Finally, we replaced the time lag between infection and new cases or deaths.

5.1. Excluding Special Samples and Changing Variables

Based on the baseline model, we made the following estimations by excluding special
samples and replacing variables that may affect the results, respectively.

(1) Baseline model.
(2) Exclude the United States from the sample because it was the developed country with

the highest cumulative number of confirmed cases.
(3) Exclude India from the sample because it was the developing country with the highest

cumulative number of confirmed cases.
(4) Add the democracy index to the regression variables.
(5) Add the human freedom index to the regression variables.
(6) Include all additional controls in (2)–(5).
(7) Use the lagged terms of human behavioral variables as informative variables.

Figure 5 shows the estimated coefficients and 90% confidence intervals of policies for
cases and deaths growth in the seven scenarios described above. As shown in Figure 5,
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the estimation results of policies are robust after excluding special samples and changing
variables. This finding provides evidence for the correct setting of the baseline model.

5.2. Changing Time Lag

As an alternative to sensitivity analysis, we changed the time lag, assuming that the
time lag between infection and new cases is 7 days. Assume that the time lag between
infection and new deaths is 24 days. We re-estimated the above model with the new time
lags. Figure 6 presents the estimated coefficients and 90% confidence intervals for each
policy variable in the seven cases mentioned above.

The results show that the policies of public events cancellation, public transport closing,
testing, and contact tracing are susceptible to time lags, suggesting that these policies have
longer time lags in causing changes in the growth rate of new cases in the future. The effect
of the public events cancellation policy on the growth rate of new deaths became significant
after the time lag was changed, indicating that the policy has a slower effect on the growth
rate of new deaths in the future.

Figure 4. Cont.
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Figure 5. Estimated coefficients of policies under different model settings: (a) school closing; (b) cancel
public events; (c) restrictions on gatherings; (d) close public transport; (e) stay at home requirement;
(f) international travel controls; (g) testing; (h) contact tracing; (i) facial coverings; (j) vaccination.
Note: “Red” and “blue” represent regression models in which the explanatory variables are the rate
of growth of confirmed cases and the rate of growth of deaths, respectively. The “dots” represent the
estimated coefficients and the “lines” represent the 90% confidence intervals. Same as in Figure 6.
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Figure 6. Cont.
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Figure 6. Estimated coefficients of policy variables under different model settings after changing the
time lag: (a) school closing; (b) cancel public events; (c) restrictions on gatherings; (d) close public
transport; (e) stay at home requirement; (f) international travel controls; (g) testing; (h) contact tracing;
(i) facial coverings; (j) vaccination.

6. Counterfactual Policy Analysis

Through the previous quantitative analysis, this paper validates the intricate relation-
ships among policies, behaviors, information, and cases and deaths growth. However, we
also want to know what the cases and deaths are when the government does not adopt
certain policies. Based on the mean of the two estimates considering causal pathways and
not (Column (5) of Table 5), this chapter conducts a counterfactual policy analysis.

6.1. Mandating Facial Coverings

Under other things held constant, we assumed that the governments of 121 countries
implemented the mandating facial coverings policy from 7 March 2020 and simulated the
impacts of the policy on cases and deaths (see Figure 7). When all other policies are held
constant, the impact of mandating facial coverings policy is greater for new cases than for
deaths. The point estimate suggests that the counterfactual policy would lead to about 18%
and 14% reduction in cumulative confirmed cases and deaths, respectively, in 121 countries
by early March 2021, with 90% confidence intervals of [9%, 28%] and [2%, 18%]. This
corresponds to saving between 50,000 and 446,000 lives.

6.2. Mandating Vaccination Policy

We simulated the impact of this counterfactual policy on cases and deaths, assuming
that all 121 governments implement a vaccination policy as of 7 March 2020, with all other
things held constant. Figure 8 shows the counterfactual results of the vaccination policies
on anti-epidemic outcomes. The results suggest that the counterfactual policy would
lead to a 93% and 62% reduction in cumulative confirmed cases and deaths, respectively,
in 121 countries by early March 2021, with 90% confidence intervals of [81%, 99%] and
[22%, 82%]. This corresponds to saving between 550,000 and 2.03 million lives.
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Figure 7. Effect of mandating facial coverings on 7 March among 121 countries: (a) Cases; (b) Deaths.
Note: The counterfactual estimates are smooth generalized functions of the potential parameter
estimates, and we construct healthy outcomes and confidence intervals for the counterfactual policy
by the bootstrap method. In the left column, the black dots represent the change in the growth rate of
new cases (deaths) by country. The blue line refers to the average of the change in the growth rate of
new cases (deaths) by country. In the middle column, the black dots represent the daily change in
new cases (deaths) by country. The blue line refers to the total change in the number of new cases
(deaths) per day for each country. In the right column, the blue line refers to the change in cumulative
confirmed (dead) cases. The shaded areas are the 90% confidence intervals of the corresponding
points of the blue line, respectively. Same as in Figures 8 and 9.
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6.3. No Close Public Transport Policy

Figure 9 shows the dynamic impact of not implementing closing public transportation
on cases and deaths from 7 March 2020. The results suggest that the counterfactual
policy would lead to a 40% and 10% reduction in cumulative confirmed cases and deaths,
respectively, in 121 countries by early March 2021.

7. Discussion

In this study, by constructing a theoretical framework and conducting empirical
analysis, we conclude that government epidemic prevention policies not only directly affect
health outcomes but also indirectly affect health outcomes by affecting human mobility
behaviors. Compared with the existing literature, the government epidemic prevention
policies considered in this paper is more comprehensive.

From the results of the empirical analysis, this paper finds that the facial coverings
policy significantly increases people going to workplaces, retail stores, transit stations, and
grocery stores. The results demonstrate that the facial coverings policy creates a false sense
of security, increases mobility, and reduces social distance. Contrary to the findings of
Seres et al. [42], who conducted a randomized field trial in Berlin, Germany, and found that
wearing masks increase social distance.

When comparing our results to those of existing literature [10], it must be pointed out
that we have a new conclusion. The coefficient of the growth rate of testing on the growth
rate of new confirmed cases is significantly positive. This finding implies the possibility of
underestimation of new cases in some countries where testing is small. Consistent with the
previous studies [39,40], this paper confirms that vaccination policies reduce COVID-19
cases and deaths.

This paper has important guiding significance for the adjustment of government
epidemic prevention policies in various countries. However, due to data limitations, we
cannot quantify the economic impact of the government’s quarantine policies.

More broadly, our causal framework quantitatively analyzes the impact of factors
such as government interventions, human mobility behaviors, and information on cases
and deaths in the COVID-19. However, the impact of these factors on economic resilience,
supply chains, and exports is unclear. This is also a direction for further research.



Sustainability 2022, 14, 3694 23 of 26

8. Conclusions and Policy Implications
8.1. Conclusions

Based on data from 121 countries, this paper combines dynamic panel structural
equations, SIRDS epidemic models, machine learning, and econometric models to assess the
effects of government epidemic prevention policies, human mobility behaviors, information
variables, and confounding factors on anti-epidemic outcomes and to explore the causal
pathways among these variables.

First, based on relevant literature, the paper proposed a causal pathway diagram of
the effects between government epidemic prevention policies, human mobility behaviors,
information, confounding factors, and anti-epidemic outcomes. Second, we obtained the
SIRDS epidemic model by revising the SIRD epidemic model. Again, after combining
the causal path diagram and the SIRDS model, we attained the model settings for dif-
ferent anti-epidemic outcomes. Then, based on the model settings, the paper attained
the empirical results of the causal paths among these variables and conducted sensitivity
analysis and counterfactual tests from different perspectives. Finally, we obtained the
following conclusions.

First, there are differences in the impact of government epidemic prevention policies
on human mobility behaviors. The policies of school closing, public transport closing,
and stay-at-home requirements reduced human mobility in workplaces, retail, transit, and
grocery. The international travel controls policy only reduced human mobility in transit.
The policies of public events cancellation and vaccination have not affected human mobility
in workplaces, retail, transit, and grocery. However, the facial coverings policy increased
human mobility in workplaces, retail, transit, and grocery. It means wearing masks makes
people feel a false sense of security.

Second, the information released by new cases and deaths affects human mobility
behaviors. The increase in new cases and deaths reduced human mobility in workplaces
and retail. These suggest that people received new information and voluntarily adjusted
their behavior to reduce non-essential outings. In addition, information affected not only
human mobility behavior but also had direct and indirect effects on anti-epidemic outcomes.
The current growth rates of new cases and deaths are characterized by positive feedback in
the future. On the contrary, new cases and deaths reduced future growth rates of new cases
and deaths, respectively.

Third, human mobility behaviors had a direct effect on anti-epidemic outcomes. Lower
human mobility in workplaces decreased the growth rate of new cases in the future. Lower
human mobility in workplaces and transit also reduced the growth rate of future new
deaths. However, reduced human mobility to grocery increased the growth rate of future
new cases and deaths.

Forth, the direct effect of government epidemic prevention policies on anti-epidemic
outcomes varies greatly. The policies of international travel controls, testing, school closing,
vaccination, facial coverings, public events cancellation, and contact tracing reduced the
growth rate of new cases in the future by 25.3% and 23.5%, 23.3%, 15.8%, 13.3%, 9.3%, and
8.2%, respectively. The policies of international travel controls, school closing, vaccination,
facial coverings, and public events cancellation decreased the growth rate of new deaths in
the future by 33.6%, 17.4%, 14.4%, 12.6%, and 7.9%, respectively. The testing and contact
tracing policies have not directly affected the growth rate of new deaths in the future.
The policies of restrictions on gatherings and stay-at-home requirements have not directly
affected future anti-epidemic outcomes. However, the direct effect of the public transport
closing policy on anti-epidemic outcomes increased the growth rate of new cases and
deaths in the future by 5.4% and 3.8%, respectively.

Fifth, government epidemic prevention policies also indirectly affected anti-epidemic
outcomes. By changing the human mobility behavior, the policies of school closing, stay at
home requirements, testing, restrictions on gatherings, and public transport closing reduced
the growth rate of new cases in the future by 3.5%, 2.8%, 2.8%, 2.5%, and 1.8%, respectively.
The policies of testing, school closing, restrictions on gatherings, stay at home requirements,
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international travel controls, and public transport closing decreased the growth rate of new
deaths in the future by 3.7%, 3.6%, 2.9%, 2.9%, 2.9%, and 1.7%, respectively. However, the
facial coverings policy increased the growth rate of new cases and deaths by 3.2% and 3.1%,
respectively. Echoing the previous conclusion, it further proved that wearing masks gave
people a false sense of security and increased human mobility behaviors.

Sixth, we combined the two conditions of considering the causal path and not con-
sidering it and attained the total effect of government epidemic prevention policies on
anti-epidemic outcomes. The policies of international travel controls, school closing, testing,
vaccination, facial coverings, public events cancellation, and contact tracing have reduced
the growth rate of new cases in the future by 27.3%, and 26.8%, 26.2%, 16.7%, 10.8%, 8.7%,
and 7.7%, respectively. The policies of international travel controls, school closing, vacci-
nation, and facial coverings have reduced the growth rate of new deaths in the future by
36.3%, 21.4%, 15.3%, and 10.3%, respectively. However, the public transport closing policy
has generally increased the growth rate of new cases in the future by 3.7%.

Seventh, the increase in tests rate increased the growth rate of new cases. This shows
that confirmed cases in countries with low test rates may be underestimated.

Eighth, in the counterfactual policy analysis, the implementation of mandatory masks
and vaccination policies significantly reduced new cases and deaths. By the beginning
of March 2021, the mandatory masks policy will save 50,000 to 446,000 lives, and the
vaccination policy will save 550,000 to 2.03 million lives. Not implementing the closing
public transportation policy would reduce the new cases.

8.2. Policy Implications

Based on the above conclusions, we have the following policy inspirations.
First, the government should continue to implement the international travel controls

policy. Based on the empirical results, we found that this policy is the most effective in
terms of anti-epidemic outcomes and significantly reduces the growth rate of new cases
and deaths in the future. At present, the international situation of the COVID-19 is serious,
and the liberalization of the international human movement is not conducive to controlling
the epidemic.

Second, the government should conduct multiple comprehensive tests to avoid under-
estimation of new cases and isolation of the infected population as early as possible.

Third, the government should consider stopping the implementation of the close
public transport policy. We found that although this policy reduces the growth rate of new
cases and deaths by changing the movement of people, the policy directly increases the
number of new cases. The growth rate of new cases and deaths have a direct impact greater
than an indirect impact. Public transportation is one of the main ways for people to outing.
For some outings that cannot be reduced, the close public transport policy increases the
difficulty of moving people, making people have to find new ways of outing, which may
cause greater infections.

Forth, the government should strengthen publicity on the role of masks in epidemic
prevention. It is undeniable that the facial coverings policy has significantly reduced the
growth rate of new cases and deaths, but this result is mainly due to a direct impact. The
facial coverings policy makes people feel a false sense of security, improves human mobility
in different situations, and makes the policy’s indirect impact on anti-epidemic outcomes
positive. Therefore, the government should increase the publicity that wearing masks does
not mean absolute safety.

Fifth, the government should cancel unnecessary public events or hold them online.
At the moment, avoiding exposure to the virus is a better way to prevent the epidemic.
Public events will gather people and increase the risk of people contracting the virus. The
cancellation of public activities cut off the transmission route to a certain extent, which is
conducive to the control of the epidemic.

Seventh, the government should use a combination of vaccination and non-drug
interventions. According to the conclusion, not implementing the public transportation
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closing policy will help reduce the number of new cases in countries every day, and gov-
ernments should consider reopening public transportation. Vaccines have greatly reduced
the growth rate of new cases and deaths, and the anti-epidemic outcomes of international
travel controls and testing are equally important. What is more, the governments should
implement vaccination policies as much as possible.
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