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Abstract: Accidents involving heavy vehicles are of significant concern as it poses a higher risk
of fatality to both heavy vehicle drivers and other road users. This study is carried out based on
the heavy vehicle crash data of 2014, extracted from the MIROS Road Accident and Analysis and
Database System (M-ROADS). The main objective of this study is to identify significant variables
associated with categories of injury severity as well as classify and predict heavy vehicle drivers’
injury severity in Malaysia using the classification and regression tree (CART) and random forest (RF)
methods. Both CART and RF found that types of collision, driver errors, number of vehicles involved,
driver’s age, lighting condition and types of heavy vehicle are significant factors in predicting the
severity of heavy vehicle drivers’ injuries. Both models are comparable, but the RF classifier achieved
slightly better accuracy. This study implies that the variables associated with categories of injury
severity can be referred by road safety practitioners to plan for the best measures needed in reducing
road fatalities, especially among heavy vehicle drivers.

Keywords: classification and regression tree; driver injury severity; heavy vehicles accident; machine
learning; random forest

1. Introduction

Increasing demand for road transportation solutions to deliver goods or for personal
travel has been well-recognized as one of the impacts of economic development. However,
along with the growth of the economy, the demand for motor vehicles especially heavy
vehicles has raised another significant concern: road accidents. The risk of injury and fatality
caused by heavy vehicle accidents is worrying as it may also involve other road users. Based
on the Statistical Report of Road Accident in Malaysia 2018, there were 44,243 total buses
and lorries reported to be involved in road crashes resulting in 192 casualties among bus
and lorry drivers or passengers [1].

Many studies had discussed and explained the injury severity among heavy vehicle
drivers by either human, vehicle or environmental settings. This research either focused on
specific types of heavy vehicles such as trucks [2–14] and buses [15,16] or considered all
types of heavy vehicles in the data [17–20].

Since heavy vehicles might affect other road users in a crash, some researchers scoped
their study to crashes between heavy vehicles and other specific road users. For instance,
Samerei et al. [15] explored factors affecting the injury severity of pedestrians who were
involved in a collision with buses. On the other hand, Zhou et al. [14] focused their study on
factors affecting passenger car and truck driver injury severity. Pahukula et al. [4] explored
factors related to large trucks involved in crashes by time of day where they proved that
different time settings had a different set of crash determinants. Likewise, Uddin, and
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Huynh [13] also demonstrated a significant difference between factors affecting injury
severity for several lighting conditions. Meanwhile, Chen et al. [8] discovered that road
grade, driver age and seatbelt usage are among the factors affecting truck drivers’ injury
severity for crashes that occurred in rural areas.

In terms of methodology, analysis regarding injury severity in road traffic crashes
had been conducted extensively by using a statistical method such as different types of
regression models [21–24]. However, over the years, technology advancement specifically
in artificial intelligence has led to numerous studies being conducted by using machine
learning. Predictions can be made by calibrating a machine learning model, and various
models have been studied and applied to injury severity-related data. Chen et al. [25] used
the classification and regression tree (CART) model to identify the significant variables
related to driver injury severity for rollover crashes. These variables were then used as
inputs in the support vector machine (SVM) model. They pointed out that seatbelt usage is
the factor associated most with injury severity. In determining the causes of fatal accidents
in urban areas among inexperienced drivers, Moral-García et al. [26] developed a decision
tree and found that most of the fatal injury cases were due to collisions with pedestrians or
speeding. Predicting the injury severity of a specific road user was conducted by Wahab and
Jiang [27,28] who developed a CART model to predict the injury severity among motorcycle
crashes. They found that CART outperformed rule induction and multi-layer perceptron
models based on a 10-fold cross-validation approach. Meanwhile, Haynes et al. [29] studied
the factors of traffic accidents in the UK using various machine learning methods and found
out that random forest (RF) provides the highest accuracy score in classifying accident
severity. As for studies concerning heavy vehicles, Behnood and Mannering [9] used logit
models to observe variation and temporal instability for factors affecting injury severity.
Chang and Chien [6] developed a CART model for predicting injury severity among truck
drivers and found that CART models provide useful insights and are good alternatives for
analysing the injury severity of truck accidents.

Different road traffic cultures have different effects on road safety performance [30–32].
Since Malaysia has its own road traffic culture, different variables may be the main factors
for causing injury among heavy vehicle drivers when involved in accidents. To the extent
of the authors’ knowledge, research on identifying variables associated with different levels
of injury severity specifically among heavy vehicle drivers in the Malaysian context using
the machine learning method is limited.

Traffic injury severity ranges from no injury at all to slightly or severely injured and
lastly to fatally injured which makes it appropriate to be treated as an ordinal outcome.
Taking this into consideration, this study explores ordinal logistic regression, and assump-
tions underlying this model were tested beforehand. A test of parallel lines was conducted
to validate the assumptions of proportional odds where no difference in the coefficients
between models was the null hypothesis. To proceed with this regression, a non-significant
result needs to be achieved. However, the result of this test was significant with a p-value
of <0.001 which indicates that the assumption of proportional odds was violated thus this
analysis could not proceed and machine learning, as a data-driven method, is chosen to
overcome this constraint. Machine learning does not generally require such assumptions
hence they are advantageous in traffic injury severity analyses.

Hence, the main objective of this study is to (1) identify significant variables associated
with categories of injury severity as well as (2) classify and predict heavy vehicle driver’s injury
severity in Malaysia using machine learning techniques: CART and RF. Variable importance
measures were used to identify the most important predictors in classifying the injury severity.
This ranking of variables can be a potential area for further specific research in Malaysia.

The remainder of the paper is organised as follows. In the next section, there is
a brief introduction to Malaysia’s road and traffic volume as well as the heavy vehicle
crash dataset that has been used. The theoretical background of CART and RF is then
provided. Following that, model results are discussed with the variable importance and
model performance. In the final section, key findings are summarised.
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2. Heavy Vehicle Crash Data

With reference to the Malaysia Road Transport Act 1987, motor vehicles can be divided
into several classes based on their usage and load capacity. Table 1 shows the description
of vehicles extracted from this Act and heavy vehicles may be classified into one of these
classes. This study is carried out based on the heavy vehicle crash data of 2014, extracted
from the MIROS Road Accident and Analysis and Database System (M-ROADS). M-ROADS
is a database system developed by the Malaysian Institute of Road Safety Research (MIROS)
storing the road crash data obtained from the Royal Malaysian Police (RMP).

Table 1. Classification of vehicles based on Malaysia Road Transport Act 1987.

Class Description

Motor cars Motor vehicles which are constructed to carry a load or passengers and the
unladen weight of which does not exceed three thousand kilograms.

Motor cars
heavy

Motor vehicles which are constructed to carry a load or passengers and the
unladen weight of which exceeds three thousand kilograms.

Tractors heavy

Motor vehicles not constructed to carry any load (other than water, fuel,
accumulators and other equipment and materials used for the purposes of
propulsion, loose tools and loose equipment), the unladen weight of which
exceeds five thousand kilograms.

Tractors light The unladen weight of which does not exceed five thousand kilograms and
which otherwise fall within the definition of “tractors heavy”.

Mobile
machinery

heavy

Motor vehicles which are designed as self-contained machines, propelled by
means of mechanism contained within themselves and the unladen weight of
which exceeds five thousand kilograms and are capable of being used on roads.

Mobile
machinery

light

Motor vehicles, the unladen weight of which does not exceed five thousand
kilograms and which otherwise fall within the definition of “mobile
machinery heavy”.

Trailers Vehicles other than land implements drawn by a motor vehicle, whether or not
part of the trailer is superimposed on the drawing vehicle.

In 2014, there were 476,196 total road crashes with 6674 fatalities. Out of this total
number of crashes, 46,674 involved heavy vehicles where 250 drivers and occupants had a
fatal injury. However, for this study’s purposes, only driver’s information regardless of
the occupants were considered. Nevertheless, all types of buses and lorries are considered
heavy vehicles in this study. M-ROADS comprised of variables related to crash details,
road characteristics, environment, location, vehicle details and driver’s information. Table 2
shows the complete variables used in this study.

Table 2. Input variables.

Attribute Value

Number of vehicles involved
Single vehicle
Two-vehicle

Multiple vehicles

Type of first collision

Head-on
Rear

Right angle side
Angular

Sideswipe
Forced

Hitting objects on the road
Hitting objects off road

Hitting pedestrian
Overturned

Out of control
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Table 2. Cont.

Attribute Value

Road surface

Gravel
Bricks

Bitumen/tar
Concrete

Dirt

Road type

Straight road
Road bends
Roundabout

Cross junctions
Y/T junctions

Staggered junctions
Interchange

Quality of road surface

Flat
Sink
Hole
Wavy

Vertical design of the road Flat
Slope

Road surface condition

Dry
Wet
Oily

Sandy
Under repair

Weather conditions

Clear
Windy
Foggy
Rainy

Light conditions

Daylight
Dawn/dusk

Dark with lights
Dark without lights

Road category

Expressway
Federal roads

State roads
Municipal roads

Others

Location

City
Urban

Built-up area
Rural

Surrounding area

Residential
Office

Shopping area
Industrial/construction

Bridge/
foot bridge

School
Others

Heavy vehicle type

Express bus
Stage bus

Factory bus
Mini bus

Excursion bus
School bus

Articulated lorry
Rigid lorry

Pick-up lorry

Vehicle modification
Yes
No

Driver’s gender Male
Female
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Table 2. Cont.

Attribute Value

Driver’s age

21–25
26–30
31–35
36–40
41–45
46–50
51–55
56–60
61–65
66–70
71–75

Driver’s error

Careless at entrance/exit
Overloading (passengers)

Improper parking
Drugs

Careless driving
Dangerous driving
Dangerous turning

Dangerous overtaking
Tailgating
Speeding

Disobeying traffic light
Other offences

Not at fault

Drunk driving
Not suspected

Positive
Negative

RMP categorised crashes into four categories: crashes with fatal injury, severe injury,
light injury and crashes that involved only damaged properties (no injury). This four-level
injury was used as the response variable in this study. Descriptions [33] for each level of
injury are elaborated in Table 3.

Table 3. Description for each level of injury severity.

Type of Injury Description

Fatal Any person who died within 30 days as result of an accident.

Severe injury

Any person who has injured as a result of an accident as referred
to section 320 of the Penal Code which includes any of the
following:

• Emasculation
• Permanent privation of the sight of either eye
• Permanent privation of the hearing of either ear
• Privation of any member or joint
• Destruction or permanent impairing of the powers of any

member or joint
• Permanent disfiguration of the head or face
• Fracture or dislocation of a bone
• Any hurt which endangers life, or which causes the sufferer

to be, during the space of ten days, in severe bodily pain, or
unable to follow his ordinary pursuits

Slight injury Any injury that does not fall under Fatal or Severely Injured
category.

No injury No injury.
Note: Based on Malaysia Statistical Report Road Accident 2014.
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The frequency of each injury severity is presented in Table 4. Most heavy vehicle
drivers had no injury (79.8%) while other drivers sustained either slight (9.8%), severe
(4.3%) or fatal injury (4.3%).

Table 4. Frequency of each level of injury severity.

Level of Severity Frequency (%)

Fatal 49 (5.3)

Severe injury 49 (5.3)

Slight injury 90 (9.7)

No injury 742 (79.8)

Total 930 (100)

3. Methodology
3.1. Decision Tree

The decision tree is a classification technique that recursively partitioning the instant
space. Generally, the decision tree consists of nodes, edges, and leaves. The root node
contains all the sample sets, which will split according to specific attributes into two or
more subsets, known as the internal nodes. The internal nodes will continue splitting until
it reaches the end of the tree, which is known as the leaf. The leaf will be assigned to one
class representing the most common target value or category for that variable of interest.

There are many types of decision tree algorithms such as the CART [34], ID3 [35] and
C4.5 [36]. In this study, the CART algorithm has been used to build the decision tree. The
CART tree was constructed by splitting a node into two nodes repeatedly. Let Y be the
categorical dependent variable with C classes, and Xi is the ith predictor variables which
can be either ordinal, nominal or continuous. The decision tree was grown into a large tree
until all the leaves were pure. Thus, all observations in a particular leaf were in the same
category or class for that dependent variable. At each node, only one feature or predictor
variable was considered as the condition for splitting.

The following steps were used on each node recursively:
For ordinal or continuous predictor variables, find the best split point which maximises

the splitting criterion. Meanwhile, for the nominal predictor variable, find the best split
based on the subset of categories for that variable which maximises the criterion.

From step 1, select the best predictor variable, Xi, which leads to the most significant
reduction in node impurity. There are two standard measures of node impurity which are
the Gini index, defined as

G =
C

∑
k=1

p̂mk(1 − p̂mk) (1)

and the entropy, given by
D = ∑C

k=1 − p̂mk log2 p̂mk (2)

where p̂mk is the proportion of observation in the mth data subset that is from the kth class.
Both measures will have a small value if the node contains predominantly observations

from the same class, which indicates homogeneity, while a higher value indicates a higher
amount of disorder. In this study, the Gini index will be used to calculate the node impurity.
The algorithm will only stop if the stopping criterion is satisfied, for example, until a
node becomes pure, or until each leaf only contains less than the specified number of
observations. The sum of the improvements (reductions in impurity) in the overall Gini
index for every node in which a variable occurs is an important measure that will be used to
identify the most important variables [37]. A flowchart of the CART algorithm is illustrated
in Figure 1.
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Figure 1. Flowchart of CART.

Overfitting may occur when a tree is grown very deep as it tends to learn extremely
irregular patterns. The training sets will be overfitted by having a low bias but with a
very high variance. For reducing the variance, RF average multiple deep decision trees
which are trained on different parts of the same training set [38]. Still, the decision tree
is commonly used as it is comprehensible and a more detailed explanation can be made
regarding predicting variables.

3.2. Random Forest (RF)

RF is an ensemble of decision trees, which involves the bootstrap aggregation tech-
nique, also known as bagging. Bagging is a procedure to reduce the variance of the
supervised learning model which is usually suffered by the decision tree model. By taking
B repeated samples from the same data set (bootstrap), there will be B decision trees that
can be used for predictions. Since the response variable is categorical, the overall prediction
will be the most commonly occurring category among the B predictions (aggregation).
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However, if there is a crucial variable and several moderately important variables
which heavily influence the model, most of the bagging trees will be almost similar, resulting
in a highly correlated prediction. To decorrelate the trees, random forest only considered
several feature (dependent) variables which are chosen randomly as split candidates each
time while splitting the tree. This approach, called feature randomness, ensures other less
important variables have a better chance of being considered resulting in decorrelation of
the trees. The majority vote of all trees is reported as RF prediction. The clear flow of RF
can be seen in Figure 2.
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Figure 2. Flowchart of RF.

RF can also be used to rank the variable according to its importance. The calculation is
similar to CART where node impurity decrease across every tree is added each time that
variable is chosen to split a node. Then, the average is calculated by dividing the sum by
the number of trees which can then be ranked. Apart from variable importance, Shapley
additive explanations (SHAP) for RF was also used to visualize the impact of each feature
on the response variable.
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3.3. Model Evaluation

The confusion matrix and its associated performance metrics: classification accuracy,
true-positive rate (TPR), false-positive rate (FPR), precision, recall, and F-measure, are the
parameters used to evaluate the accuracies of the classifiers used in this study. Table 5
demonstrates the confusion matrix where the row and column indicate the observed and
predicted class, respectively, while values in the diagonal represent correctly predicted
instances. For multiclass classification, when a specific class is recognised as positive, the
remaining class will be identified as negatives.

Table 5. Confusion matrix.

Predicted Class

Observed Class Yes No

Yes True positive (TP) False negative (FN)
No False positive (FP) True negative (TN)

TP and TN are the numbers of actual positives and actual negatives that were identified
correctly. FP, on the other hand, is the number of negatives that were misclassified as
positives, and conversely, TN is the number of positives that were misclassified as negatives.
These values were then be used to calculate the performance measurement. TP rate (TPR)
is the fraction of positives that are correctly identified while FP rate (FPR) is the fraction
of negative that are incorrectly classified. Precision is a measure of correctly classified
instances in all instances that are predicted as positives and recall has the same calculation
as TPR. A low precision indicates many FP and low recall means several FN. The formula
is expressed as below:

TPR = Recall =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

Precision =
TP

TP + FP
(5)

F − measure =
2 × Precision × Recall

Precision + Recall
(6)

The area under the ROC curve (AUC) is a useful tool for evaluating the quality of
class separation for classifiers. Nevertheless, in the multiclass setting, the performance of
multiclass models can be visualised according to their one vs. all precision–recall curves
(PRC). Since there is imbalanced distribution in the predictor class, PRC is preferable
as it allows for an accurate and intuitive interpretation of classifier performance [39,40].
The performance of the minority class will also be achievable by constructing PRC [41].
Therefore, PRC is employed in this study to handle the imbalanced data of injury severity.

Figure 3 presents the methodology overview for this study. R software version 3.6.3
was used to build and evaluate the model. Table 6 describes the packages used for this
study’s purposes.

Table 6. R packages used to build and evaluate the model.

Packages Description Reference

rpart Building CART [42]

caret Data splitting/confusion matrix table [43]

E1071 Confusion matrix table [44]

randomForest Building random forest [45]

ROCR Precision–recall graph [46]
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4. Results
4.1. CART

The dataset was partitioned into 70% of training data and 30% of testing data. There
were 18 predictor variables that were used together with drivers’ level of injury to identify
the vital patterns and information regarding heavy vehicle crashes. The decision tree was
built by using the Gini index splitting criterion, and Figure 4 represents the classification
tree. There are 8 terminal nodes, and it can be seen that the type of the first collision,
driver’s error, number of vehicles involved, road surface type, driver’s age, source of light
and vehicle type are the main variables used to split the tree. This also indicates that these
variables are important in classifying injury severity among heavy vehicle drivers who
were involved in a road crash.
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Figure 4. The output of decision tree. CTYPE: angular (a), forced (b), head-on (c), hitting objects off
road (d), hitting objects on road (e), hitting pedestrian (f), rear (i), right angle side (j), sideswipe (k)
ERROR: careless driving (b), other offences (j), speeding (l) NVEH: multiple vehicles (a), two-vehicle
(c) RSTYP: bitumen/tar (a), bricks (b) DAGE: 21–25 y/o (a), 26–30 y/o (b), 31–35 y/o (c), 36–40 y/o
(d), 41–45 y/o (e), 51–55 y/o (g), 61–65 y/o (i) LIGHT: dark without lights (b), dawn/dusk (c) VTYPE:
articulated lorry (a), express bus (c).
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For every node in the decision tree, three lines of information are displayed. The
first line indicates the level of injury with the highest number of observations, i.e., not
injured, slightly injured, severely injured, or fatal. The middle line consists of four values.
Each value corresponds to the probability of each level of injury that can be calculated by
dividing the number of observations for that injury level by the total observations in that
node. For example, the first node in the decision tree shows a middle line displaying (0.80
0.10 0.05 0.05). This implies that the likelihood of heavy vehicle drivers who are involved in
a crash to survive with “Not Injured” or being “Slightly”, “Severely” and “Fatally injured”
is 80%, 10%, 5% and 5%, respectively. Meanwhile, the percentage in the last line of every
node shows the percentage of observations from the whole data set that resides in the node.

The first split is based on the type of the first collision, which implies that this variable
is the most crucial in classifying injury due to crashes among heavy vehicle drivers. This
decision tree groups nine types of collisions described as angular, forced, head-on, hitting
objects off-road and on-road, hitting pedestrian, rear, right angle side and sideswipe into
a terminal node which contains 89% of the total observations. As shown by the terminal
node on the leftmost branch of the tree, if these collision types occurred during a crash, the
tree shows that the drivers will likely experience no injury (85.4%). The other two collision
types, which are out of control and overturned, form another node with the remaining
11% of observations. Based on this node, the probability of having injuries is higher if the
crash involved out-of-control and overturned vehicles (39% slightly injured, 12% severely
injured, and 16% fatally injured). This node is partitioned further based on the driver’s
error variable.

By considering the driver’s error, another terminal node has been formed with 3.4% of
the total observations. Based on this terminal node, 38.6% and 11.5% of the heavy vehicle
drivers who are involved in a crash most likely will suffer from a slight and severe injury
respectively if they committed careless driving, other unspecified offences, or speeding.
Other types of error will mostly cause no injury to the drivers (40.4%), and respective
observations are partitioned again by referring to the number of vehicles involved.

The partitioning concerning the number of vehicles involved in a crash had resulted
in the formation of another terminal node which comprised 3.6% of the total observations.
This terminal node suggests that in a heavy vehicle crash involving two or more vehicles,
the driver had a higher chance of surviving with no injury (59.3%). Meanwhile, drivers
who were involved in a single-vehicle crash had a greater chance of being injured (33%
slightly injured, 17% severely injured, 27% fatal) compared to two-vehicle and multiple
vehicle crashes.

Crashes involving only one vehicle are grouped and split further based on the road
surface type. The tree shows that 37.0% of the heavy vehicle drivers who are involved
in crashes along roads with bitumen/tar and bricks surface will be slightly injured. This
group of drivers is partitioned further by taking the driver’s age into account. Nevertheless,
crashes along other road surface types (concrete, gravel, dirt) form another terminal node
at the rightmost branch of the tree. Even though less than 1% of total observations are in
this node, it is crucial to note that 100% of the drivers who are involved in crashes along
the road with concrete, gravel or dirt surface will be fatally injured.

Back to the centre part of the tree, the driver’s age variable has been used to partition
the observations further where drivers of 21 to 45, 51 to 55 and 61 to 65 years old are
grouped. This group of drivers is then partitioned again based on the light condition
during a crash. On the other hand, age groups of 46 to 50, 56 to 60 and 66 to 75 years old
are grouped and form a terminal node. This terminal node illustrates that 80% of the heavy
vehicle drivers of this age will probably have a slight injury while another 20% will be
fatally injured when involved in a crash.

Regarding the variable light condition during crashes, a terminal node is formed at the
centre part of the tree where crashes that occurred on a dark road without lights or during
dawn/dusk are grouped. Undoubtedly, heavy vehicle drivers who are involved in crashes
with these environments had a higher chance to be severely injured (60%). In comparison,
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the remaining 40% will probably survive without any injury. Dark environments may
reduce visibility and increase the risk of a crash. Another partitioning based on vehicle
type is conducted to the group of drivers who are involved in crashes on a dark road with
lights or during daylight and resulted in the formation of two terminal nodes. The first
terminal node indicates that the majority of articulated lorry and express bus drivers who
were involved in a crash had a greater chance of surviving with no injury (60%). However,
it is also important to point out that another 40% of these drivers will most likely be fatally
injured. The second terminal node is formed by grouping other types of heavy vehicles
and half of the observations in this node had a chance to be slightly injured.

Figure 5 explains the importance of each variable for data classification by the CART
model. Collision type was the main factor used by this model in classifying the data. Apart
from that, the top ten most important variables were the driver’s error, age, number of
vehicles involved, road surface type, vehicle type and lighting condition.
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4.2. Random Forest (RF)

RF for the training data was built with 500 different trees and four predictive variables
considered at each split within a tree. A different subset of the data will be involved in building
these trees. For each iteration, out-of-bag error will be used to assess the model, where the
tree was tested with testing data set which is not involved in the tree building process. The
out-of-bag error, also known as the average of errors of all these interactions is 19.3%.

The variable importance plot in Figure 6 explains the importance of each variable
for data classification by RF model. The rank of predictor variables is based on the mean
decrease Gini, also known as the mean decrease accuracy, which measures each variable
contribution to the purity on each node in a tree. As the decision tree, collision type was the
main factor used by the model in classifying the data. Nevertheless, driver’s age, vehicle
type, road type, number of vehicles involved, driver’s error and lighting condition were
also being identified as the other important variables by this model. Regarding the top
ten important variables for both classifiers, CART and RF are comparable in determining
factors that contribute to driver injuries in accidents involving heavy vehicles.
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To explain more on the impact of each explanatory variable towards the level of injury
severity, SHAP for RF was carried out and the visualisation is presented in Figure 7. This
summary plot combines the feature importance with feature effects. Based on the y-axis,
features on the top are the most important features to the model output while the x-axis
represents the SHAP value for each feature. The red colour represents the higher value of a
feature while the blue represents the lower value of a feature. Collision type was the most
important feature where the crashes related to a higher value of this feature (sideswipe) are
less likely to suffer in a fatal injury. Both ends of factor driver’s age are also worth mentioning
where older drivers are more likely to suffer fatal injury compared to the young drivers.
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4.3. Model Performance

The performance for each model was assessed and compared in determining the best
model for injury severity prediction. Table 7 displays the confusion matrixes between the
fitted result and the actual observation for both CART and RF classifiers. The diagonal
of these matrixes represents the number of correctly classified instances for each class of
injury severity while the off-diagonal entries represent the misclassified instances. The
number of heavy vehicle drivers who suffered from injury (slight injury, severe injury and
fatal) but were misclassified as not injured has become of great interest. As shown in the
table, CART had misclassified 12 drivers with a slight injury, seven drivers with severe
injury and four drivers with fatal injury as not injured. On the other hand, the RF classifier
seems to classify instances approximately similar to CART. Table 8 presents the overall
estimation results for the test datasets. CART classifier achieved an accuracy of 81.5% while
RF classifier achieved a slightly better accuracy with 82.1% correctly classified instances.

Table 7. Confusion matrix for the test dataset.

Predicted Class

Classifier Observed Class Not Injured Slightly Injured Severely Injured Fatal

CART

Not injured 143 5 0 0
Slightly injured 12 5 1 0
Severely injured 7 1 1 0

Fatal 4 2 2 1

RF

Not injured 145 3 0 0
Slightly injured 13 4 0 1
Severely injured 7 1 1 0

Fatal 5 3 0 1

Table 8. Performance of the classifier.

Classifier n (%)

CART
Correctly classified instances 150 (81.5)

Incorrectly classified instances 34 (18.5)
Total 184 (100.0)

RF
Correctly classified instances 151 (82.1)

Incorrectly classified instances 33 (17.9)
Total 184 (100.0)

Table 9 summarises the estimation accuracies for each driver injury severity by using
the test dataset. TPR for CART classifier are ranging from 0.111 for “Severely Injured”
and “Fatal” to 0.966 for “Not Injured” with a weighted average of 0.815. These results
demonstrate that CART can classify 96.6% of instances with no injury correctly. However, a
low TPR rate for all levels of injury and fatal class must be paid attention to since predicting
injuries and fatalities are the main interest for this study. RF had a similar distribution of
TPR across the different classes of injury severity which indicates that both classifiers had a
better performance in predicting no injury than other types of severity since no injury class
dominated the training dataset.

By considering both recall and precision of the test dataset, F-measure is computed
where a value approaching 1 reflects perfect precision and recall. In contrast, a value near
0 means low precision and recall. Concerning each class of injury, “Not injured” had the
highest calculated F-measure for both classifiers while other classes of injury had a very
low F-measure. Recall and precision values of the test dataset were also used to calculate
the area under the curve for each classifier by plotting the precision–recall curves (PRC) as
illustrated in Figures 8 and 9. The plots indicate that no injury cases can be predicted very
well, while other levels of injuries are harder to classify for both CART and RF.
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Table 9. Estimation accuracies for the test dataset of the heavy vehicle accident injury severity.

Classifier Class TPR/Recall FPR Precision F-Measure

CART

Not injured 0.966 0.639 0.861 0.910
Slightly injured 0.278 0.048 0.385 0.323
Severely injured 0.111 0.017 0.250 0.154

Fatal 0.111 0.000 1.000 0.200
Weighted 0.815 0.520 0.791 0.781

RF

Not injured 0.980 0.694 0.853 0.912
Slightly injured 0.222 0.042 0.364 0.276
Severely injured 0.111 0.000 1.000 0.200

Fatal 0.111 0.006 0.500 0.182
Weighted 0.821 0.563 0.795 0.779
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5. Discussion

This study constructed CART and RF to classify and predict traffic injury severity
among heavy vehicle drivers in Malaysia. Type of first collision, driver’s error, number
of vehicles involved, road surface type, driver’s age, a light condition during crash and
vehicle type were found important in classifying injury severity among these drivers.

Based on the first split of CART, collision type is the most crucial variable in classifying
injury, similar to the findings in previous studies [6,13,26,47]. The probability of having
injuries is higher if the crash involved out-of-control and overturned vehicles. Specifically,
overturned had been discussed in previous studies as one of the crash characteristics that
may increase the risk of having injuries [7,48]. The driver of overturned heavy vehicles
during road crashes may suffer from a more severe injury due to the vehicle size itself.

Other than that, heavy vehicle drivers who are involved in a crash most likely will
suffer from a slight and severe injury if they committed careless driving, other unspecified
offences, or speeding. Undeniably, driving with a higher speed or more than the posted
speed limit has been proved to increase the chances of having a more severe injury which
is consistent with findings in [7,20].

It is also crucial to note that 100% of the drivers involved in crashes along the road
with concrete, gravel or dirt surface will be fatally injured. Adanu et al. [49] labelled dirt,
sand and gravel as a group of ‘unpaved roads’ and pointed out a contradictory finding
where crashes on these roads are not likely to be fatal.

Another important finding of this study is based on the driver’s age. Older drivers
tend to be fatally injured when involved in a crash. On the contrary, several studies [4,50]
found out that the younger heavy vehicle drivers are more prone to injuries due to their
little experience and reckless behaviour on the road. This difference might be due to a
variety of ways in categorising drivers’ age, and RMP’s definition of age categories is being
referred for this study. In addition, deteriorating health status among older drivers may
influence injury severity.

Lighting condition was also one of the contributing factors. Undoubtedly, heavy
vehicle drivers who are involved in crashes on a dark road without lights or during
dawn/dusk had a higher chance of being severely injured. This is in line with findings by
Zheng et al. [5] and Zhu et al. [51]. Dark environments may reduce visibility and increase
the risk of a crash.

The performance for each model was assessed and compared in determining the best
model for injury severity prediction. RF achieved better accuracy than CART in this study
similar to what had been proven by Wahab and Jiang [27]. However, a low TPR rate for
all levels of injury and fatal class must be paid attention to since predicting injuries and
fatalities are the main interest for this study. CART and RF had a similar distribution of
TPR across the different classes of injury severity. This indicates that both classifiers had a
better performance in predicting drivers with no injury since they dominated the training
dataset. F-measure and PRC also showed the same findings which reflect that injured or
fatal drivers were difficult to be classified.

Findings discussed earlier do have some implications for the safety of heavy vehicle
drivers. The variables associated with categories of injury severity can be referred by road
safety practitioners or employers to plan for the best measures needed in reducing road
fatalities, especially among these groups of drivers. For example, employers may develop
or organize training courses that are related to the variables found such as training that
focus on defensive driving, emergency response and vehicle operational. Employers may
also record feedback from the drivers regarding risky road conditions to ensure drivers’
safety. In 2010, the Malaysia Department of Occupational Safety and Health (DOSH)
has formulated an Occupational Safety and Health Industry Code of Practice for Road
Transport Activities. This Code of Practice provides employers with information on driver
management, vehicle management, and journey and risk management. Employers shall
implement the recommended guidelines in order to ensure the best performance of their
company’s safety management.
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However, some study limitations should be addressed in future studies. Dataset
for this study was extracted from the 2014 road accident database in Malaysia. This
one-year dataset is limited in terms of specific predictor values which may lead to bias
in estimating the parameters. To enhance estimation accuracy and result transferability,
more extensive datasets, particularly crash datasets covering many years with adequate
qualifying information, are preferred. Methodologically, even though PRC as one of the
tools in evaluating the models had been utilised to overcome the data imbalanced issue, it
is still not sufficient to predict the minority class of injury severity. Other techniques for
imbalanced data such as data pre-processing or cost-sensitive learning could be employed
in future studies along with PRC to enhance the model reliability.

6. Conclusions

Determining factors related to injury severity among heavy vehicles driver is important
in road safety management, especially among logistics and transportation companies.
Based on the 2014 crash dataset for heavy vehicles, this study applied CART and RF to
predict and classify the injury severity among drivers. The findings revealed that the RF
had better accuracy than CART in classifying the data. However, the TPR rate for all injury
classes is low. TPR for RF classifier is almost similar to the TPR for CART, which indicates
that both classifiers had a better performance in predicting drivers with no injury than
other types of severity since no injury class dominated the training dataset. Thus, future
research shall consider treating data imbalance to increase model performance.

This study has also pointed out important factors that are related to different classes
of injury severity. Both CART and RF determined collision type as the main factor in
determining injury severity among heavy vehicle drivers who were involved in a crash.
Other than that, driver’s error, number of vehicles involved, road surface type, driver’s age,
source of light and vehicle type were also identified as factors influencing injury severity.
This finding may serve as a basis for future study which may focus deeply on a specific
factor contributing to traffic injury among heavy vehicle drivers in Malaysia. Nevertheless,
findings by this study may be different from other crashes involving light vehicles such as
cars or motorcycles since vehicle size and crash configuration may affect the crash severity.
Other countries with other settings than Malaysia may also have different factors that
contribute to injury severity. Therefore, the method used by this study can be extended to
the case of other types of vehicles or to the case of other countries.
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