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Abstract: Water quality monitoring (WQM) of urban rivers has been a reliable method to supervise
the urban water environment. Indiscriminate WQM strategies can hardly emphasize the concerning
pollution and usually require high costs of money, time, and manpower. To tackle these issues, this
work carried out a multi-dimensional study (large spatial scale, multiple monitoring parameters,
and long time scale) on the water quality of two urban rivers in Jiujiang City, China, which can
provide indicative information for the optimization of WQM. Of note, the spatial distribution of
NH3-N concentration varied significantly both in terms of the two different rivers as well as the
different sections (i.e., much higher in the northern section), with a maximal difference, on average
greater, than five times. Statistical methods and machine learning algorithms were applied to
optimize the monitoring objects, parameters, and frequency. The sharp decrease in water quality of
adjacent sections was identified by Analytical Hierarchy Process of water quality assessment indexes.
After correlation analysis, principal component analysis, and cluster analysis, the various WQM
parameters could be divided into three principal components and four clusters. With the machine
learning algorithm of Random Forest, the relation between concentration of pollutants and rainfall
depth was fitted using quadratic functions (calculated Pearson correlation coefficients ≥ 0.89), which
could help predict the pollution after precipitation and further determine the appropriate WQM
frequency. Generally, this work provides a novel thought for efficient, smart, and low-cost water
quality investigation and monitoring strategy determination, which contributes to the construction of
smart water systems and sustainable water source management.

Keywords: analytical hierarchy process; machine learning; smart water; statistical analysis; water
quality monitoring

1. Introduction

Urban water pollution is a global environmental issue [1–3]. For urban catchment
managers, water quality monitoring (WQM) has always been a reliable method for supervi-
sion [4]. Commonly, the principal objective of WQM is to estimate the reasons for pollution
and the potential pathway of pollutants [5]. Based on the analysis of pollution, remediation
and conservation of urban water environments could be more targeted [6]. Moreover,
WQM could also facilitate the assessment and management of available water resources [7].
Meanwhile, WQM can provide useful information for the assessment of environmental
management performance. Nowadays, urban water environment quality is also part of the
performance assessment-related index for regional governments [8]. Therefore, WQM is
playing a more and more important role in the sustainability of contemporary society.
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For urban rivers, WQM procedures generally include the following elements: (1) iden-
tification of the monitoring purposes (e.g., for pollution detection or resource management);
(2) determination of monitoring objects (especially sampling sites and location); (3) determi-
nation of water quality parameters and analytical methods; (4) determination of monitoring
frequency (both for monitoring objects and parameters); (5) estimation of financial ex-
pense; (6) consideration of logistics; and (7) assessment of monitoring data [9–12]. For
an adaptive WQM strategy, each time that a monitoring procedure ends, the monitoring
variables should be evaluated to be maintained or replaced by others, which is important
for efficient environmental management. Regular monitoring strategies usually select the
monitoring objects, parameters, and frequency indiscriminatingly. [13]. For instance, the
accessibility of sampling locations has been regarded as the primary principle to determine
the monitoring objects [14]. Yet, existing monitoring strategies often have difficulty in
highlighting the specific concerning pollution, and thus fail to support the development of
smart water systems.

Targeting such issues, some smart approaches have been applied to accurately and
effectively assess the water quality of urban rivers. As a case, statistical methods including
principal component analysis (PCA) and principal factor analysis are effective in identifying
important components to explain most variances in a system and have been suggested
to optimize the monitoring objects and parameters [15]. Correlation analysis and cluster
analysis are useful tools for the optimal selection of many variables and have also been used
to optimize monitoring parameters [16]. Moreover, models like Genetic algorithm-based
optimization and a combination of Kriging method and Analytical Hierarchy Process (AHP)
have shown great potential in decision making, especially for complicated problems, and
have been applied to determine the WQM frequency and objects [17]. Recently, machine
learning algorithms like Random Forest and Artificial Neural Network, etc., have been
used in the prediction of pollution with multiple environmental parameters [18–20]. For
instance, 10 learning models, including Random Forest and Deep Cascade Forest, etc., have
been used and compared to predict the surface water quality on the basis of big data [18].

Potentially, the applications of multiple smart approaches in water quality data anal-
ysis might be effective for the assessment of water quality and the determination of the
optimal WQM strategy. Previous research often involved one or two approaches to in-
vestigate the water quality, without much attention paid to the systematical optimization
of the monitoring strategy [15,16]. Therefore, it is of originality and significance to apply
various smart approaches to analyze the water quality with emphasis on the comprehensive
optimization of WQM strategy. Probably, a multi-dimensional study with large spatial
and temporal data as well as various data-processing methods may help to effectively
determine and optimize the WQM strategy of urban rivers, which, to some extent, could
contribute to the construction of smart water systems.

Herein, this work collected the water quality data with large spatial scales, multiple
monitoring parameters, and long time scales in the Shili River and the Lianxi River in
Jiujiang City, China. Our main goal was to help optimize the WQM strategy through
systematically and comprehensively analyzing these multi-dimensional water quality data.
Firstly, the spatial distribution of typical pollutants was compared in the two rivers and
the comprehensive pollution conditions were assessed with the AHP method. Then, two
representative sampling sites were selected to study the relations among nine parameters
with various statistical methods in order to filter out the substitutable parameters. At last,
via utilizing the long-term data of pollutant concentrations before and after precipitation as
well as rainfall depth (rainfall accumulated in 24 h), prediction models of pollutant con-
centrations after precipitation were suggested with Random Forest. The current work can
pave a new avenue for the water quality assessment and provide thoughtful information
for the optimization of WQM strategy, which is meaningful to the sustainable and smart
solutions for urban water environment management.
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2. Materials and Methods
2.1. Study Area

The original sampling sites were set along the Shili River and the Lianxi River in Jiu-
jiang City, Jiangxi Province, China (Figure 1). From the watershed of the Lushan Mountain
to the estuary of the Bali Lake, the Shili River has a total length of 13.08 km. Additionally,
the Lianxi River is the biggest tributary of the Shili River with a length of 9.62 km from
the watershed of the Lushan Mountain to the confluence with the Shili River. Originating
from the north slope of the Lushan Mountain, these two rivers flow through the central
city of Jiujiang and down into the Bali Lake. Through floodgates, the Bali Lake water even-
tually flows into the Yangtze River, which is a major water source and canal in China [21].
However, due to the defects in the urban drainage system, the Shili River and the Lianxi
River have been suffering from the pollution of both the direct discharge and the overflow
of urban sewage. Especially, domestic sewage contributes significantly (over 80%) to the
pollution of these two rivers, which poses a great threat to the water quality of the Yangtze
River. The spatial and temporal distribution of water quality varies remarkably both in
the Shili River and the Lianxi River. These properties are similar with many urban rivers
globally, which originate from clear water sources and then suffer from the pollution of
urban sewage [22–26]. Thus, the Shili River and the Lianxi River can be representatives
for the research on the WQM of urban rivers. The sampling sites were determined based
on the published guidelines or standards for surface water monitoring [27,28]. Specifi-
cally, 26 sampling sites (red dots) were selected along the Shili River and 18 sites (yellow
diamonds) were along the Lianxi River considering the hydrological characteristics, the
pollution status of the rivers, and the accessibility of the sites.
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Figure 1. Sampling sites along the Shili River and the Lianxi River in Jiujiang City, Jiangxi
Province, China.

2.2. Water Sampling and Chemical Analysis

To understand the general spatial distribution of pollution along the two rivers, surface
water samples were collected (approximately 0–10 cm from surface) from the two rivers in
December 2020. After collection, all water samples were immediately transferred to the
lab in Jiujiang. In Jiujiang, the Dujiu Expressway can act as a boundary, which separates
the Shili River and the Lianxi River into the northern and southern sections. According
to the local regulatory water quality standard, the limit concentrations of NH3-N, TP, and
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CODCr for the two rivers are listed in Table 1 [29]. Correspondingly, the concentrations
of total phosphate (TP, mg/L), ammonia nitrogen (NH3-N, mg/L), and chemical oxy-
gen demand (CODCr, mg/L) were analyzed respectively using the molybdenum blue
method, the Nessler’s reagent spectrophotometry method, and the dichromate method
as reported previously [30–32]. The detection limits for these parameters are, respectively,
0.01 mg/L, 0.025 mg/L, and 4 mg/L according to administrative standards or previous
publications [33–36]. The difference between the monitoring results of the Shili River and
the Lianxi River was analyzed using t-test (Levene’s test for equality of variances) and
Nonparametric test after the normality test (Kolmogorov-Smirnov test).

Table 1. Limit concentration of the Shili River and the Lianxi River according to the local regulatory
standard [29].

Parameter
Limit Concentration (mg/L)

Southern Section Northern Section

NH3-N 1.5 2.0
TP 0.3

CODCr 30

2.3. Monitoring Objects

In the study of monitoring objects, various data-processing methods have been applied
to analyze the water quality of these two rivers. The water quality of each sampling
sites was assessed using four different methods, namely the single factor (SF) assessment
method, the comprehensive pollution index (CPI) including mean pollution index (MPI)
and Nemerow pollution index (NPI), the water quality identification index (WQII), and the
water quality level index (WQLI) method. The threshold values for the pollution category
of each index are listed in Table 2 as previous publications [37–40].

Table 2. The threshold value of each index to represent different water quality categories [37–40].

Quality of Water Single
Factor (SF)

Comprehensive Pollution Index (CPI) Water Quality
Identification
Index (WQII)

Water Quality
Level Index (WQLI)Mean Pollution

Index (MPI)
Nemerow Pollution

Index (NPI)

Unpolluted ≤ 1 ≤ 0.20 ≤ 1 1.0 ≤ X(1).X(2) ≤ 2.0 0 ≤ WQLI ≤ 1
Slightly polluted

> 1

0.20 < MPI ≤ 0.40 1 < NPI ≤ 2 2.0 < X(1).X(2) ≤ 3.0 1 < WQLI ≤ 2
Moderately

polluted 0.40 < MPI ≤ 0.70
2 < NPI ≤ 3

3.0 < X(1).X(2) ≤ 4.0 2 < WQLI ≤ 3

Polluted 0.70 < MPI ≤ 1.00 4.0 < X(1).X(2) ≤ 5.0 3 < WQLI ≤ 4
Strongly polluted 1.00 < MPI ≤ 2.00 3 < NPI ≤ 5 5.0 < X(1).X(2) ≤ 6.0 4 < WQLI ≤ 5

Extremely polluted > 2.00 > 5 X(1).X(2) > 6.0 WQLI > 5

2.3.1. Single Factor (SF)

The SF assessment method was based on the comparison result of the measured value
with the standard value. Generally, the latter value is established according to the regional
environmental quality standards for surface water according to previous publications [37].
SF is given by:

SF =
C(i)

C(0)
(1)

where C(i) and C(0) respectively represent the measured value and the standard value of
the index i.



Sustainability 2022, 14, 4174 5 of 18

2.3.2. Comprehensive Pollution Index (CPI)

CPI can be used to comprehensively assess the water quality by calculating the arith-
metic mean or weighted mean of the SF. Generally, the CPI can be divided as mean pollution
index (MPI) and Nemerow pollution index (NPI). MPI is given by:

MPI =
1
n
·

n

∑
i=1

SF(i) (2)

where n represents the number of indexes being assessed.
NPI can highlight the maximum value while illustrating the average and maximum

value of the SF [38]. NPI is given by:

NPI =

√
MPI2 + SF2

(max)

2
(3)

where SF(max) represents the maximum value among all SF.

2.3.3. Water Quality Identification Index (WQII)

WQII can be used to assess the water quality at different sampling sites and to illustrate
the level and data of the water quality, as well as the matching extent with the water
functional zones [39]. Accordingly, the surface waters were divided into five water quality
levels based on the environmental functions and protection goals. WQII is given by:

WQII = X(1).X(2)X(3) (4)

where for each index, X(1) is the water quality level, X(2) is the location of the measured
result in the interval of the water quality level, and X(3) is the comparing result of the water
quality level and the functional zone.

2.3.4. Water Quality Level Index (WQLI)

WQLI is the function of the water quality and can be used to decide the water quality
level and identify the primary pollution factors [40]. For water quality within the range from
“Unpolluted” to “Strongly polluted” (according to the environmental quality standards for
surface water [37]), WQLI is given by:

WQLI =
WQL(m) − WQL(m−1)

(C (m,S) − C(m−1,S))× (C (i) − C(m−1,S)

) + WQL(m−1) (5)

where C(i) represents the measured value of index i, m represents the water quality level
of index i, m − 1 represents the previous one water quality level of index i, WQL is the
corresponding water quality level, and C(m,S) and C(m−1,S) are the limit concentrations of
the corresponding water level.

For the water quality being “Extremely polluted”, WQLI is given by:

WQLI = 1/C(F).
(

C(i)−C(S)

)
+ 5 (6)

where C(S) is the limit concentration of the “strongly polluted” water level, C(F) is the
limit concentration of the water quality level as listed in Table 1, and the other variables
represent the same meanings as before.

2.3.5. Analytical Hierarchy Process (AHP)

The method of AHP analysis of water quality assessment indexes was applied to
comprehensively analyze the pollution of 44 sampling sites as published previously [41].
For the local government, NH3-N is regarded as the most concerning pollution index for
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the Shili River and the Lianxi River, and the judgement criteria of AHP were therefore
decided to identify the indexes that can reveal the limit exceeding extent of NH3-N. A
total of 11 indexes were analyzed, including using TP, NH3-N, and Chemical Oxygen
Demand determined using dichromate method (CODCr) as SF assessment parameters
(i.e., SF-TP, SF-NH3, and SF-CODCr), MPI, NPI, using TP, NH3-N, and CODCr as WQII
assessment parameters (i.e., WQII-TP, WQII-NH3, WQII-CODCr), using TP, NH3-N, and
CODCr as WQLI assessment parameters (i.e., WQLI-TP, WQLI-NH3, WQLI-CODCr). A
group of catchment management specialists helped us to decide the importance of each
index according to the criteria. The AHP judgement matrix of 11 indexes was decided
following the multi-criteria decision aid (MCDA) techniques developed by T.L. Satty [42].
Then, the weight of all indexes was calculated. Specifically, the maximum eigenvalue of
the above judgment matrix was firstly calculated. Then, the eigenvectors corresponding
to the maximum eigenvalue were obtained and normalized with the formation of the
sum of all eigenvectors. Next, the weights of all indexes were calculated using the ratios
of each eigenvector to the sum. At last, the consistency of matrix (CR) was examined
until it was < 0.1, confirming the rationality of the weights. With the results of AHP, the
comprehensive pollution scores of 44 sampling sites were calculated.

2.4. Monitoring Parameters

Statistical methods including correlation analysis, PCA, and cluster analysis were
applied to filter out the substitutable parameters. Among all 44 sampling sites, two
sampling sites, i.e., S23 and S26 along the Shili River, are within the long-term WQM
program of the local government. Based on this, we collected the WQM reports of the S23
and S26 published by the local government from January 2020 to March 2021 [43]. In these
reports, the concentrations of Transparency, pH, DO, CODCr, NH3-N, TP, TN, Cu, and
oxidation reduction potential (ORP) were available for further analysis. As listed in the
reports, the concentration of Cu was analyzed using ICP-MS (300X, NexIon, PerkinElmer,
Waltham, MA, USA). In detail, the monitoring data of these two sampling sites were used
to perform Pearson correlation analysis, PCA, and cluster analysis using SPSS 23. Before
PCA, the Kaiser-Meyer-Olkin (KMO) measure and Bartlett’s test were applied in advance.
The KMO coefficient was 0.637 and the significance of Bartlett’s test of sphericity was 0.000,
indicating these data were qualified for PCA. The cluster analysis was calculated using the
Pearson relative distance for average linkage between groups.

2.5. Monitoring Frequency

For predicting unknown processes with poor acknowledgement of relation between
the input and output, decision tree, especially Random Forest, has been regarded as the
most used algorithm [44]. Therefore, Random Forest was used to investigate the correlation
among pollutant concentrations after and before precipitation, as well as rainfall depth
herein. Sampling site S26 along the Shili River was selected as the assessment section by
the local government, which makes the temporal variation of the water quality at this site
sensitive as well. Accordingly, long-term water quality monitoring programs were carried
out at this site by us. Therefore, sampling site S26 was selected as the monitoring object to
study the appropriate monitoring frequency. We collected the WQM results at sampling site
S26 before and after precipitation, as well as the rainfall depth data from September 2020
to July 2021. The storm types in the collected precipitation data of Jiujiang were divided
into light rain (<10 mm), moderate rain (10–25 mm), and heavy rain (>25 mm) based on the
rainfall. The water quality data of sampling site S26 before and after precipitation were
used as the representative object. After setting up the databases of the amount of rainfall
depth and water quality before and after the precipitation, Random Forest was applied
to explore the relationship among the three before-mentioned variables [45]. Briefly, the
input data referred to the rainfall depth and the pollutant concentrations before and after
precipitation (122 groups for NH3-N model and CODCr model, respectively) and the output
data referred to the generated model coefficients for NH3-N and CODCr, respectively. All
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the input datasets were randomly divided into two parts, i.e., 80% for training and 20%
for validation in Random Forest models. Afterwards, the simulated data about pollutant
concentrations after precipitation from the models were compared with the practically
monitored data. The correlation coefficients between these two datasets were calculated to
further validate the accuracy of the constructed models.

3. Results and Discussion
3.1. Distribution of Pollutants in the Shili River and the Lianxi River

The distribution of NH3-N, TP, and CODCr content at sampling sites along the path-
way of the Shili River and the Lianxi River is illustrated in Figure 2A–F. As shown in
Figure 2A,D, the average concentration of NH3-N in the Lianxi River (2.28 ± 1.35 mg/L)
was significantly (p < 0.001) higher than that of the Shili River (0.66 ± 0.82 mg/L). Based on
Table 1, the concentrations of sampling sites S18, S19, L4, L6–L9, and L11–L18 were above
the limit. Moreover, taking the Dujiu Expressway as the boundary (Figure 1 and the gray
dashed lines in Figure 2), the NH3-N concentrations in the northern section of the Shili
River and the Lianxi River (1.11 ± 0.95 mg/L and 2.99 ± 1.07 mg/L) were significantly
(p < 0.01 and p < 0.05) higher than those in the southern sections (0.21 ± 0.22 mg/L and
1.39 ± 1.11 mg/L). It is well acknowledged that NH3-N is an effective marker for domestic
sewage [46,47]. Possibly, the significant difference in NH3-N distribution of the northern
and southern sections might be related to the different sewage discharge routes. With the
attempt to explain this phenomenon, we investigated the drainage network system of the
Shili River and the Lianxi River catchment area. It turns out that the drainage system in
the northern section related catchment is generally featured as a combined sewage system,
while the system in the southern section is usually separate. It has been reported that, com-
pared with the combined sewage system, the separated sewage system would significantly
reduce water pollution discharged to rivers [25,48]. Thus, the severer pollution induced
by the combined sewage system reported in these previous works might help explain the
higher NH3-N pollution concentrations in the northern sections of the Shili River and the
Lianxi River observed in this work.

As regards the TP content illustrated in Figure 2B,E, TP pollution in the Lianxi River
(0.25 ± 0.10 mg/L) was a little heavier than that in the Shili River (0.19 ± 0.20 mg/L). Ac-
cording to the C(F) for TP (Table 1), the concentrations of sampling sites S20, S22–S26,
L7, and L13–L18 were above the C(F), indicating the existence of phosphorus pollu-
tion and higher possibilities of eutrophication [49]. Correspondingly, the TP concentra-
tions in the northern section of the Shili River (0.31 ± 0.22 mg/L) and the Lianxi River
(0.30 ± 0.08 mg/L) were significantly (p < 0.001 and p < 0.05) higher than those in the
southern section (0.05 ± 0.03 mg/L and 0.19 ± 0.08 mg/L). The distribution of TP content
was consistent with that of NH3-N content, which further confirms the potential influence
of the difference in sewage system between the northern and southern sections. Moreover,
there was a remarkable increase of NH3-N and TP content from sampling sites of S17 to S19
along the Shili River. Considering the higher content of pollutants in the Lianxi River as
shown in Figure 2D,E, the increase in the Shili River might also be related to the imported
pollution from the Lianxi River.
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As shown in Figure 2C,F, the distribution of CODCr displayed different trends for the
Shili River and the Lianxi River. In general, the average concentration of the Lianxi River
(16 ± 3 mg/L) was not significantly different from that of the Shili River (14 ± 4 mg/L).
Among 44 sampling sites, almost no sampling site exceeded the C(F) listed in Table 1, and
only the concentration of sampling site S5 was above C(F). Additionally, no significant
difference was discovered between the southern and northern sections. These results
suggest that organic pollution reflected by CODCr content is slight and indiscriminate.
Only a few sampling sites were marked as polluted, which might be related to individual
discharge or unpredicted incidents and requires further research.

Generally, according to the above WQM results, the spatial distribution of the three
pollutants varied significantly both in the Shili River and the Lianxi River. Especially, the
average NH3-N concentration in the Lianxi River was 3.5 times of that in the Shili River.
Moreover, the NH3-N occurrence in the northern sections was much higher than that in
the southern sections, i.e., 5.3 times and 2.2 times for the Shili River and the Lianxi River,
respectively. Thus, it is of great need to further study the sampling sites geographically,
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which can help determine the possible pollution sources. Additionally, the C(F) exceeding
the extent of the three parameters were different from each other, which makes it useful to
investigate the monitoring parameters for the identification of pollution and its possible
sources. Still, WQM of only one time is not adequate to represent the long-term variation
of pollution. Therefore, the appropriate monitoring frequency can help reflect the variation
of water quality maximally within limited times.

3.2. Results of Monitoring Objects

The determination of sampling sites is the basic and initial step for the WQM pro-
cedure. Water quality assessment results of 44 sampling sites using indexes SF (SF-TP,
SF-NH3, and SF-CODCr), MPI, NPI, WQII (WQII-TP, WQII-NH3, and, WQII-CODCr), and
WQLI (WQLI-TP, WQLI-NH3, and WQLI-CODCr) are listed in Table S1 in Supplemen-
tary Information (SI). Additionally, the water quality assessment index category of each
sampling site is listed in Table 3. As shown in Table 3, the water quality of the sampling
sites can be divided into six categories. It can be seen that the water quality results of the
sampling sites using different methods are inconsistent, which is similar to previous studies
about other water systems [50,51]. The AHP method has been regarded as an effective
approach for decision making with complicated indexes, which is useful for water quality
assessment [17]. Therefore, we applied the method of AHP to comprehensively assess
the water quality of every sampling site. According to the criteria of AHP, SF-NH3-N,
WQLI-NH3-N, WQII-NH3-N, and MPI were selected as most significant indexes, which
could mostly fit the demand of emphasizing the pollution of NH3-N. The judgement matrix
is listed in Table S2 (SI), whose consistency is determined as qualified (CR < 0.1). The
calculated weights of all 11 indexes are listed in Table S3 (SI).

Table 3. Water quality assessment index category of different sampling sites using five indexes.

Water
Quality

SF
MPI NPI

WQII WQLI

TP NH3-N CODCr TP NH3-N CODCr TP NH3-N CODCr

Unpolluted

S1–S19,
S21,

L1–L6,
L8–L12

S1–S17,
S20–S28,
L1–L5,

L10

S1–S4,
S6–S28,
L1–L18

S3–S4,
S6

S1–S17,
S21,

S27–S28,
L1–L6,

L10

S27

S3, S5–S7,
S10,

S22–S23,
S27–S28,
L2–L3,

L10

S1–S4,
S6–S18,

S24–S25,
S27–S28,

L1, L3, L5,
L7, L15,
L16, L18

S27

S3, S5–S7,
S10,

S22–S23,
S27–S28,
L3, L10

S1–S4,
S6–S18,

S24–S25,
S27–S28,

L1, L3, L5,
L7,

L15–L16,
L18

Slightly
polluted S20,

S22–S26,
L7,

L13–L18

S18, S19,
L4, L6–L9,
L11–L18

S5

S1–S2,
S5,

S7–S15,
L1–L3

S18–S20,
S22–S24,

S26,
L7–L9,

L11–L18

S1–S9,
S11–S15,
S17, S28,
L1–L3

S1–S2, S4,
S8–S9,

S13, S20,
L1

/

S1–S9,
S11–S15,
S17, S28,
L1–L3

S1–S2, S4,
S8–S9,

S13, S20,
L1–L2

/

Moderately
polluted

S16–S17,
S20, S22,

L10 S26
S10, S16,

L9

S11–S12,
S14–S15,
S25–S26

S19–S23,
S26, L2,
L4, L6,

L8–L14,
L17

S10, S16,
L9

S11–S12,
S14–S15,
S25–S26

S19–S23,
S26, L2,
L4, L6,
L8–L14,

L17

Polluted

S18, S21,
S23, S26;
L4–L6,

L9, L11,
L18

S18–S19,
S21,

L4–L6, L8,
L10–L12

S16, S21,
S24,

L4–L5
/

S18–S19,
S21,

L4–L6, L8,
L10–L12

S16, S21,
S24, L5 /

Strongly
polluted

S19,
S24–S25,
L7–L8,

L12–L17

/
S20, S22,

L7,
L14–L18

S17, L6 S5
S20, S22,

L7,
L14–L18

S17, L4,
L6 S5

Extremely
polluted / / S23–S26,

L13

S18–S19,
L7–L9,

L11–L18
/ S23–S26,

L13

S18–S19,
L7–L9,

L11–L18
/

In a previous study, the researchers adopted the AHP method to evaluate the general
pollution extent of the groundwater and determined the most polluted region in a Viet-
namese province [52]. Similarly, in this work, according to the weight of all 11 indexes,
the comprehensive pollution scores of each sampling site were calculated using the AHP
method and the pollution levels of each section in the two rivers are illustrated in Figure 3.
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With the pollution scores increasing, the illustrated color of two rivers in the figure changes
from green to yellow, and finally to red. As shown in Figure 3, there was a remarkable
increase of the comprehensive pollution scores from sampling sites of S7 to S8 (by 84%),
S15 to S19 (by 181%), and S22 to S24 (by 93%) along the Shili River and L3 to L4 (by 256%),
L5 to L8 (by 62%), and L10 to L11 (by 186%) along the Lianxi River. For the investigation
of the NH3-N pollution and the possible pollution sources, these sections should be given
more attention. On the other hand, no significant variations were observed from sampling
sites of S1 to S7 (average variation being 0.7%) and L1 to L3 (average variation being –4%)
and the pollution scores remained low in these sections. Therefore, sampling sites in these
sections could be cut down.
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In general, with the combination of different water quality indexes and the method of
AHP, pollution of the concerning pollutants can be emphasized using the comprehensive
pollution scores of all sampling sites. Then, for the investigation of the possible pollution
sources, sections with sharp decreases in water quality should be given more attention and
more sampling sites are needed to be set along these sections. For river sections with little
variation in the comprehensive pollution scores and for which the water quality remains
satisfying, less WQM effort is needed. By optimizing the sampling sites, the WQM object
could be more focused, which makes it possible to detect the crucial monitoring areas more
cost-effectively.

3.3. Results of Monitoring Parameters

Usually, for WQM, the monitoring parameters are large in quantity and complex in
relationship. As a result, the accurate selection of monitoring parameters is crucial to
increasing monitoring efficiency. Statistical relationships among different parameters could
help identify the substitutable parameters for monitoring. As mentioned above, sampling
sites S23 and S26 were chosen for the investigation of monitoring parameters due to the
availability of multi-parameter WQM data from the local government. Statistical methods
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of correlation analysis, PCA, and cluster analysis were applied to identify the optimal
parameters for WQM.

Pearson correlation coefficients between Transparency, pH, DO, CODCr, NH3-N, TP,
TN, Cu, and ORP were calculated and illustrated in Figure 4A. Obviously, strong and
significant correlations (p < 0.01) existed among parameters of CODCr, pH, and ORP, as
well as among TP, DO, NH3-N, and TN, all with Pearson correlation coefficients exceeding
0.5. It is well admitted that the parameters with strong correlations can indicate similar
pollution sources as reported previously [53–55]. For instance, a published work observed
a strong correlation between TP and total organic carbon in a German river, which probably
indicates the same pathway and source for these two pollutants [53]. Accordingly, the
above-mentioned parameters with strong and significant correlations might come from the
same situation. Other parameters without strong and significant correlations like Cu might
come from some different sources.

Furthermore, the PCA was carried out to help reveal the relationships among various
indexes. According to the PCA result with varimax rotated solution as shown in Figure 4B,
there were a total of three principal components (total 70.047%, 34.861%, 21.697%, and
13.490% for Principal Components 1, 2, and 3, respectively) among all parameters. Gen-
erally, the results of PCA were consistent with those of correlation analysis. Principal
component 1 was strongly correlated with pH, CODCr, and ORP. Meanwhile, significant
correlations were observed among these three parameters. This suggests that these three
parameters might have similar pollution sources, like waste water from the food industry
or fiber glass plants as published previously [56]. Principal component 2 was strongly
correlated with DO, NH3-N, TP, and TN, and these four parameters were significantly
correlated with each other. It has been reported that typical domestic waste water is usually
polluted with NH3-N, TP, and TN, and sometimes lacks oxygen [57]. This suggests that the
parameters correlated with principal component 2 might originate from domestic waste
water. Principal component 3 is strongly correlated with Transparency and Cu, also indicat-
ing their potentially different pollution sources as mentioned in the correlation analysis. Cu
is speculated be related to certain industries and the incentive of Transparency is uncertain
and requires further exploration.

As a useful tool, the cluster analysis has been applied in the identification of main
pollution patterns among various and complex pollutant mixtures [58]. In that case, three
major pollution patterns were determined with the assistance of the cluster analysis in a
Chinese river, i.e., from wastewater treatment plants, from the confluence with other rivers,
and from diffuse and random inputs. In our work, the cluster analysis of nine parameters
was also carried out and the results are shown in Figure 4C. After comprehensively consid-
ering the statistical analysis results above-mentioned and the local pollution conditions,
the nine parameters could be divided into four groups with the distance of ~17 (the red
dashed line in Figure 4C) after the cluster analysis. The four groups were composed of
group 1 (NH3-N, TP, TN, and ORP), group 2 (Cu), group 3 (pH, CODCr, and DO), and
group 4 (Transparency).

Based on the above multiple statistical analyses, the results from the three analyses
generally displayed satisfactory consistency. Combining these analytical results about
the chosen representative sites, we could come up with some suggestive conclusions and
speculations. For the water quality of the Shili River and the Lianxi River, parameters of
NH3-N, TP, and TN could be classified as one group to represent domestic waste water
pollution; parameters of CODCr and pH could be classified as one group to represent light
industry waste water pollution; and the parameter of Cu could be classified as one group
to represent heavy industry waste water pollution. For Transparency, its incentive might be
varied and complicated, and more efforts should be made to elucidate the potential sources
in future.
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Therefore, the research about the monitoring parameters based on the representative
sampling sites is of significance to future urban WQM. With the statistical methods like
correlation analysis, PCA, and cluster analysis, etc., various parameters can be classified
into a few groups. Furthermore, these groups can be optimized according to the possible
pollution sources of the target rivers. Usually, parameters in the same group can be regarded
as alternative parameters for each other. Under some conditions, such as when manpower
and material resources are limited or the operation is inconvenient, certain parameters
from each group can be used as the representative indicators for WQM. This can improve
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the efficiency of monitoring under the basic assurance of monitoring accuracy, which is
important for the fair arrangement of resources in WQM.

3.4. Results of Monitoring Frequency

Monitoring frequency is of significance to the effective detection of pollution, especially
in view of precipitation. It has been reported that the precipitation would have a remarkable
impact on the water quality of urban rivers [59–61]. Thus, the appropriate monitoring
frequency, especially like the conditions before and after precipitation, can contribute to the
reasonable allocation of WQM programs.

After analyzing the water quality data of sampling site S26 before and after precipita-
tion, the correlation between the concentrations of pollutants (NH3-N and CODCr) after
precipitation and rainfall depth are illustrated in Figure 5. As shown in Figure 5A, the
concentrations of NH3-N barely changed with the increase of rainfall depth in the storm
type of light rain. With the storm type increasing to moderate rain, the NH3-N concentra-
tions increased remarkably with the increase of rainfall depth (Figure 5B). Furthermore, the
NH3-N concentrations decreased remarkably with the increase of rainfall depth in the storm
type of heavy rain (Figure 5C). Similarly, as illustrated in Figure 5D–F, the concentrations
of CODCr also displayed the trend of being nearly unchanging, increasing, and decreasing
with the storm type changing from light to moderate, and to heavy. The consistent changing
trends of NH3-N and CODCr concentrations can well reflect the influence of precipitation
on pollutions, which is basically consistent with the published results [62–64]. It has been
reported that large quantities of land surface pollutants can be transported into rivers by
storm runoff [62]. Moreover, combined sewer overflows have been a threatening potential
pollution source for urban water environments [63]. During the storm type of light rain, it
is more likely that no significant runoff would take place and the interception measures
in the sewer system would perform well as published previously [64]. Accordingly, the
concentrations of pollutants show no significant change during light rain depth. Then, with
the increase of rainfall depth, the land surface pollutant concentrations and the intensity to
the interception system would rise gradually, which was also mentioned in the previous
publication [65]. This may help explain the significant increase of pollutant concentrations
with the increase of rainfall depth in the storm type of moderate rain observed in this work.
Eventually, with the storm type increased to heavy rain, the pollution in the rivers might
have been diluted by rain storms, which could help explain the decrease of pollutant con-
centrations with the increase of rainfall depth in the storm type of heavy rain (Figure 5C,F).
The observed dilution effects of heavy rain on pollution were also in accordance with
the previous publication [59]. Therefore, at the stages with sharp variations in pollutant
concentration, like the NH3-N during the storm type of moderate and heavy as well as the
CODCr during the heavy storm type, more attention should be paid during such periods.
For Jiujiang City, the heavy storm type usually appears in late spring to early summer and,
possibly, more WQM programs (i.e., higher sampling frequency) should be adopted to
realize efficient monitoring.
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The accurate prediction with modelling based on the existing data is a useful and con-
venient solution for efficient WQM, which is also a key means of smart water systems [66].
Therefore, a water quality-predicting model after precipitation was explored herein for
effective monitoring as well as further possible applications in smart water systems. The
model refers to the relation among the water quality and the rain depth fitted using the
machine learning algorithm of Random Forest. By analyzing the pollutant concentrations
before and after precipitation under different precipitation conditions, it was found that
the pollutant concentration after precipitation showed a trend of increasing firstly and de-
creasing afterwards. This can be fitted by a quadratic function that monotonically increases
and then decreases. The fitting results are displayed in Equations (7) and (8) for NH3-N
and CODCr, respectively. Then, the fitting performance was evaluated through comparing
the simulation results with the monitored results. As illustrated in Figure 6, the simulation
results were quite consistent with the monitored values, showing good linear relationship
with the Pearson correlation coefficients being 0.89 and 0.97 correspondingly, indicating
the satisfactory accuracy and persuasive power of the established models. In published
research, the predicted data of multiple pollutants (like COD and TP) have been generated
with the Random Forest algorithm, which also showed satisfactory linearities with the
observed data [19]. These results suggest the huge potential of Random Forest in predicting
pollution, especially with poor knowledge of input and output relationships. Herein, based
on the predicted data from Random Forest and the subsequent fitting models, the pollutant
concentration after precipitation could be calculated using the concentration of pollutants
before precipitation and the rainfall depth.

CNH3-N, after = CNH3-N, before · (−0 .00179 · rainfall2 + 0.16178 · rainfall + 0 .03088) (7)

CCODCr, after = CCODCr, before · (−0 .00337 · rainfall2 + 0.30619 · rainfall − 0 .65692) (8)

where, CNH3-N, after and CCODCr, after respectively represents the concentration of NH3-N
and CODCr after precipitation, CNH3-N, before and CCODCr, before respectively represents
the concentration of NH3-N and CODCr before precipitation, and rainfall represents the
rainfall depth.
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Using the fitting model, water quality after precipitation could be predicted. Based on both
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could be well estimated, e.g., the annual variation of the concentration of pollutants during
the storm types of light, moderate, or heavy. Then, the WQM frequency could be designed
according to the variation of water quality, which helps reflect the future water quality
fluctuation to the furthest extent within limited times. Specifically, more WQM programs
should be carried out during the period of large variation of water quality. The optimized
WQM frequency is, consequently, of significance to the detection of pollution and even
to the tracing of the pollution source. In addition, the construction of the water quality
predicting model is also of significance for the development of smart water systems.

4. Conclusions

The current work was carried out to multi-dimensionally investigate and compre-
hensively analyze the water quality of two representative urban rivers. Generally, the
distribution of the NH3-N, TP, and CODCr fluctuated significantly in both rivers. The as-
sessment of water quality at 44 sampling sites with the AHP method can help optimize the
monitoring object with the emphasis on the sections with a dramatic decrease of water qual-
ity. The substitutional relationship among different monitoring parameters was achieved
through correlation analysis, principal component analysis, and cluster analysis, which can
help determine the optimal monitoring parameters. Relationships among concentrations
of pollutants after precipitation, rainfall depth, and concentrations before precipitation
were constructed using statistical methods and machine learning algorithms. On this basis,
sampling frequency could be optimized with the prediction of pollutant concentrations
after precipitation, and more sampling programs should be carried out during the period
of large variations in water quality. In a word, this work can suggest an innovative and
multi-dimensional solution for water quality investigation and assessment as well as the
optimization of the existing WQM strategy, which is of significance to realize efficient
water quality monitoring, sustainable water source management, and smart water system
construction in urban water environments.
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