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Abstract: The traditional manual approach of pavement condition evaluation is being replaced by
more sophisticated automated vehicle systems. Although these automated systems have eased and
hastened pavement management processes, research is ongoing to further improve their perfor-
mances. An average state road agency handles thousands of kilometers of the road network, most of
which have multiple lanes. Yet, for practical reasons, these automated systems are designed to evalu-
ate road networks one lane at a time. This requires time, energy, and possibly more equipment and
manpower. Multiple Linear Regression (MLR) analysis and Artificial Neural Network (ANN) were
employed to examine the feasibility of modeling and predicting pavement distresses of multiple lanes
as functions of pavement distresses of a single adjacent lane. The successful implementation of this
technique has the potential to cut the energy and time requirement at the condition evaluation stage
by at least half, for a uniform multi-lane highway. Results showed promising model performances
that indicate the possibility of evaluating a multi-lane highway pavement condition (PC) by single
lane inspection. Traffic direction parameters, location, and lane matching parameters contributed
significantly to the performance of the ANN PC prediction models.

Keywords: pavement condition; degradation; prediction; artificial intelligence; artificial neural
network; regression analysis; pavement evaluation; Saudi Arabia

1. Introduction

Artificial intelligence (AI) is an emerging area of computer science that uses different
types of machines and sensors to mimic intelligent human behavior. John McCarthy first
introduced AI in 1956 [1]; however, lack of technological innovations by the time limited
its applications. In the following decade (between 1960 to 1970) researchers explored AI
through artificial neural networks (ANNs) and Knowledge-based systems (KBS) [1]. ANNs
are systems of neurons connected in various layers and inspired by the human brain to
solve various complex real-life tasks. On the other hand, KBS systems are computers
that offer guidance based on pre-established rules based on the information fed to them
by humans. Application of the latest Machine Learning (ML) and Deep Learning (DL)
based technologies have revolutionized AI. ML and DL have found various applications
in diverse fields such as face recognition and tracking [2], visual tracking [3,4], vision and
language navigation [5–7], and image and video editing [8–10]. In recent years, application
of such soft computing methodologies has received widespread applications for various
civil and transportation engineering-related problems, including road safety [11–14], mode
choice modeling [15], energy demand modeling for electric vehicles [16–18], and traffic
sign detection and recognition [19,20]. Similarly, applications of these predictive modeling
approaches are reshaping the field of pavement evaluation and management.
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Quality road networks are key to the safe movement of people, goods, and transfer of
services. These are transportation aspects that facilitate the social and economic develop-
ment of all nations. However, quality roads can only be maintained through an efficient
pavement management system. Due to the significance of establishing and maintaining
good road network, all responsible governments and road management agencies around
the globe continue to invest and adopt modern tools in managing the pavement conditions
of their highway networks. Artificial intelligence techniques such as Expert Systems, ANN,
Genetic Algorithms, and Hybrid Systems have found a wide range of applications in three
key stages of pavement management systems [21–23]. These stages include pavement
distresses or deterioration diagnosis and modeling [24–27], identification and selection
of maintenance action [28], and systematic prioritization and optimization of pavement
maintenance [21,29]. The pavement distress identification and modeling stages formed the
basis and building blocks to achieving the second and third most important management
stages. The use of conventional regression analysis in modeling Pavement Conditions
(PC) as functions of distresses has often resulted in poor and inaccurate relationships [22].
This is due to the random nature of the PC data that contain irregular data points which
naïve statistical analysis would regard as outliers. This is evident from a recent study
that gives a statistical insight into whether the International Roughness Index (IRI) should
be considered as an alternative distress and a ride quality index [30]. Although most of
the pavement’s distresses showed a statistically significant relationship with the IRI, only
about 30% of the IRI data can be described by the developed models. In another study, IRI
was successfully modeled as a function of traffic, time, and pavement structural inputs
using higher-order polynomials [31,32]. However, the ANN modeling of the same data
showed better performance by far. MLR and Neuro-Fuzzy algorithm were employed in
modeling the pavement present serviceability index (PSI) as a function of traffic loading,
rutting, and non-destructive deflection testing structural performance parameters [33].
Even though the Neuro-Fuzzy models showed slightly better prediction performance,
the MLR models were also able to satisfactorily predict the PSI. However, the findings
of an earlier study showed the in adequacy of MLR in modeling the IRI as a function of
material and construction variables [25]. Back-propagated NN models were alternatively
developed, revealing insightful and accurate relationships. In some cases where both MLR
and Artificial Intelligence (AI) models performed satisfactorily, MLR models are preferred
due to their simplicity [34]. Cluster-wise MLR models were also successfully employed to
capture the heterogeneity in pavement deterioration [35]. In summary, regression analysis
is often not adequate for modeling pavement performances, but it can sometimes yield
the desired results. This is why several road agencies still use pavement management
frameworks that utilize regression-based prediction models [36].

ANN self-organizing maps was earlier successfully used to develop a method for
pavement distress grouping that will enable and ease pavement performance modeling [37].
The study illustrates how roughness was dependent on and can be modeled as a function
of the grouped variables. However, the observed models’ structures were not tested on
numerical data to show their statistical performances. A method for selecting optimal major
maintenance action based on ANN accident and sideway force predicting models was
proposed [28]. Genetic algorithm (GA) was used to generate and select the optimal type of
maintenance from the ANN model outputs. Levenberg–Marquardt algorithm was used to
train and test the various two-layer neural networks (NN) without validation. Minimal
error, correlation of 0.888, and 0.853 between the target and predicted output for training
and testing were observed, respectively. ANN and GA were also employed to develop
predictive model for PC Index (PCI) as alternative to the conventional chart-to-chart
procedure [24]. The model was based on eight types of field-obtained pavement distresses
and their severity levels from more than 12,000 pavement sections. The ANN model was
more accurate with less than 1.00 Root Mean Square Error (RMSE), and 0.99 correlation with
the target PCI. Hybrid feed-forward NN-GA algorithm was used to develop predictive
models for airfield pavement deflection based on non-destructive testing moduli data
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base [26]. The NN-GA predicted deflections showed a correlation above 0.99 with the
measured deflections for both the pavement and sub-grade layers. A two-layer recurrent
NN along with decision tree support vector classier was used to model pavement PSI
as a function of material and structural properties, traffic and maintenance history, and
time [38]. Data pre-processing of IRI into clusters using k-mean and fuzzy c-mean was
shown improve ANN model performance significantly [39]. The IRI model was a function
of traffic and pavement structural variables.

In recent years, few studies have investigated the applicability of AI-based ML and DL
frameworks for pavement condition evaluation and assessment. For example, Majidifard
et al. employed a DL Yolo algorithm for automated pavement distress detection using
a dataset containing 7237 Google street images [40]. Pavement condition was classified
according to nine different distress classes. The authors were able to develop various
pavement condition indices using the proposed algorithm, which can minimize human
dependence for pavement inspection. Roberts et al. proposed a low-cost DL prediction
methodology for pavement health condition monitoring [41]. The methodology was ap-
plied to a road network in Sicily, Italy to identify the hotspot locations of different pavement
distress types and their severities which are in need of repair and rehabilitation. In another
study, the researchers proposed an efficient pavement damage prediction model based on a
thermal–RGB fusion [42]. The model achieved a fused image detection accuracy of 98%.
Marcelino et al. utilized the International Roughness Index (IRI) for developing a Random
Forest (RF)-based pavement performance prediction model in Pavement Management
System (PMS) [43]. In addition to IRI data, other input data for the model were traffic,
structural, and climate data. Sensitivity analysis showed that proposed RF model results
were sensitive to previous IRI values. In their study, Inkoom et al. presented the applica-
tion of ANNs and recursive partitioning frameworks for predicting the cracking rate in
pavements [44]. Explanatory variables such as the roadway functional class, average daily
traffic (considering truck factor), pavement condition time series data, and asphalt thick-
ness were used for the model formulation. The recursive partitioning technique yielded
promising results in terms of predictive accuracies 90.89–0.91), high ROC for the selected
decision tree (DT) models, and efficient cost complexity. A recent study by Sholevar et al. a
detailed literature review of various state-of-the-art ML techniques for pavement condition
evaluation [45]. The review also highlighted the current challenges and prospects for future
research in the domain of AI and ML for pavement distress identification and gradation of
corresponding severities.

Based on the above literature review, although preferred due to their simplicity, the
conventional modeling techniques such as regression analysis do not usually offer reli-
able prediction model for PC. In addition, these previous studies were mainly predicting
individual PC such as IRI, PSI, and rutting, as function of material and traffic variables.
In this study, ten PCI were considered for inter-lane PC prediction for efficient pavement
management.

Problem Statement and Objective

More sophisticated automated vehicle systems are replacing the traditional manual
approach of pavement condition evaluation. This was possible through continuous research
on the application of AI techniques for pavement evaluation [45–47]. Such kind of smart
pavement evaluation systems incorporate image processing and sensors [48–51], and many
now exist commercially or as prototypes. Although these automated systems have eased
and hastened pavement management processes, several pieces of research are ongoing
to further improve their performances. An average state road agency handles thousands
of kilometers of the road network, most of which have multiple lanes. Yet for practical
reasons, these automated systems are designed to evaluate road networks one lane at a
time. This means for a six-lane divided highway, the pavement inspection vehicle has to
travel six times the distance of that road to fully cover the pavement sections. Time, energy,
and data storages are costly, hence the question of whether this lane-by-lane practice will
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be sustained for long arise. These automated pavement distress evaluation technologies
are also not cheap. The question of whether this practice can be avoided by eliminating
the need for full road coverage is evaluated in this study. Pavements are designed to last
up to 20 years and even longer in some cases. If PC predictive models for adjacent lanes
can be developed from single lanes for individual roads within such design lives of that
road network, the task and efficiency of PC monitoring, evaluation, and maintenance could
be further simplified and improved, respectively. Fundamental mathematical model for
this problem does not exist, and based on the existing literature, no empirical mathematical
model was previously reported or adopted to address this problem.

The objective of this study is to employ MLR analysis and ANN modeling to examine
the feasibility of modeling and predicting the pavement distresses of multiple lanes as
function of pavement distress of a single adjacent lane. The inter-lane PC indices modeling
can also go a long way in facilitating more accurate forecasting models for estimating the
future consequences of pavement maintenance actions.

2. Data and Methodology

Road condition indices of a two-way six-lane flexible highway were employed for this
study. The pavement condition (PC) data were obtained from the Transport Ministry of
Saudi Arabia. The data were captured by a state-of-the-art automated pavement evaluation
vehicle (ARRB). The automated pavement evaluation system output includes six different
PC indices for a given pavement section. Each lane in this study consists of 568 data sets of
the various PC indices from road sections of highway 40. Highway 40 is one of the most
important roads connecting the major cities of Saudi Arabia and the Gulf Countries. The
road was uniformly divided into 1 km sections, and each section consists of 6 lanes (in both
directions), as shown in Figure 1.
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Figure 1. Sketch and Lane Numbering of 6-Lane Freeway.

The various lanes were abbreviated as follows: Lane 3 (L3), Lane 2 (L2), and Lane 1
(L1). A screen shot of a preprocessed typical lane data sheet is shown in Figure 2. Different
direction for a given lane was signified by +1 and −1; hence each lane data sheet contains
PC data for both directions (back and forth).
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2.1. Pavement Conditions and other Variables

This subheading gives a brief description of the abbreviated variables and PCs shown
in the data sheet in Figure 2.

A. Direction (DIR): this represents the direction of traffic movement either to or fro for
a given lane. The two directions have been numerically represented by +1 (to) and
−1 (fro).

B. Section Number (SN): This column represents the section number for each lane. SN
is more of a location-matching variable.

C. International Roughness Index (IRI): IRI is a measure of longitudinal roughness of
the road, and an indicator of ride quality, safety, and road user cost. The United
State Federal Ministry of Highway and Administration (FHWA) recommends an
acceptable range of IRI between 1.5 to 2.76 m/km [52]. Similar range and scaling of
IRI is employed by highway agencies in Saudi Arabia [53]. Any road section with
IRI below 1.5 m/km can be considered to be in good condition.

D. Pavement Rutting (Rut): Pavement rutting is among the major road distresses that
easily compromise the road’s functional and structural integrity. It is the permanent
depression that manifest longitudinally along vehicle wheel tracks on the road. There
are three basic severity levels prescribed by the FHWA, Low (5–12 mm), Medium (12–
25 mm) and High (>25 mm) rut distress levels. Anything below 5 mm is considered
insignificant [54].

E. Crack Index (CI): This represents the magnitude of cracks that manifested on the
pavement surface at the time of evaluation. It is the function of the various types of
cracks (transverse and longitudinal), and the percentage of area covered by these
cracks and their severities.

F. Pavement Texture (Tex): is the measure deviation of the road surface from an ideal
smooth plane and is accurately measured with laser technology. It affects the tire–
pavement interaction such as skid and rolling resistance. Pavement texture influences
the amount of noise generated by moving vehicles, as well as driver’s safety and
vehicle fuel efficiency.

G. Present Serviceability Index (PSI): Is a measure of pavement serviceability rating
developed by AASHTO, which was later mathematically correlated to pavement
distresses and roughness [55]. The original mathematical model for estimating PSI of
flexible pavement is given by (1). PSI value of 5.0 signifies new and perfect pavement.
This value declines with age of pavement due to defects and degradation, prompting
the need for major maintenance at around PSI values of 3.0–2.0.

PSI = 5.03 − 1.91 log10
(
1 + SV

)
− 1.38 ∗ Rut2 − 0.01

√
(C + P) (1)
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where SV is the slope variance and a function IRI (in/mile), Rut is the average rut
depth, and (C + P) is the sum of total cracked and patched area in f t2/1000 f t2 of
the pavement.

H. Pavement Condition Rating (PCR): The PCR is an overall pavement condition rating
that also depends on other indices such as the roughness condition index (RCI), and
Surface Condition Rating (SCR) [54]. Road sections with PCR values below 60 are
considered to have failed. According to FHWA methodology, PCR, RCI, and SCR
can be estimated from Equations (2)–(5), respectively.

PCR = 0.6 ∗ SCR + 0.4 ∗ RCI (2)

RCI = 32
[
5
(

2.718282(−0.0041IRI)
)]

(3)

SCR = 100 − [(100 − 10 ∗ CI) + (100 − Rutindex)] (4)

Rutindex = 100 − 40
[

%Rutlow
160

+
%Rutmedium

80
+

%Ruthigh

40

]
(5)

The values %Rutlow, %Rutmedium, and %Ruthigh reported the percentage of the 20
measurements within that severity.

I. Longitude (LON): is the geographical longitude bearing coordinate for that particular
road section.

J. Latitude (LAT): is the geographical latitude bearing coordinate for that particular
road section.

2.2. Data Analysis and Modeling

Basic statistics of the various road indices were estimated and compared lane-wise.
Correlation of these road indices between lanes was also estimated in terms of Pearson
correlation. Lane 3 was considered the most damaged and critical lane due to its usual
extreme PC (see Table 1). Thus, it was selected as a predicting lane because the lane
with the worst PC will always be a priority for accurate PC measurement, and timely
maintenance. Since L3 indices are the selected predicting variables of other lanes indices,
the correlations between the various road condition indices of L3 were also estimated and
analyzed. Welch 2 sample t-test was utilized at a 5% significance level to evaluate whether
the PC of adjacent lanes differs significantly or otherwise. Unlike classical t-test, the Welch
t-test is insensitive to unequal variance for all sample sizes [56]. The null hypothesis (Ho)
assumes the PCs of two adjacent lanes are the same, while the alternative hypothesis (Ha)
assumes the PCs of two adjacent lanes are significantly different. Stepwise MLR (MLR) was
then used to develop predictive models of L2 and L1 road condition indices in terms of L3
indices. Stepwise MLR systematically adds or removes a variable to the predicting model
based on whether it improves or lessen the model performance. MiniTab16TM standard
stepwise regression module was employed to generate simple MLR model of all L2 and
L1 indices. A value of 0.15 α-to-enter and α-to-remove was used. Due to unsatisfactory
model performance, MATLAB stepwiselm stepwise regression function was also used to
establish quadratic models with interactive terms of L2 and L1 indices. Starting from a
constant model, stepwiselm uses forward and backward stepwise regression to determine
a final model. At each step, the function searches for a term to add to or remove from the
model based on the selection criteria. Finally, ANN models were trained and developed
using MATLAB application. The partitioning for training/testing of 70/30 of data set was
utilized.
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Table 1. Road Condition Indices Statistics, correlations between Indices of other Lanes and Lane 3,
and t-test of adjacent lanes PCs.

Statistics of Various Lanes Conditions
Indices

Correlation with Lane 3
Conditions Indices

Two Samples t-Test between PCs of
Adjacent Lanes

PC Para-Meter Lane 3 Lane 2 Lane 1 Terms L2 L1 Terms L1/L2 L1/L3 L2/L3

IR
I

(m
/k

m
) Mean 2.05 1.36 1.56 R 0.253 0.324 t-value 7.370 −12.55 −19.79

St. Dev. 0.74 0.36 0.54 DF 566 566 DF 989 1038 823
Min. 0.91 0.65 0.72 p-value 0.000 0.000 p-value 0.000 0.000 0.000
Max. 7.44 3.05 3.39

R
ut

(m
m

) Mean 5.48 4.15 4.33 R 0.299 0.196 t-value 2.040 −8.780 −46.47
St. Dev. 2.55 1.18 1.81 DF 566 566 DF 975 1024 573

Min. 1.75 1.76 1.35 p-value 0.000 0.000 p-value 0.042 0.000 0.000
Max. 20.73 8.86 15.04

C
I

Mean 7.04 8.08 7.67 R 0.406 0.382 t-value −3.600 4.620 7.660
St. Dev. 2.63 1.90 1.93 DF 566 566 DF 1133 1041 1033

Min. 0.08 1.15 1.18 p-value 0.000 0.000 p-value 0.000 0.000 0.000
Max. 10.00 10.00 10.00

Te
xt

ur
e

(m
m

)

Mean 0.71 0.51 0.58 R −0.029 0.191 t-value 7.660 −12.660 −17.71
St. Dev. 0.20 0.20 0.14 DF 566 566 DF 1028 1038 1133

Min. 0.36 0.26 0.27 p-value 0.484 0.000 p-value 0.000 0.000 0.000
Max. 1.73 1.4 1.16

PS
I

Mean 3.53 3.93 3.81 R 0.281 0.357 t-value −7.170 12.830 21.170
St. Dev. 0.39 0.24 0.34 DF 566 566 DF 1016 1118 949

Min. 1.42 2.99 2.78 p-value 0.000 0.000 p-value 0.000 0.000 0.000
Max. 4.24 4.45 4.4

PC
R

Mean 78.43 93.79 88.81 R 0.221 0.304 t-value −6.570 9.470 15.200
St. Dev. 21.64 10.60 14.64 DF 566 566 DF 1033 996 824

Min. 12.50 45.00 32.50 p-value 0.000 0.000 p-value 0.000 0.000 0.000
Max. 100.00 100.00 100.00

2.3. Neural Network (NN) Modeling

A two-layer (excluding the input) feed forward NN was coded in MATLABTM (R2017a).
Although ANN models are categorized as black boxes due to low interpretability of model
structure, they yield astounding prediction performance compared to conventional mod-
eling techniques [57,58]. The architecture of the NN utilized in this study is presented
in Figure 3. All ten indices of L3 were considered as input to predict PC index of L2 or
L1. Sensitivity analysis was later conducted to assess which of the variables played more
significant role in the model performance. Attempt was made to create NN models with
two out puts (L2 and L1 indices), but the resulting models’ accuracies were comparably
lower than those of single out put models. S represents the number of neurons in layer 1,
and varies for the various predicted indices. The weight and bias matrices are denoted by
W and b, respectively. The transfer function f1 is a hyperbolic tangent sigmoid equivalent
function given by (5). Each of the variables from the input matrix X, is connected to each
neuron through the weight matrix IW. In this case, a1 is a 10-element column vector formed
by “f1” from the weighted sum of the input variables xi and bias bi of the neurons’ outputs.
The neurons’ outputs serve as inputs to f1, which transforms inputs to fall between the
interval of [−1, 1]. The second layer function ‘f2’ is a linear transfer function that nor-
malizes the outputs from f1, which is then reversed by Equation (6), to be compared to
the target output ‘yai

’. Due to the random nature of the data, Bayesian Regularized (BR)
Levenberg–Marquardt optimization was selected as the training algorithm [59,60]. The
Bayesian Regularized Neural Networks are difficult to over-train, over-fit, and validation
process is unnecessary [61]. The model performance is evaluated in terms of Mean Square
Error (MSE) given by Equation (8), and coefficient of correlation (R2) between actual and
predicted PC given by Equation (9). However, for easy assessment and evaluation of
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model accuracy, the Root Mean Square Error (RMSE) of the training and testing outputs
was reported. Number of neurons for each model was optimized based on lowest and
highest obtainable MSE and R2 values, respectively. Balanced performance output between
training and test data set was ensured by randomly reshuffling training/test data sets until
approximately equal MSE and R2 are obtained.

f1(t) = 2/
(

1 + e−2t
)
− 1 (6)

where t is the independent variable and e is the natural log base constant (2.718281).

y(r) =
(ymax − ymin)(r − rmin)

(rmax − rmin)
+ ymin (7)

where r is a finite real number ranging between [−1, 1], ymax and ymin are the maximum
and minimum values of the original target data set, respectively.

MSE = (RMSE)2 =
∑nt

i
(
yai − yp(ui)

)2

nt − np
(8)

R2 = 1 − ∑nt
i
(
yai − yp(ui)

)2

∑nt
i (yai − ya)

2 (9)

where RMSE: root mean square error, yai : actual observed ARAs, yp(ui): modeled or
predicted ARAs, nt: total number of observed ARA, np: number model parameters, ya:
mean of observed ARA (Figure 3).
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Figure 3. ANN Models Architecture.

Sensitivity Analysis of ANN Models

The model performance decomposition method was utilized to evaluate the sensitivity
of the ANN models to the PC-predicting variables. The partial contribution of each PC
predicting variable to the model performance was obtained by excluding that variable
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from the final general model [62]. In this study, the partial performance of each variable
was estimated by retraining the same model, with same number of neurons, but with the
exclusion of that variable. At least three model performance outputs for each variable
exclusion were generated by randomly reshuffling the training, and test partition 3 times.
Average values of RMSE and the R2 resulting from both training and testing were reported
as the final results. Percent decrease or increase in RMSE and R2 with respect to the original
RMSE and R2 were estimated according to Equations (10) and (11), respectively.

% ∆RMSEm
n =

RMSEm
n − RMSEm

o
RMSEm

o
(10)

% ∆R2l
n =

R2m
n − R2m

o

R2m
o

(11)

n = 1, 2, . . . 10; m = 1, 2, . . . 12.
% ∆RMSEm

n Represents the percent change in RMSE after exclusion of nth predicting
variable from mth ANN PC model. RMSEm

n Denotes the final average RMSE after exclusion
of nth predicting variable from mth ANN PC model. RMSEm

o Represents the original RMSE
of the mth ANN PC model including all 10 predicting variables. The terms in Equation (11)
hold similar meaning as in Equation (10), but with R2 as a replacement of RMSE.

3. Results and Discussion
3.1. Variables Selection

The basic statistics of the PC indices for the various lanes is summarized in Table 1.
It can be seen that lane 3 (L3) is having the worst PCs and thus the critical lane. This
is obviously due to traffic characteristics that are common on L3. In Saudi Arabia and
several other countries around the world, L3 (outer lane) is prescribed for heavy trucks. In
addition, most slow-moving vehicles are recommended, and they choose to travel on L3.
The combination of heavy load and slow traffic is more detrimental to flexible pavement,
than high speed and numerous low-load traffic. These are some of the reasons why the
pavement of lane 3 showed higher average rutting, roughness, and texture, in addition
to lower PSI and PCR. Sample plots showing the variation of IRI and PSI along the road
length for L3 against lane 2 and lane 1 are shown in Figure 4. It can be observed that L3
showed higher IRI and lower PSI in most part of the road compared to the other lanes.
Considering that poorer PC is a priority for maintenance intervention, and might require
better and more accurate PC evaluation, the PC indices of L3 are selected as the predictors
of Lane 2 (L2) and Lane 1 (L1) PC indices. It is also worth noting that although the PC plots
vs. the road length appeared to be highly nonlinear, the road length is not the predicting
variable, the PC indices of the adjacent lane are (PCs of L3). These PC indices also vary
non-linear along the road length and in a similar pattern as the target PCs (for L1 and L2).
These facts make the problem relatively less nonlinear, and give the MLR a chance.



Sustainability 2023, 15, 561 10 of 30Sustainability 2022, 14, x FOR PEER REVIEW 10 of 30 
 

 

 

Figure 4. IRI and PSI Plots of (a) Lane-2 vs. Lane-3, and (b) Lane-1 vs. Lane-3. 

The correlations of L3 PC indices with L2 and L1 indices are also presented in Table 

1. Parameter of the correlation analysis includes Pearson correlation coefficient (R2), De-

gree of Freedom (DF), and p-value. Almost all of the PCs of L2 and L1 (with the exception 

of Texture for L2) showed statistically significant but weak correlations with the PCs of 

L3. Some of the PCs showed higher correlations with L3 PCs than others. The existence of 

these correlations can be anticipated for several reasons. These reasons include materials, 

construction, and sub-grade variables which are most likely common to adjacent lane of 

a given road section. Traffic volume and distribution between lanes are usually not the 

same but are consistent with time. However, the surprisingly low correlations between 

the lanes’ PC indices indicate the absence of a simple explicit mathematical relationship 

between them. Hence in which case the use of non-conventional AI modeling techniques 

such as ANN might be necessary. Two-sample t-test results of comparison between simi-

lar PCs of the various lanes is also shown in the last columns of Table 1. It can be seen that 

all similar PCs of the various lanes are significantly different from each other (p-value < 

0.05). This implies that the observed differences in mean values and margins between 

-1

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

P
S

I

IR
I 

(m
/k

m
)

Road Length (km)

IRI_L2 IRI_L3 PSI_L2 PSI_L3(a)

-1

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600
P

S
I

IR
I 

(m
/k

m
)

Road Length (km)

IRI_L1 IRI_L3 PSI_L1 PSI_L3(b)

Figure 4. IRI and PSI Plots of (a) Lane-2 vs. Lane-3, and (b) Lane-1 vs. Lane-3.

The correlations of L3 PC indices with L2 and L1 indices are also presented in Table 1.
Parameter of the correlation analysis includes Pearson correlation coefficient (R2), Degree
of Freedom (DF), and p-value. Almost all of the PCs of L2 and L1 (with the exception of
Texture for L2) showed statistically significant but weak correlations with the PCs of L3.
Some of the PCs showed higher correlations with L3 PCs than others. The existence of
these correlations can be anticipated for several reasons. These reasons include materials,
construction, and sub-grade variables which are most likely common to adjacent lane of
a given road section. Traffic volume and distribution between lanes are usually not the
same but are consistent with time. However, the surprisingly low correlations between
the lanes’ PC indices indicate the absence of a simple explicit mathematical relationship
between them. Hence in which case the use of non-conventional AI modeling techniques
such as ANN might be necessary. Two-sample t-test results of comparison between similar
PCs of the various lanes is also shown in the last columns of Table 1. It can be seen that all
similar PCs of the various lanes are significantly different from each other (p-value < 0.05).
This implies that the observed differences in mean values and margins between individual
PCs for different lanes in Table 1 and Figure 4, respectively, are statistically significant.
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The correlation between the predicting variables (L3 PC indices) was estimated and
presented in Table 2. One out of highly correlated variables can be adopted instead of them
all in a regular regression analysis. However, stepwise regression employed in this study
automatically takes care of this issue by only adding variables that improve the model’s
performance. The indices showing statistically significant and meaningful correlations are
highlighted in red font. The IRI, Rut, CI, and Texture are fundamental PCs obtained directly
from the pavement. Any correlation observed between these PCs and with other variables
such as ‘Dir’ is not mathematically explicit. Other PC indices such as PSI, and PCR are
secondary variables that are indirectly related to some of the primary PCs as discussed in
Section 2.1. Correlations such as that between PSI and other fundamental PCs were only
later established empirically. However, PSI was earlier a direct outcome of ride experience
evaluation from panel of observers, and was originally a direct measurement of ride quality.
Other than these, the remaining variables such as the matching parameters did not show a
significant relationship with one another. Overall, the main goal is to assess the potential
and extent of these variables contribution in achieving the objective of this study.

Table 2. Correlations between Condition Indices of Lanes 3.

Dir. SN IRI Rut CI Tex PSI PCR LON.

SN 0.000
1.000

IRI 0.034 −0.082
0.425 0.051

Rut 0.005 0.205 0.528
0.912 0.000 0.000

CI −0.177 0.394 −0.619 −0.191
0.000 0.000 0.000 0.000

Tex 0.457 −0.074 0.459 0.136 −0.633
0.000 0.078 0.000 0.001 0.000

PSI −0.036 0.129 −0.986 −0.555 0.646 −0.450
0.389 0.002 0.000 0.000 0.000 0.000

PCR −0.076 0.079 −0.869 −0.605 0.727 −0.522 0.884
0.070 0.061 0.000 0.000 0.000 0.000 0.000

LON. 0.000 0.998 −0.075 0.214 0.392 −0.070 0.122 0.073
1.000 0.000 0.074 0.000 0.000 0.096 0.004 0.081

LAT. 0.000 1.000 −0.083 0.202 0.395 −0.076 0.131 0.080 0.997
1.000 0.000 0.047 0.000 0.000 0.072 0.002 0.057 0.000

Cell Contents: Pearson correlation (R); p-Value.

3.2. Simple Multiple Linear Regression (S-MLR) Models

Simple MRL models of L2 and L1 PC indices in terms of those of L3 were first devel-
oped and assessed. These models are linear combinations of L3 indices and can be generally
written as an Equation (12). The coefficients and corresponding p-values are summarized
in Table 3. It can be observed that not a single model contains all the available variables.
Some were better off with only 4 of the 10 initial variables. The most frequently appeared
variables on the various models are IRI, PSI, Texture, and Direction. The second most
relevant predicting variables are CI and location matching parameters (SN and LON). Rut
and PCR played overall little role in supporting the various PC indices predictive models.
Almost all of the included independent variables tend to be significantly relevant to the
predicting model performance (at 5% significant level). The lack of significance of some the
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predicting PC variables is not unrelated with the inability of MLR to adequately capture
the nonlinear trend of the various conditions observed earlier (as seen Figure 4). This is
because overall, the performances of the various models can be rated as poor in terms of R2

values. However, the Root Mean Square Errors (RMSE) for some of the models appeared
to be within reasonable ranges. The results of IRI and PSI models showed relatively the
high and low R2 values for lane 1 and lane 2, respectively. For this reason, the plots of
predicted IRI and PSI of L1 and L2 models against their actual values are selected for visual
examination.

Ym
L = Im

L +
N

∑
n=1

Cm
n Xm

n (12)

where Ym
L is lane L pavement index m, L = 2 or 1, and m = 1, 2 . . . 6 for the different distress

or index types. Im
L : intercept for lane L and PC index m. Cm

n and Xm
n are the coefficients

and predicting variables, respectively. n is an integer number of the independent variables
from L3 and varies from 1 to 10.

Table 3. Simple MLR Models for Lane 2 and Lane 1 Distresses and PCIs in terms of Lane 3 Distresses
and PCIs.

IRI Rut CI Texture PSI PCR

Variables Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1

INTERCEPT 9.616 160.640 −454.000 1439.030 7.389 7.389 −39.18 −0.483 −1.908 −541.390 3197.500 −7102.730

DIR −0.101 −0.225 0.138 0.385 0.385 0.069 0.144 1.050 4.970
0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.011 0.000

SN 0.025 −0.079 0.256 −0.007 −0.095 −124.200 −1.240
0.031 0.000 0.000 0.000 0.049 0.000 0.001

IRI −0.27 −0.250 −0.799 0.260 −0.820 −0.820 −0.109 0.178 0.180
0.018 0.063 0.036 0.066 0.000 0.000 0.103 0.016 0.031

RUT 0.114 0.062 −0.023
0.000 0.066 0.000

CI 0.0282 0.060 −0.240 0.352 0.352 0.033 0.022 −0.020
0.001 0.035 0.000 0.000 0.000 0.000 0.000 0.001

TEX 0.29 0.800 −1.680 1.630 1.630 0.198 0.333 −0.214 −7.900
0.005 0.018 0.000 0.002 0.002 0.000 0.000 0.002 0.020

PSI −0.430 −0.906 −1.350 −0.320 0.520 0.616 6.600 10.300
0.000 0.001 0.079 0.018 0.000 0.000 0.000 0.000

PCR −0.016 −0.016
0.026 0.026

LAT −1.51 −3.259 −30.120 1.060 9.397 150.450
0.000 0.016 0.000 0.000 0.033 0.001

LON 2.65 18.400 1.620 0.026 −1.850 3.800 −124.200
0.000 0.000 0.000 0.127 0.000 0.124 0.000

RMSE 0.312 0.380 1.020 1.620 1.620 1.620 0.179 0.132 0.205 0.253 9.840 12.200
R2 (%) 26.640 51.320 26.240 20.970 27.660 27.660 20.250 16.110 28.720 53.770 14.470 31.060

Note: 1st Cell Content is a Coefficient, while the 2nd Cell Content is its Corresponding p-value.

The predicted vs. actual plots showing margin of error for IRI and PSI of L1 and
L2 are shown in Figure 5a,b, respectively. The RMSE of the IRI-L1, IRI-L2, PSI-L1, and
PSI-L2 plots are 0.380 m/km, 0.312 m/km, 0.253, and 0.205, respectively. These values
are not too high if the intervals of the IRI or PSI needed to classify a pavement section as
acceptable or otherwise are considered. However, these level or errors cannot be accepted
practically because they are associated to high uncertainties. This can be observed from
the various margin of error between true and predicted IRI/PSI in the plots. Although
most of the predicted values showed reasonably low deviations from the true values, a
significant amount of the pavement sections that have an unacceptable level of IRI or
PSI were predicted to be in good condition. The correlation coefficients of the various
plots for IRI-L1, IRI-L2, PSI-L1, and PSI-L2 are 0.551, 0.266, 0.537, and 0.287, respectively.
The R2 values give insight into the generality of the prediction models. The more R2 is
closer to unity the more general the model. For example, the RMSE observed might have
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downplayed the deficiencies of the various models, but the true and predicted correlation
coefficients showed how these models become more inaccurate at extreme ends of the
ranges of the utilized data. This was why the models could not capture the IRI and PSI at
the extreme peaks and troughs of the plots. Significant difference in error margin could not
be visually observed between plot in Figure 5a,b for L2 and L1, respectively. This because
although IRI and PSI models of L2 showed lower R2 than those of L1, the models of L2
possessed lower RMSE than those of L1. Similar plots of CI vs. Texture and Rut vs. PCR for
L1 and L2 are presented in the Appendix A as Figures A2 and A3, respectively, for further
information.
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Figure 5. MLR Models Plots, Predicted vs. Actual with Margin of Error (Yellow) for (a) Lane-1 IRI
and PSI, and (b) Lane-2 IRI and PSI.

The Q-MLR model were obtained using a different stepwise regression function in
MATLAB (stepwiselm) which allows for automatic inclusion of interactive and higher
order terms. The resulting Q-MLR models for L2 and L1 indices as a function of L3 PC
indices are presented in Tables 4 and 5, respectively. The inclusion of interactive and higher
order terms in to the MLR models certainly improved both the RMSE and R2 significantly.
However, the numerous interactive and squared terms have also made the regression
equations lengthy and more complex. Unlike in the case of the S-MRL, all of the predicting
variables played a significant role in the model, either alone or by interacting with other
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variables. This confirms the previous hypothesis that the linear nature of the S-MLR models
was partly responsible for the previous insignificant roles of some of the PC predicting
variables. Figure 6 shows the various percent improvements in RMSE and R2 values of Q-
MLR models relative to S-MLR models. Although such relative improvement was observed,
the various Q-MLR PC indices models are far from adequately accurate for practical PCs
predictions. This is because none of the Q-MLR models could explain up to 70% of the
observed PC data (R2 < 0.7). This is despite the fact that 100% of the PC data were utilized
for the regression analysis and model evaluation. It can thus be safe to say that these types
of MLR regression models cannot adequately be relied upon to predict the PC indices of
lanes as a function of adjacent lane PC variables. The ANN models were developed and
analyzed in the next sub-heading.

Table 4. Quadratic MLR Models for Lane 2 Distresses and PCIs in terms of Lane 3 Distresses and
PCIs.

IRI RUT CI TEX PSI PCR

Intercept −4,987,300 Intercept 142,670 Intercept 20,176,000 Intercept −45376 Intercept 3,015,000 Intercept 82,971,000
DIR −125.16 DIR −3150.7 DIR −8080 DIR −0.41049 DIR 0.16871 DIR −1787
SN −1796.1 SN −63.071 SN 7242.1 SN −8.1093 SN 1088 SN 29745
IRI −1495.4 IRI −34.402 IRI 5248.8 IRI 205.56 IRI 753.53 IRI −244.21

RUT −167.96 RUT −1839.2 RUT −2466.2 RUT 10.78 RUT 101.67 RUT 4578.8
CI 126.08 CI 2307.9 CI −2940.3 CI −1.9882 CI −75.117 CI −9831.8

TEXT −2.6151 TEXT −7.1267 TEXT −1557.5 TEXT −559.03 TEXT 3577.6 TEXT −8637.9
PSI −4097.8 PSI −23034 PSI 13531 PSI 4639.9 PSI 2285.7 PSI −788.45

PCR 0.013807 PCR −1.1581 PCR 0.075239 PCR −64.256 PCR 21.961 PCR −0.28437
LAT † −321.9 LAT −5651.5 LAT † 2072.8 LAT 431.17 LAT 295.17 LAT † 6178.2
LON 210,270 LON −1316.2 LON −849920 LON 1392 LON −127230 LON −3.49E+6

DIR*SN −0.02308 DIR*SN −0.56565 DIR*SN −1.4426 DIR*RUT 0.019799 DIR*SN 0.000421 DIR*SN −0.32239
DIR*RUT 0.019773 DIR*IRI −2.1524 DIR*CI −0.1663 DIR*CI 0.014733 DIR*RUT −0.01099 DIR*IRI 4.0006

DIR*CI 0.025276 DIR*CI 0.069223 DIR*TEXT −1.4869 DIR*PSI 0.087773 DIR*CI −0.01658 DIR*RUT −0.72962
DIR*LON 2.6264 DIR*TEXT 1.0866 DIR*PSI −0.73049 DIR*PCR −0.00138 SN*IRI 0.13636 DIR*TEXT −14.854

SN*IRI −0.2717 DIR*PSI −4.0427 DIR*PCR 0.020947 SN*IRI 0.03371 SN*RUT 0.018482 DIR*LAT 71.314
SN*RUT −0.03028 DIR*LAT 34.174 DIR*LAT 88.569 SN*RUT 0.001762 SN*CI −0.01353 SN*RUT 0.835

SN*CI 0.0228 DIR*LON 48.545 DIR*LON 123.12 SN*TEXT −0.09894 SN*TEXT 0.63976 SN*CI −1.7583
SN*PSI −0.74352 SN*RUT −0.32934 SN*IRI 0.95671 SN*PSI 0.82372 SN*PSI 0.41393 SN*TEXT −1.4972

SN*LON 37.831 SN*CI 0.41268 SN*RUT −0.43826 SN*PCR −0.01153 SN*PCR 0.003931 SN*LON −625.11
IRI*RUT 0.21897 SN*PSI −4.1138 SN*CI −0.52656 SN*LON 0.11956 SN*LON −22.928 IRI*RUT −9.5157
IRI*LON 31.431 SN*LON 1.6284 SN*TEXT −0.28749 IRI*TEXT −0.13412 IRI*PSI −0.53833 IRI*TEXT −70.028
RUT*PSI 0.40288 IRI*RUT 0.81057 SN*PSI 2.461 IRI*PCR −0.00996 IRI*PCR 0.005349 IRI*PSI −33.276

RUT*LON 3.4929 IRI*PSI 3.5644 SN*LON −152.35 IRI*LAT −8.1298 IRI*LON −15.797 IRI*LAT 537.96
CI*TEXT −0.18545 IRI*PCR 0.12325 IRI*RUT −0.72298 RUT*LAT −0.42999 RUT*PCR 0.000694 IRI*LON −275.04
CI*LON −2.6487 RUT*PSI 1.6857 IRI*LON −110.34 CI*LAT 0.075479 RUT*LON −2.1397 RUT*TEXT −4.9425

TEXT*PSI 1.1011 RUT*LAT 15.962 RUT*TEXT −0.50002 TEXT*LON 11.761 CI*TEXT 0.17722 RUT*PSI −19.734
PSI*LON 86.12 RUT*LON 30.078 RUT*PSI −1.287 PSI*PCR −0.01954 CI*LON 1.577 RUT*LON −94.358
LAT*LON −422.22 CI*PCR −0.00463 RUT*LAT 27.692 PSI*LAT −60.652 TEXT*PSI −1.1476 CI*PCR † 0.025864

SNˆ2 −0.16168 CI*LAT −18.937 RUT*LON 37.342 PSI*LON −65.448 TEXT*LAT −27.244 CI*LAT 95.212
RUTˆ2 0.004667 CI*LON −38.505 CI*TEXT 1.7894 PCR*LAT 0.64777 TEXT*LON −60.759 CI*LON 156.46
PCRˆ2 −7E−05 TEXT*PSI 3.2312 CI*LAT 28.755 PCR*LON 1.0105 PSI*LON −48.023 TEXT*PSI −159.3

LATˆ2 405.89 TEXT*PCR −0.04669 CI*LON 46.586 LAT*LON −48.206 PCR*LAT
† −0.2003 TEXT*LAT 371.74

LONˆ2 −2102.8 PSI*PCR 0.27703 TEXT*PCR −0.12599 RUTˆ2 0.003019 PCR*LON
† −0.35671 PSI*LAT 1255.1

PSI*LAT 200.85 TEXT*LAT 61.823 CIˆ2 0.005189 LAT*LON 254.55 PSI*LON −632.04
PSI*LON 377.26 PSI*LON −284.48 LATˆ2 41.075 SNˆ2 0.098126 LAT*LON 8997.2

SNˆ2 −0.01585 LAT*LON 2196.8 IRIˆ2 −0.21842 SNˆ2 2.6657
IRIˆ2 1.7593 SNˆ2 0.64983 PCRˆ2 0.00016 RUTˆ2 −0.33006

RUTˆ2 0.010569 RUTˆ2 −0.02978 LATˆ2 −246.04 CIˆ2 −0.42372
LATˆ2 98.395 CIˆ2 0.050773 LONˆ2 1273.2 PSIˆ2 −65.576

TEXTˆ2 3.9505 LATˆ2 −8763.1
LATˆ2 −2127.3 LONˆ2 34335
LONˆ2 8361

RMSE 0.251 RMSE 0.883 RMSE 1.18 RMSE 0.136 RMSE 0.163 RMSE 7.88
R2 0.550 R2 0.481 R2 0.641 R2 0.565 R2 0.574 R2 0.488

† Terms with p-values greater than 5%.
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Table 5. Quadratic MLR Models for Lane 1 Distresses and PCIs in terms of Lane 3 Distresses and
PCIs.

IRI RUT CI TEX PSI PCR

Intercept −8.46E+5 Intercept 1.17E+06 Intercept 1.91E+07 Intercept 25485 Intercept 4.78E+5 Intercept −8.17E+6
DIR 2351.9 DIR 12,584 DIR −13,291 DIR −36.78 DIR −1546.8 DIR −97,228
SN −336.13 SN 209.75 SN 6734.2 SN 4.5142 SN 192.47 SN −1459.8
IRI −14152 IRI −63747 IRI † 210.33 IRI −1800.4 IRI 9275.1 IRI 5.16E+05

RUT † 0.028914 RUT 16.415 RUT −131.95 RUT −11.221 RUT 0.032893 RUT −3.1127
CI 514.44 CI 5580.5 CI −2332.4 CI † −0.04181 CI −322.88 CI −30498

TEXT 34.105 TEXT 30,318 TEXT −68.948 TEXT 0.20717 TEXT −23.186 TEXT † −9.0446
PSI −30340 PSI −1.29E+5 PSI −70.68 PSI −844.75 PSI 19,617 PSI 1.07E+06

PCR 0.05492 PCR 19.125 PCR † 0.051287 PCR −46.454 PCR −0.01366 PCR 0.34824
LAT −1071 LAT −30,601 LAT −4482.7 LAT −91.746 LAT 706.77 LAT 61,579
LON 38,885 LON −22,145 LON −8.00E+5 LON −815.51 LON −22,256 LON 2.15E+05

DIR*SN 0.42155 DIR*SN 2.2528 DIR*SN −2.3769 DIR*SN −0.00615 DIR*SN −0.2772 DIR*SN −17.417
DIR*PSI 0.20165 DIR*RUT −0.06095 DIR*IRI −2.1331 DIR*CI 0.009409 DIR*PSI −0.10405 DIR*CI † 0.66789
DIR*LAT −19.882 DIR*CI −0.24414 DIR*TEXT 1.0249 DIR*TEXT −0.09728 DIR*LAT 13.199 DIR*TEXT 15.479
DIR*LON −38.961 DIR*TEXT −1.3265 DIR*PSI −4.1952 DIR*PSI −0.04283 DIR*LON 25.557 DIR*LAT 863.97

SN*IRI −2.5289 DIR*LAT −112.04 DIR*LAT 122.24 DIR*LAT 1.4664 SN*IRI 1.6597 DIR*LON 1587.3
SN*RUT † 0.000218 DIR*LON −205.3 DIR*LON 215.23 SN*IRI −0.32222 SN*CI −0.05776 SN*IRI 92.302

SN*CI 0.091863 SN*IRI −11.396 SN*IRI † 0.042249 SN*RUT −0.00181 SN*PSI 3.5099 SN*CI −5.4612
SN*PSI −5.4216 SN*CI 0.99706 SN*RUT −0.02263 SN*CI 0.000164 SN*PCR 2.76E−05 SN*PSI 190.69

SN*LON 7.557 SN*TEXT 5.4247 SN*CI −0.41771 SN*PSI −0.15159 SN*LON −4.3654 SN*LON 13.525
IRI*CI 0.043251 SN*PSI −23.027 SN*TEXT 0.013858 SN*PCR −0.00831 IRI*PSI 5.4178 IRI*PSI 185.71

IRI*TEXT 0.35699 SN*PCR 0.00337 SN*LON −141.5 SN*LON −0.05782 IRI*LAT −78.607 IRI*LAT −4117.7
IRI*PSI −5.5782 SN*LAT −3.8043 IRI*TEXT 8.1014 IRI*LAT 13.616 IRI*LON −153.96 IRI*LON −8691.9

IRI*PCR −0.01062 SN*LON −0.4314 IRI*PSI 3.5725 IRI*LON 30.656 RUT*TEXT −0.06261 RUT*CI 0.31907
IRI*LAT 117.87 IRI*PSI 0.90405 IRI*LAT −9.1198 RUT*LAT 0.44495 CI*LAT 2.586 CI*TEXT 7.5985
IRI*LON 235.76 IRI*PCR −0.02732 RUT*LAT 5.2375 CI*PSI 0.020294 CI*LON 5.4216 CI*LAT 270.76
CI*LAT −4.3628 IRI*LAT 576.37 CI*PCR 0.010846 PSI*LON 17.759 TEXT*LON 0.48347 CI*LON 497.84
CI*LON −8.5112 IRI*LON 1035.6 CI*LAT 21.132 PCR*LAT 0.488 PSI*LAT −166.16 TEXT*PCR −0.65014

TEXT*LON −0.71461 RUT*LON −0.33256 CI*LON 37.856 PCR*LON 0.71871 PSI*LON −325.72 PSI*LAT −8548.4
PSI*LAT 254.15 CI*PCR −0.00563 TEXT*PSI 15.214 LAT*LON 25.428 SNˆ2 0.019123 PSI*LON −17,937
PSI*LON 504.69 CI*LAT −50.147 LAT*LON 1833.4 CIˆ2 −0.00306 IRIˆ2 1.2164 LAT*LON −536.53

SNˆ2 −0.03303 CI*LON −90.813 SNˆ2 0.59347 LATˆ2 −23.408 PSIˆ2 6.0535 IRIˆ2 42.418
IRIˆ2 −1.3801 TEXT*LAT −282.47 TEXTˆ2 −2.8445 PCRˆ2† 5.14E−05 CIˆ2 0.46754

RUTˆ2 −0.00381 TEXT*LON
† −488.12 PSIˆ2 7.3199 LONˆ2 248.82 PSIˆ2 199.94

PSIˆ2 −6.2659 PSI*LAT 1199.2 PCRˆ2 −0.00083 LONˆ2 −1305.4
PCRˆ2 −0.00019 PSI*LON 2073.6 LATˆ2 −1649.7

LONˆ2 −431.7 PCR*LAT
† −0.75592 LONˆ2 7925.4

LAT*LON 543.29

RMSE 0.323 RMSE 1.430 RMSE 1.190 RMSE 0.104 RMSE 0.200 RMSE 11.000
R2 0.668 R2 0.422 R2 0.642 R2 0.505 R2 0.680 R2 0.467

† Denotes Terms with p-values greater than 5%.
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3.3. ANN Models

A summary of the ANN models’ performances for the L2 and L1 PC indices is pre-
sented in Table 6. The number of neurons in the hidden layer is continuously adjusted until
a reasonable balance between training and testing performance is achieved. Almost each
PC index requires a different optimum number of neurons for a given lane. RMSE and
correlation between the predicted and target PC for the training, testing, and combined (All)
are listed. The corresponding training epochs at which these results were obtained were
also presented. All PC model performance vs. epochs plots for training and test are shown
in Figure A1, in Appendix A. The ANN models showed promising performances that
indicates the possibility of evaluating a multi-lane highway PC by single lane inspection.
All but the PCR model showed reasonable RMSE values, that are capable of explaining at
least 80% of their various PC data (R2 ≥ 0.8), and some up to 90%. Poor performance of the
PCR model is not unrelated to the semi-discrete nature of the PCR data which exhibited
several wide flat peaks (see Figure A5 in Appendix A). Although PCR is and should be
inherently continuous, it appears to rate several sections that are not significantly different
as equals. This creates the numerous flat continuous peaks that ended up confusing the
ANN algorithm. Unlike PCR, most other indices were able to account for the slightest
variations between different road sections. The PCR prediction might yield better model
performance if treated as a classification problem.

Table 6. Neural Network Models Performance Summary.

NN Modeling Results Summary of Lane 2 and Lane 1 Indices from Lane 3 Indices

Lane 2 Lane 1

Training Testing All Training Testing All

IRI (m/km)

R2 0.812 0.790 0.802 0.866 0.795 0.855
RMSE 0.213 0.235 0.216 0.277 0.301 0.281
Epoch 239 NA 462 NA

Neurons 7 8

Rut (mm)

R2 0.818 0.782 0.800 0.782 0.780 0.781
RMSE 0.684 0.834 0.708 1.151 1.023 1.133
Epoch 237 NA 187 NA

Neurons 10 8

CI

R2 0.908 0.911 0.908 0.891 0.893 0.892
RMSE 0.801 0.776 0.797 0.858 0.960 0.874
Epoch 133 NA 94 NA

Neurons 9 8

Texture (mm)

R2 0.891 0.849 0.885 0.820 0.751 0.809
RMSE 0.092 0.099 0.093 0.084 0.086 0.084
Epoch 173 NA 117 NA

Neurons 8 8

PSI

R2 0.807 0.791 0.805 0.879 0.850 0.874
RMSE 0.144 0.137 0.143 0.165 0.174 0.167
Epoch 356 NA 404 NA

Neurons 7 10

PCR

R2 0.815 0.628 0.773 0.731 0.729 0.731
RMSE 6.249 8.311 6.884 9.760 11.221 9.992
Epoch 191 NA 235 NA

Neurons 10 8

ANN PC models similar to those visually analyzed previously (IRI and PSI models)
from previous S-MLR models were also plotted for similar analysis. The lane 1 and lane
2 IRI and PSI ANN model plot for predicted vs. actual showing yellow error margin are
presented in Figure 7a,b, respectively. The improvement in R2 values of the ANN models
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can be seen to be reflected in the lower level of deviation (yellow gap) of the predicted from
the actual PSI and IRI values. This deviation was significantly higher in the S-MLR models
(see Figure 5 for comparison). This is because, unlike the low R2 values of the S-MLR
model plots (0.551, 0.537, 0.2664, and 0.2872), the ANN models showed higher R2 (0.855,
0.874, 0.802, and 0.805), for the Lane 1 IRI, Lane 1 PSI, Lane 2 IRI and PSI, respectively. The
RMSE values for the IRI and PSI models have decreased from 0.380, 0.253, 0.312, and 0.205,
to 0.281, 0.167, 0.216, and 0.143, respectively. The improvement in RMSE can be clearly
observed as those seen for the R2, and their impact on margin of error is also visually
significant. This is because, unlike in the case of S-MLR models, the number of excessively
over and under predicted PC have decreased drastically, as can be observed from the
predicted vs. actual plots in Figure 7. Similar plots of actual vs. predicted for CI with
Texture, and Rut with PCR for L2 and L1 are presented in Figures A4 and A5, respectively,
as further information in Appendix A.
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Figure 7. ANN Model Plots, Predicted vs. Actual with Margin of Error (Yellow) for (a) Lane-1 IRI
and PSI, and (b) Lane-2 IRI and PSI.
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Sensitivity Analysis of ANN Modeling Results

Percent change in RMSE and R2 values of the IRI ANN models due to exclusion of
individual predicting variables from the models are shown in Figure 8. This represents
the relative influence of the variables with respect to the accuracy of the ANN model. A
variable that results in a higher drop in the accuracy of the model is considered a crucial
and influential factor in the model. It can be observed that exclusion of any of the predicting
variable from the models of both L2 and L1 resulted in increase in RMSE and a decrease
in R2 value. However, the resulting change in RMSE was higher than that of R2 value.
The magnitude of the observed change in RMSE and R2 for the different variables are
also not the same for the different lanes. Increase in RMSE and decrease in R2 is a clear
indication of decrease in overall model performance. This implies that all the included
predicting variables, i.e., the PC of L3, contributed positively in the IRI model performances
of both L2 and L1. The traffic travel direction parameter ‘Dir’ contributed the most to
the RMSE and the R2 of the IRI ANN model. The traffic direction parameter ‘Dir’, the
adjacent lane sections matching number (SN), and location parameter played a vital role,
without which the data will be less meaningful to the ANN algorithm. This is because
the PC variation between adjacent lanes, along the length of the road, and for different
direction is not uniform (see Figure 4). Similar results of change in RMSE and R2 value
of other PC models for L2 and L1 are summarized and presented in Table 7. The average
corresponding RMSE and R2 values are presented in Appendix A in Table A1. Most of the
observations made in the case of the IRI models are common to other PCs models, except
PCR. Exclusion of a variable should either cause a decrease or an increase in the PCR model
performance. The change in RMSE in the PCR models is also relatively low as compared
to other PC models. This difference can be associated with the inability of the PCR model
to perform as compared to the other PC indices. Excluding any predicting variable from
the other PC models affects the model performance negatively. The negative effect of
predicting variable exclusion can either be significant or less. The predicting variables were
ranked according to their relative influence on the model performance, and the results is
summarized in Table 8. The rank #1 represents the most influential, while rank #10 signifies
least influential. The ranking was made on the absolute sum of change in RMSE and R2

due to the exclusion of the variables. It can be observed that the traffic direction parameter
consistently remained the most influential predictor for the PCs of both L2 and L1, with
only the exception of PCR. Average or overall rankings for the different lanes PC models
were obtained from the total absolute sum of changes in RMSE and R2 due to variable
exclusion. Due to inconsistent outcomes of PCR results as previously observed, results of
PCR model were not included in the overall average ranking.
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Figure 8. Percent Change in RMSE and R2 after Variable Exclusion for IRI ANN Models.
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Table 7. Summary of % Change in RMSE and R2 after Variable Exclusion for All PC ANN models.

% Change in RMSE

PC Lane
ID

Without
DIR

Without
SN

Without
IRI

Without
RUT

Without
CI

Without
TEXT

Without
PSI

Without
PCR

Without
LAT

Without
LON

IRI
Lane 2 13.96% 8.92% 7.76% 7.02% 4.67% 7.01% 6.65% 4.91% 8.83% 6.53%
Lane 1 9.41% 4.93% 6.68% 6.96% 5.58% 5.19% 4.87% 5.24% 6.61% 6.64%

RUT
Lane 2 20.93% 9.24% 8.56% 6.60% 12.37% 12.66% 7.44% 8.54% 9.15% 10.07%
Lane 1 13.90% 3.57% 3.78% 8.99% 6.17% 7.90% 3.95% 6.84% 6.19% 4.22%

CI
Lane 2 24.58% 3.58% 7.20% 5.78% 12.64% 8.22% 5.15% 1.48% 7.41% 7.07%
Lane 1 21.81% 6.22% 8.15% 8.21% 4.95% 6.15% 2.36% 7.84% 6.10% 2.31%

TEXT
Lane 2 18.26% 7.57% 1.74% 1.74% 6.12% 3.40% 4.83% 2.86% 7.81% 0.75%
Lane 1 18.49% 5.48% 4.82% 5.37% 10.23% 10.02% 3.92% 5.57% 7.75% 5.74%

PSI
Lane 2 8.59% 5.41% 4.64% 2.54% 7.10% 3.70% 5.04% 4.62% 6.97% 4.72%
Lane 1 23.12% 8.32% 5.63% 11.90% 6.98% 6.37% 8.23% 6.05% 5.75% 7.35%

PCR
Lane 2 −1.72% 1.06% 0.74% 0.78% −0.63% −2.29% −3.39% −3.26% 2.05% −2.41%
Lane 1 2.15% 3.20% −3.15% 3.77% −2.90% −2.37% −2.07% 1.28% −2.16% 0.34%

% Change in R2

PC Lane
ID

Without
DIR

Without
SN

Without
IRI

Without
RUT

Without
CI

Without
TEXT

Without
PSI

Without
PCR

Without
LAT

Without
LON

IRI
Lane 2 −8.52% −5.26% −4.59% −4.19% −2.67% −4.12% −3.93% −2.82% −5.32% −3.72%
Lane 1 −3.75% −1.87% −2.65% −2.76% −2.06% −2.04% −1.89% −2.03% −2.59% −2.61%

RUT
Lane 2 −14.26% −5.60% −5.12% −3.97% −7.66% −7.86% −4.42% −5.16% −5.45% −6.09%
Lane 1 −10.09% −2.38% −2.52% −6.28% −4.17% −5.41% −2.65% −4.70% −4.17% −2.82%

CI
Lane 2 −6.09% −0.80% −1.58% −1.29% −2.89% −1.86% −1.15% −0.34% −1.64% −1.61%
Lane 1 −6.48% −1.73% −2.27% −2.25% −1.33% −1.68% −0.65% −2.20% −1.65% −0.60%

TEXT
Lane 2 −5.70% −2.24% −0.45% −0.44% −1.77% −0.91% −1.44% −0.83% −2.15% −0.22%
Lane 1 −11.38% −2.99% −2.66% −2.96% −5.89% −5.78% −2.20% −3.13% −4.42% −3.26%

PSI
Lane 2 −5.04% −3.10% −2.66% −1.47% −4.14% −1.96% −2.91% −2.56% −4.02% −2.72%
Lane 1 −8.27% −2.74% −1.82% −3.99% −2.28% −2.07% −2.68% −1.92% −1.86% −2.43%

PCR
Lane 2 0.10% −1.80% −1.62% −1.40% −0.61% 0.43% 1.33% 1.24% −2.21% 0.77%
Lane 1 −1.99% −3.02% 2.57% −3.64% 2.35% 2.03% 1.69% −1.24% 1.87% −0.35%

Table 8. Relative Influence Ranking of the PCs as Predicting Variable of Adjacent Lanes PCs.

PC Lane
ID DIR SN IRI RUT CI TEXT PSI PCR LAT LON

IRI
Lane 2 1 2 4 5 10 6 7 9 3 8
Lane 1 1 9 3 2 6 8 10 7 5 4

RUT
Lane 2 1 5 8 10 3 2 9 7 6 4
Lane 1 1 10 9 2 6 3 8 4 5 7

CI
Lane 2 1 9 5 7 2 3 8 10 4 6
Lane 1 1 5 3 2 8 6 9 4 7 10

TEXT
Lane 2 1 3 8 9 4 6 5 7 2 10
Lane 1 1 7 9 8 2 3 10 6 4 5

PSI
Lane 2 1 4 7 10 2 9 5 8 3 6
Lane 1 1 3 10 2 6 7 4 8 9 5

PCR
Lane 2 9 5 7 8 10 6 1 2 3 4
Lane 1 6 2 3 1 4 5 8 9 7 10

Ave.
Lane 2 1 4 6 9 2 5 8 10 3 7
Lane 1 1 8 7 2 4 3 10 6 5 9
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3.4. S-MLR, Q-MLR, and ANN PCs Prediction Models

This section compiles the various model performance results for general comparison.
The performance results for combined training and testing (All) for ANN models were
selected to be paired with MLR models. Table 9 shows the summary of the RMSE values
for all the PC indices prediction models. The trend is clear and consistent. ANN models
showed lower RMSE than all the MLR models. Q-MLR models showed lower RMSE
compared to the S-MLR model. The level of relative improvement in performance of the
ANN model can only be fully understood by observing both the RMSE and the R2. Figure 9
shows the R2 plot of the various PC indices prediction models. The ANN models showed
better R2 and are more general than all the MLR models. The gap in R2 between ANN and
S-MLR models range from 34% up to 68%, and from 19% to 36% relative to Q-MLR models.

Table 9. RMSE Summary of the Various S-MLR, Q-MLR, and ANN Models.

IRI RUT CI TEX PSI PCR

L 2 L 1 L 2 L 1 L 2 L 1 L 2 L 1 L 2 L 1 L 2 L 1

S-MLR 0.312 0.380 1.020 1.620 1.620 1.620 0.179 0.132 0.205 0.235 9.840 12.200
Q-MLR 0.251 0.323 0.883 1.430 1.180 1.190 0.136 0.104 0.163 0.200 7.880 11.000

ANN 0.216 0.281 0.708 1.133 0.797 0.874 0.093 0.084 0.143 0.167 9.277 9.992
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Figure 9. Comparison of MLR and ANN PC Predictive Model Performances In Terms of R2.

4. Conclusions and Recommendation

The feasibility of evaluating the pavement condition indices of a multi-lane highway
by single lane inspection was examined. MLR and ANN were employed to model and
predict the pavement distresses of multiple lanes as functions of pavement distresses of
a single adjacent lane. Simple sensitivity analysis was conducted to assess the level of
influence of the predicting PC variables on the ANN PC models. Below is the summary of
key findings from this study:
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• Although MLR models with interactive and higher order terms showed better perfor-
mance than simple MLR models, MLR cannot be relied upon to adequately predict
the PC indices of lanes as a function of adjacent lane PC variables.

• On the other hand, the ANN models showed promising performances that indicates
the possibility of evaluating a multi-lane highway PC by single lane inspection. The
gap in R2 between ANN and S-MLR models ranges from 34% up to 68%, and from
19% to 36% relative to Q-MLR models.

• Traffic direction parameter, location and lane matching parameters contributed sig-
nificantly to the performance of the ANN PC prediction models. This indicates the
need for including other location dependent variables such as traffic volumes and
pavement structural inputs.

• CI showed better predictability, followed by Tex, PSI, IRI, and RUT. The model PCR
showed the least model performance. This suggests that other AI techniques other
than ANN could be better suited for the lower-performing PCIs.

• Although an appreciable amount of data were utilized in this study, the outcomes of
this study may not be valid for roads in other countries or even different cities. In
addition, the study tested the models with PC data obtained from one class of road
(free way) but from different locations. The results might not be valid for different
class of roads.

• More similar studies using different AI techniques are recommended to make this
approach common and practical.
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Texture-L2, (h) Texture-L1, (i) PSI-L2, (j) PSI-L1, (k) PCR-L2, and (l) PCR-L1 ANN models.
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Figure A2. MLR Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 CI and Texture, and
(b) Lane-1 CI and Texture.
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Figure A3. MLR Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 RUT and PCR, and
(b) Lane-1 RUT and PCR.
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Figure A4. ANN Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 CI and Texture,
and (b) Lane-1 CI and Texture.
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Figure A5. ANN Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 RUT and PCR, and
(b) Lane-1 RUT and PCR.
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Table A1. Summary of Average RMSE and R2 for the ANN PC Models after Variables Exclusion.

RMSE

PC Lane
ID

Without
DIR

Without
SN

Without
IRI

Without
RUT

Without
CI

Without
TEXT

Without
PSI

Without
PCR

Without
LAT

Without
LON

IRI
Lane 2 0.2487 0.2377 0.2352 0.2336 0.2285 0.2336 0.2328 0.2290 0.2375 0.2325
Lane 1 0.3100 0.2973 0.3022 0.3030 0.2991 0.2980 0.2971 0.2982 0.3020 0.3021

RUT
Lane 2 0.8642 0.7807 0.7758 0.7618 0.8030 0.8051 0.7678 0.7757 0.7800 0.7866
Lane 1 1.3015 1.1574 1.1687 1.2287 1.2345 1.2177 1.1734 1.2503 1.2155 1.2097

CI
Lane 2 1.0021 0.8332 0.8623 0.8509 0.9060 0.8705 0.8458 0.8163 0.8640 0.8613
Lane 1 1.0744 0.9369 0.9540 0.9545 0.9257 0.9363 0.9029 0.9512 0.9359 0.9024

TEXT
Lane 2 0.1108 0.1008 0.0953 0.0953 0.0994 0.0969 0.0982 0.0964 0.1010 0.0944
Lane 1 0.1007 0.0896 0.0891 0.0895 0.0937 0.0935 0.0883 0.0897 0.0916 0.0899

PSI
Lane 2 0.1568 0.1522 0.1511 0.1481 0.1547 0.1497 0.1517 0.1511 0.1545 0.1512
Lane 1 0.2072 0.1823 0.1778 0.1883 0.1800 0.1790 0.1821 0.1785 0.1780 0.1806

PCR
Lane 2 6.7656 6.9566 6.9350 6.9375 6.8403 6.7263 6.6500 6.6592 7.0250 6.7175
Lane 1 10.2974 10.4041 9.7632 10.4608 9.7885 9.8416 9.8722 10.2101 9.8633 10.1149

R2

PC Lane
ID

Without
DIR

Without
SN

Without
IRI

Without
RUT

Without
CI

Without
TEXT

Without
PSI

Without
PCR

Without
LAT

Without
LON

IRI
Lane 2 73.38% 75.99% 76.53% 76.85% 78.07% 76.91% 77.05% 77.95% 75.94% 77.23%
Lane 1 82.32% 83.93% 83.27% 83.17% 83.77% 83.79% 83.91% 83.79% 83.32% 83.30%

RUT
Lane 2 68.62% 75.55% 75.94% 76.86% 73.91% 73.74% 76.50% 75.91% 75.68% 75.16%
Lane 1 70.20% 76.21% 76.10% 73.17% 74.82% 73.85% 76.00% 74.41% 74.81% 75.87%

CI
Lane 2 85.25% 90.06% 89.35% 89.61% 88.16% 89.10% 89.74% 90.48% 89.29% 89.32%
Lane 1 83.38% 87.61% 87.13% 87.15% 87.97% 87.66% 88.57% 87.19% 87.68% 88.62%

TEXT
Lane 2 83.46% 86.53% 88.11% 88.12% 86.94% 87.70% 87.23% 87.77% 86.61% 88.32%
Lane 1 71.67% 78.45% 78.72% 78.48% 76.11% 76.20% 79.09% 78.34% 77.30% 78.23%

PSI
Lane 2 76.42% 77.98% 78.33% 79.30% 77.14% 78.90% 78.14% 78.41% 77.24% 78.29%
Lane 1 80.20% 85.03% 85.84% 83.94% 85.44% 85.62% 85.08% 85.75% 85.80% 85.31%

PCR
Lane 2 77.42% 75.95% 76.09% 76.26% 76.87% 77.68% 78.37% 78.30% 75.63% 77.94%
Lane 1 71.63% 70.88% 74.97% 70.42% 74.80% 74.57% 74.32% 72.18% 74.45% 72.83%

References
1. Sadek, A.W. Artificial Intelligence Applications in Transportation. In Transportation Research Circular; Transportation Research

Board, Artifical Intelligence and Advanced Computing Applications Committee: Washington, DC, USA, 2007; pp. 1–7.
2. Qi, Y.; Zhang, S.; Jiang, F.; Zhou, H.; Tao, D.; Li, X. Siamese Local and Global Networks for Robust Face Tracking. IEEE Trans.

Image Process. 2020, 29, 9152–9164. [CrossRef] [PubMed]
3. Yang, Y.; Li, G.; Qi, Y.; Huang, Q. Release the Power of Online-Training for Robust Visual Tracking. Proc. AAAI Conf. Artif. Intell.

2020, 34, 12645–12652. [CrossRef]
4. Qi, Y.; Qin, L.; Zhang, S.; Huang, Q.; Yao, H. Robust Visual Tracking via Scale-and-State-Awareness. Neurocomputing 2019, 329,

75–85. [CrossRef]
5. An, D.; Qi, Y.; Huang, Y.; Wu, Q.; Wang, L.; Tan, T. Neighbor-View Enhanced Model for Vision and Language Navigation. In

Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 5101–5109.
6. Zhu, W.; Qi, Y.; Narayana, P.; Sone, K.; Basu, S.; Wang, X.E.; Wu, Q.; Eckstein, M.; Wang, W.Y. Diagnosing Vision-and-Language

Navigation: What Really Matters. arXiv 2021, arXiv:2103.16561.
7. Qi, Y.; Pan, Z.; Hong, Y.; Yang, M.-H.; van den Hengel, A.; Wu, Q. The Road to Know-Where: An Object-and-Room Informed

Sequential Bert for Indoor Vision-Language Navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, Virtual, 11–17 October 2021; pp. 1655–1664.

8. Wang, Y.; Qi, Y.; Yao, H.; Gong, D.; Wu, Q. Image Editing with Varying Intensities of Processing. Comput. Vis. Image Underst. 2021,
211, 103260. [CrossRef]

9. Ye, H.; Li, G.; Qi, Y.; Wang, S.; Huang, Q.; Yang, M.-H. Hierarchical Modular Network for Video Captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 17939–17948.

http://doi.org/10.1109/TIP.2020.3023621
http://www.ncbi.nlm.nih.gov/pubmed/32941139
http://doi.org/10.1609/aaai.v34i07.6956
http://doi.org/10.1016/j.neucom.2018.10.035
http://doi.org/10.1016/j.cviu.2021.103260


Sustainability 2023, 15, 561 29 of 30

10. Chen, W.; Hong, D.; Qi, Y.; Han, Z.; Wang, S.; Qing, L.; Huang, Q.; Li, G. Multi-Attention Network for Compressed Video
Referring Object Segmentation. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14
October 2022; pp. 4416–4425.

11. Sattar, K.; Chikh Oughali, F.; Assi, K.; Ratrout, N.; Jamal, A.; Masiur Rahman, S. Transparent Deep Machine Learning Framework
for Predicting Traffic Crash Severity. Neural Comput. Appl. 2022, 1–13. [CrossRef]

12. Moslem, S.; Farooq, D.; Jamal, A.; Almarhabi, Y.; Almoshaogeh, M.; Butt, F.M.; Tufail, R.F. An Integrated Fuzzy Analytic Hierarchy
Process (AHP) Model for Studying Significant Factors Associated with Frequent Lane Changing. Entropy 2022, 24, 367. [CrossRef]

13. Jamal, A.; Zahid, M.; Tauhidur Rahman, M.; Al-Ahmadi, H.M.; Almoshaogeh, M.; Farooq, D.; Ahmad, M. Injury Severity
Prediction of Traffic Crashes with Ensemble Machine Learning Techniques: A Comparative Study. Int. J. Inj. Control. Saf. Promot.
2021, 28, 408–427. [CrossRef]

14. Ijaz, M.; Lan, L.; Zahid, M.; Jamal, A. A Comparative Study of Machine Learning Classifiers for Injury Severity Prediction of
Crashes Involving Three-Wheeled Motorized Rickshaw. Accid. Anal. Prev. 2021, 154, 106094. [CrossRef]

15. Tamim Kashifi, M.; Jamal, A.; Samim Kashefi, M.; Almoshaogeh, M.; Masiur Rahman, S. Predicting the Travel Mode Choice with
Interpretable Machine Learning Techniques: A Comparative Study. Travel Behav. Soc. 2022, 29, 279–296. [CrossRef]

16. Ullah, I.; Liu, K.; Yamamoto, T.; Shafiullah, M.; Jamal, A. Grey Wolf Optimizer-Based Machine Learning Algorithm to Predict
Electric Vehicle Charging Duration Time. Transp. Lett. 2022, 1–18. [CrossRef]

17. Ullah, I.; Liu, K.; Yamamoto, T.; Al Mamlook, R.E.; Jamal, A. A Comparative Performance of Machine Learning Algorithm to
Predict Electric Vehicles Energy Consumption: A Path towards Sustainability. Energy Environ. 2021, 33, 1583–1612. [CrossRef]

18. Ullah, I.; Liu, K.; Yamamoto, T.; Zahid, M.; Jamal, A. Prediction of Electric Vehicle Charging Duration Time Using Ensemble
Machine Learning Algorithm and Shapley Additive Explanations. Int. J. Energy Res. 2022, 46, 15211–15230. [CrossRef]

19. Alkhulaifi, A.; Jamal, A.; Ahmad, I. Predicting Traffic Sign Retro-Reflectivity Degradation Using Deep Neural Networks. Appl.
Sci. 2021, 11, 11595. [CrossRef]

20. Jamal, A.; Reza, I.; Shafiullah, M. Modeling Retroreflectivity Degradation of Traffic Signs Using Artificial Neural Networks. IATSS
Res. 2022, 46. [CrossRef]

21. Sundin, S.; Braban-Ledoux, C. Artificial Intelligence–Based Decision Support Technologies in Pavement Management. Comput.-
Aided Civ. Infrastruct. Eng. 2001, 16, 143–157. [CrossRef]

22. Ceylan, H.; Bayrak, M.B.; Gopalakrishnan, K. Neural Networks Applications in Pavement Engineering: A Recent Survey. Int. J.
Pavement Res. Technol. 2014, 7, 434–444.

23. Flintsch, G.W.; Chen, C. Soft Computing Applications in Infrastructure Management. J. Infrastruct. Syst. 2004, 10, 157–166.
[CrossRef]

24. Shahnazari, H.; Tutunchian, M.A.; Mashayekhi, M.; Amini, A.A. Application of Soft Computing for Prediction of Pavement
Condition Index. J. Transp. Eng. 2012, 138, 1495–1506. [CrossRef]

25. Umer, A.; Hewage, K.; Haider, H.; Sadiq, R. Sustainability Evaluation Framework for Pavement Technologies: An Integrated Life
Cycle Economic and Environmental Trade-off Analysis. Transp. Res. Part D Transp. Environ. 2017, 53, 88–101. [CrossRef]

26. Gopalakrishnan, K. Instantaneous Pavement Condition Evaluation Using Non-Destructive Neuro-Evolutionary Approach. Struct.
Infrastruct. Eng. 2012, 8, 857–872. [CrossRef]

27. Koduru, H.K.; Xiao, F.; Amirkhanian, S.N.; Juang, C.H. Using Fuzzy Logic and Expert System Approaches in Evaluating Flexible
Pavement Distress: Case Study. J. Transp. Eng. 2010, 136, 149–157. [CrossRef]

28. Bosurgi, G.; Trifirò, F. A Model Based on Artificial Neural Networks and Genetic Algorithms for Pavement Maintenance
Management. Int. J. Pavement Eng. 2005, 6, 201–209. [CrossRef]

29. Zhou, G.; Wang, L.; Wang, D.; Reichle, S. Integration of GIS and Data Mining Technology to Enhance the Pavement Management
Decision Making. J. Transp. Eng. 2010, 136, 332–341. [CrossRef]

30. Mubaraki, M. Highway Subsurface Assessment Using Pavement Surface Distress and Roughness Data. Int. J. Pavement Res.
Technol. 2016, 9, 393–402. [CrossRef]

31. Ziari, H.; Sobhani, J.; Ayoubinejad, J.; Hartmann, T. Prediction of IRI in Short and Long Terms for Flexible Pavements: ANN and
GMDH Methods. Int. J. Pavement Eng. 2016, 17, 776–788. [CrossRef]

32. Elhadidy, A.A.; El-Badawy, S.M.; Elbeltagi, E.E. A Simplified Pavement Condition Index Regression Model for Pavement
Evaluation. Int. J. Pavement Eng. 2021, 22, 643–652. [CrossRef]

33. Bianchini, A.; Bandini, P. Prediction of Pavement Performance through Neuro-Fuzzy Reasoning. Comput.-Aided Civ. Infrastruct.
Eng. 2010, 25, 39–54. [CrossRef]

34. Luo, C. Pavement Deterioration Modeling and Design of a Composite Pavement Distress Index for Kentucky Interstate Highways
and Parkways. Master’s Thesis, University of Louisville, Louisville, KY, USA, 2014.

35. Zhang, W.; Durango-Cohen, P.L. Explaining Heterogeneity in Pavement Deterioration: Clusterwise Linear Regression Model. J.
Infrastruct. Syst. 2014, 20, 04014005. [CrossRef]

36. Swei, O.; Gregory, J.; Kirchain, R. Does Pavement Degradation Follow a Random Walk with Drift? Evidence from Variance Ratio
Tests for Pavement Roughness. J. Infrastruct. Syst. 2018, 24, 04018027. [CrossRef]

37. Attoh-Okine, N.O. Grouping Pavement Condition Variables for Performance Modeling Using Self-Organizing Maps. Comput.-
Aided Civ. Infrastruct. Eng. 2001, 16, 112–125. [CrossRef]

http://doi.org/10.1007/s00521-022-07769-2
http://doi.org/10.3390/e24030367
http://doi.org/10.1080/17457300.2021.1928233
http://doi.org/10.1016/j.aap.2021.106094
http://doi.org/10.1016/j.tbs.2022.07.003
http://doi.org/10.1080/19427867.2022.2111902
http://doi.org/10.1177/0958305X211044998
http://doi.org/10.1002/er.8219
http://doi.org/10.3390/app112411595
http://doi.org/10.1016/j.iatssr.2022.08.003
http://doi.org/10.1111/0885-9507.00220
http://doi.org/10.1061/(ASCE)1076-0342(2004)10:4(157)
http://doi.org/10.1061/(ASCE)TE.1943-5436.0000454
http://doi.org/10.1016/j.trd.2017.04.011
http://doi.org/10.1080/15732471003653009
http://doi.org/10.1061/(ASCE)0733-947X(2010)136:2(149)
http://doi.org/10.1080/10298430500195432
http://doi.org/10.1061/(ASCE)TE.1943-5436.0000092
http://doi.org/10.1016/j.ijprt.2016.10.001
http://doi.org/10.1080/10298436.2015.1019498
http://doi.org/10.1080/10298436.2019.1633579
http://doi.org/10.1111/j.1467-8667.2009.00615.x
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000182
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000450
http://doi.org/10.1111/0885-9507.00218


Sustainability 2023, 15, 561 30 of 30

38. Tabatabaee, N.; Ziyadi, M.; Shafahi, Y. Two-Stage Support Vector Classifier and Recurrent Neural Network Predictor for Pavement
Performance Modeling. J. Infrastruct. Syst. 2013, 19, 266–274. [CrossRef]

39. Barzegaran, J.; Shahni Dezfoulian, R.; Fakhri, M. Estimation of IRI from PASER Using ANN Based on K-Means and Fuzzy
c-Means Clustering Techniques: A Case Study. Int. J. Pavement Eng. 2021, 1–15. [CrossRef]

40. Majidifard, H.; Adu-Gyamfi, Y.; Buttlar, W.G. Deep Machine Learning Approach to Develop a New Asphalt Pavement Condition
Index. Constr. Build. Mater. 2020, 247, 118513. [CrossRef]

41. Roberts, R.; Giancontieri, G.; Inzerillo, L.; Di Mino, G. Towards Low-Cost Pavement Condition Health Monitoring and Analysis
Using Deep Learning. Appl. Sci. 2020, 10, 319. [CrossRef]

42. Chen, C.; Chandra, S.; Han, Y.; Seo, H. Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and
Classification Considering Complex Pavement Conditions. Remote Sens. 2021, 14, 106. [CrossRef]

43. Marcelino, P.; de Lurdes Antunes, M.; Fortunato, E.; Gomes, M.C. Machine Learning Approach for Pavement Performance
Prediction. Int. J. Pavement Eng. 2021, 22, 341–354. [CrossRef]

44. Inkoom, S.; Sobanjo, J.; Barbu, A.; Niu, X. Prediction of the Crack Condition of Highway Pavements Using Machine Learning
Models. Struct. Infrastruct. Eng. 2019, 15, 940–953. [CrossRef]

45. Sholevar, N.; Golroo, A.; Esfahani, S.R. Machine Learning Techniques for Pavement Condition Evaluation. Autom. Constr. 2022,
136, 104190. [CrossRef]

46. Wang, K.C. Designs and Implementations of Automated Systems for Pavement Surface Distress Survey. J. Infrastruct. Syst. 2000,
6, 24–32. [CrossRef]

47. Özdemir, O.B.; Soydan, H.; Yardımcı Çetin, Y.; Düzgün, H.Ş. Neural Network Based Pavement Condition Assessment with
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