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Abstract: This paper uses nonparametric causality-in-quantiles tests to examine the asymmetric
effects of climate risk perception (CRP) on the thermal and coking coal futures high-frequency returns
and volatilities. The results show that CRP significantly impacts the dynamic high-frequency returns
of the coal futures market, with volatility indicators exhibiting asymmetry at different percentiles
and being more pronounced in a downward market. The influence of CRP on dynamic coal futures
mainly transmits through continuous components, while its impact on coking coal futures primarily
transmits through jump parts. Additionally, the positive and negative volatilities of coal futures are
asymmetrically affected by CRP. By incorporating the climate risk perception factor, investors can
better predict price fluctuations in the coal market. This study provides an important supplement
to the theory of pricing climate risks, and it is beneficial for formulating financial policies related to
climate risk management and promoting the sustainable development of the coal industry.

Keywords: climate risk perception; coal; high frequency; nonparametric causality-in-quantiles tests

1. Introduction

With the acceleration of global warming, climate risks have become a big concern for
investors and policymakers [1–3]. Due to human-made greenhouse gas emissions, extreme
climate events occur more frequently, last longer, and become more fierce, resulting in
drought, extreme cold, rising sea levels, and drastic changes in precipitation [4]. According
to observations from NASA’s Gravity Recovery and Climate Experiment (GRACE), the
impacts of extreme climate events on economies and societies around the world are increas-
ingly deepening, forcing many countries and organizations to take emergent actions and
response measures [5]. The crux of the matter is to restrain the combustion and utilization
of fossil fuels, such as coal, oil, and natural gas, so that greenhouse gas emissions can be
minimized as much as possible [6–10]. In particular, coal has been the largest engine driving
climate change, accounting for almost one-third of the average temperature rise since the
Industrial Revolution. The growing concerns of both the public and governments regarding
climate risks have accelerated the establishment of climate production targets and policies
in various countries, such as the Paris Agreement, the European Climate Law, and “Fit For
55” [11–13]. These legislative measures have gradually altered the conditions and structure
of traditional energy markets, which is important for high-carbon-dependent countries to
undergo a transformation. China is one of the world’s top consumers of high-carbon energy,
with coal being the largest proportion of its energy consumption—accounting for about
59% [14]. Meanwhile, China is actively playing a leading role in responding to climate
change and energy transformation, concentrating all efforts to achieve the carbon peak and
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carbon neutrality goals. Thus, China’s coal market structure is undergoing deep adjust-
ments accordingly [15]. At least for the foreseeable future, the role of coal in production
still cannot be completely replaced by new energy. Therefore, the Chinese coal market
faces significant challenges in addressing climate change under the context of sustainable
development, and managers and investors must consider climate risks when pricing assets
and constructing investment portfolios.

The potential influence of climate risk might affect coal markets through various path-
ways. Climate risks generally involve physical and transition risks [16,17]. On the one hand,
climate-related physical risks, such as frozen soil, rising sea levels, and typhoons, could
damage infrastructure and the equipment used for coal mining and transportation, leading
to increased operating costs and suspensions. Typhoons can cause extensive damage to
high-value equipment; rising temperatures can reduce thermal efficiency, thereby increas-
ing the demand for cooling water; abnormal precipitation patterns can pose challenges for
coal exploration in inland areas [18]. In addition, extreme weather conditions reduce the
visibility and safety of roads, leading to temporary interruptions in coal supply, the severity
of which depends on the duration of the interruption and emergency stock levels. The
frequency and variability of extreme events, such as heat and cold waves, have significant
impacts on the peak load of coal-fired power [19]. On the other hand, the transition risks
confronted by the coal industry include changes in climate policies, technological innova-
tions, and low-carbon preferences among consumers and investors [20,21]. For example,
coal enterprises are gradually losing their profitability due to carbon taxes, and there is a
risk of stranded capital for earlier investments [22]. The rapid expansion of clean energy
has brought default risks and operational pressure on the coal industry to transform [23].
Changes in coal demand caused by low-carbon preferences among consumers and investors
can also lead to imbalances in coal markets, which exacerbates price fluctuations. It can be
seen that the impact mechanism of climate risk on the coal market is complex, and there is
still a lack of empirical research due to the difficulty in obtaining data. Fortunately, research
has shown that these impact pathways are driven by public awareness and attention to
these climate risks [24]. Therefore, in this article, we select people’s perception of climate
risks as a proxy variable to study the impact of climate risks on coal prices.

The fundamental transformation of economic activities and resource allocation caused
by climate risks poses a challenge to the adaptability of the coal industry’s low-carbon
transition [25,26]. Some studies have already discussed the relationship between the
climate-related factor and coal prices, focusing on the effects of climate policies [27–31]. For
example, Walk and Stognief (2022) found that the coal phase-out was primarily driven by
climate policies [28]. Ren et al. (2022) examined the causal relationship between climate
policy uncertainty and traditional energy, including coal, using time-varying Granger
tests, and they suggested that governments should pay attention to the role of climate
implementation in the energy transition [31]. However, there is currently no relevant
research from the perspective of market participants. As pointed out by Fahmy (2022), the
views of investors and the public on climate risks are the main driving factors of market
fluctuations, consistent with the behavioral finance theory [24]. On the one hand, when
climate risks arise, investors and traders may be driven by extreme emotions and make
more impulsive and short-sighted investment decisions. This exacerbates the herd effect
and amplifies coal market volatility, leading to the possibility of extreme tail risks. On the
other hand, as the awareness of climate risks in society rises, the public’s voice will gain
more influential power, so the government would formulate policies to regulate the impact
of climate risks on the coal market. Favorable/unfavorable policies will impact investors’
interests, leading to increases/decreases in price volatility. Furthermore, the notion that
climate risk is a new source of risk for the financial system has been validated [32]. With the
gradual deepening of the marketization of China’s coal industry, financial derivatives, such
as index pricing and futures, are gradually being recognized, and the financial attributes of
coal are constantly emerging. As one of the most actively traded futures contracts in China,
coal futures prices are inevitably subject to the systemic contagion of climate risk. Therefore,
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this paper delves into the effects of climate risk perception (CRP) on the returns and
volatility of the coal price. The use of climate risk perception data has another advantage:
they can be matched with high-frequency data in the coal market. High-frequency data are
more suitable for our research for several reasons [33,34]. Firstly, high-frequency return
and volatility data for coal futures can be more detailed and accurately reflect market
behavior and conditions, thus providing a better understanding of short-time price trends
and patterns that are in coordination with the outbreak cycle of extreme climate risks.
Secondly, in financial risk management, using high-frequency data in the coal market for
risk monitoring and management allows coal futures traders and investors to respond
to sudden climate risks quickly. Thirdly, high-frequency data are commonly used in
algorithmic trading, and the results of this study could be helpful for computer programs
to engage in real-time trading. Finally, the data used in this study are all dynamic data,
which can more clearly test the causal relationship between CRP and the return dynamics
of coal futures, especially under different market conditions (bull or bear). In summary, the
5 min high-frequency coal futures return and volatility data used in this study are effective.

Some scholars have utilized OLS, VAR, and GARCH-type models to examine causality
between variables [35–37]. However, these methods rely on estimating the conditional mean
and cannot capture the causal relationship between market returns and volatility across
the entire conditional distribution. Therefore, this paper draws non-causality-in-quantiles
tests to explore the asymmetric effects of climate risk perception on coal futures return
and volatility under different market conditions (bull, bear, or normal), which is crucial for
differentiating market participants [38,39]. Within this framework, we further differentiate
the asymmetry between positive and negative volatilities, which is essential for arbitrage or
constructing hedging portfolios to reduce risks. Further, we decompose realized volatility
into continuous and jump components [40]. This helps to explore the multiple pathways
through which climate risk affects coal prices. Based on the above discussion, our paper
has three main contributions. Firstly, it is the first to verify a new causal relationship
between climate risk perception and coal futures price returns and volatility, expanding
the research areas of climate economics and finance. Secondly, we use nonparametric
quantile causality tests to examine the asymmetric and nonlinear impact mechanisms of
climate risk perception on high-frequency coal indicators, including continuous and jump
components and positive and negative fluctuations. Finally, we explore the heterogeneity of
the impact of climate risk perception on two different coal futures markets, i.e., coking coal
and thermal coal. The above contributions not only help investors to formulate diversified
investment portfolio strategies, but they also have significant predictive value for the coal
industry to formulate climate risk management policies. The remainder of the paper is
as follows: Section 2 presents a literature review, Section 3 presents the methodology and
data, Section 4 presents the empirical analysis and discussion, and Section 5 presents the
conclusions and policy implications.

2. Literature Review

There are some studies on the impact of climate risk on financial assets, such as
stocks, bonds, and commodities [41–45]. Because the economic effects of climate change
are difficult to predict, climate change is likely to increase the uncertainties facing capital
markets. For example, increased risks of wildfires, floods, and droughts will increase
potential losses for insurers and investors. These uncertainties are likely to result in higher
long-term costs for the financial sector. Existing research generally suggests that climate
risks affect market returns. For example, Hong et al. (2020) found that longer durations
of drought significantly harmed industry profits, leading to higher equity capital and a
significant decrease in investor returns [46]. Zhu et al. (2020) found that climate risks have
time-varying effects on the returns of fuel stocks [45]. Painter (2020) found that climate
change increases the issuance costs of long-term bonds and makes capital adjustment
more difficult in extreme weather [47]. In addition, there is some evidence to suggest
that climate risks significantly increase market volatility. Bansal et al. (2016) found that
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stock prices have a significant negative elasticity with temperature risk [48]. Krueger
et al. (2020) showed that disaster uncertainty leads to an implied volatility increase of
5–10% in companies’ ROE [45]. Xu et al. (2023) indicated that both low and high climate
policy uncertainty could increase the correlation between the volatilities of the Chinese
and US stock markets. However, the impact of climate risks on the coal market is yet to be
examined, and ignoring this relationship could lead to a mispricing of assets [41], or lower
accuracy in price forecasts [49,50].

Moreover, there is evidence that climate factors have nonlinear effects on financial
markets. For example, Ren et al. (2022) found significant nonlinear effects of climate policy
uncertainty on the energy market, which varied under different market conditions [31].
Mosquera-López and Uribe argued that weather variables are the determining factors in
changing market conditions [51]. Therefore, throughout this study, we use nonparametric
causality-in-quantiles methods to explore the causal relationship between CRP and the
coal market. Since the introduction of the Granger method, the primary causality test is
constantly improving and playing a significant role in widespread application, among
which the nonparametric causality-in-quantiles approach proposed by Balcilar et al. (2017)
is one of the latest achievements [52]. Within the framework of coupling the k-th order
nonparametric of Nishiyama et al. (2011) and the nonparametric quantile causality of Jeong
et al. (2012), the hybrid method is utilized to capture nonlinear dynamic dependencies, and
it is robust to misspecification errors, structural breaks, and frequent outliers, which are
commonly found in price series [35,53]. This fact makes it very suitable for detecting non-
linear causality from extreme climate risk perception to coal futures returns and volatility.
In addition, this article further distinguishes between coking coal and thermal coal, which
have certain differences in trading volume, trading price, and trading mode [15,54,55]. The
demand for thermal coal accounts for more than half of China’s total coal consumption, and
it is usually used for power generation and heating [15,54]. Coking coal is an important raw
material for China’s chemical and basic steel products, connecting the coal carbonization,
coking, and steel industries and playing an important role in the industrial chain [55].
However, its consumption accounts for a relatively low proportion. China has relatively
abundant thermal coal resources, and the domestic market mainly dominates its price.
However, China’s high-quality coking coal is relatively scarce and needs to rely to some ex-
tent on imports, so the price of coking coal is to some extent subject to importing countries
such as Australia and exhibits different fluctuations from thermal coal. The combustion
of both coking coal and thermal coal generates greenhouse gases, such as carbon dioxide
and carbon monoxide, as well as air pollutants, such as sulfur dioxide, nitrogen oxides,
and particulate matter. The emission of these gases and particles aggravates environmental
problems, such as air pollution, acid rain, and smog, and it increases the probability and
intensity of extreme weather events [56]. However, the chemical composition of the two
types of coal differs slightly. Coking coal has a low ash content, fewer harmful substances,
and less alkali metal content, while thermal coal has a higher calorific value and more
pollution [57,58]. Therefore, the two have many differences in response to climate risk
changes.

3. Methodology
3.1. Nonparametric Causality-In-Quantiles Tests

Based on the previous discussion, we adopt a novel nonparametric causality-in-
quantiles approach proposed by Balcilar et al. (2017) to check the causality of CRP to
the coal market [52]. To simplify the exposition, let yt and xt represent coal futures returns
or volatility and climate risk perception (CRP), respectively, and the causality-in-quantiles
hypotheses can be indicated as follows: xt does not cause yt in the θ-quantile with regards
to the lag-vector of yt−1, . . . , yt−p, xt−1, . . . , xt−p if

Qθ

(
yt−1, . . . , yt−p, xt−1, . . . , xt−p

)
= Qθ

(
yt, yt−1, . . . , yt−p

)
(1)
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xt is a prima facie cause of yt in the θ-th quantile with regards to yt−1, . . . , yt−p, xt−1, . . . , xt−p
if

Qθ

(
yt−1, . . . , yt−p, xt−1, . . . , xt−p

)
6= Qθ

(
yt, yt−1, . . . , yt−p

)
(2)

Here, Qθ(yt·) is the θ-th quantile of yt, representing different market conditions (bull
or bear). The conditional quantiles of yt depend on t, and the quantiles are restricted
between zero and one, 0 < θ < 1.

For a compact presentation of the causality-in-quantiles tests, we define the following
vectors: yt−1 ≡

(
yt−1, . . . , yt−p

)
, xt−1 ≡

(
xt−1, . . . , xt−p

)
, zt = (Xt, Yt). Let us also define

the conditional distribution functions Fyt |Zt−1
(yt|Zt−1) and Fyt |Yt−1

(yt|Yt−1), which signify
the distribution functions of yt for nearly all Zt−1 and Yt−1. If we define Qθ(Zt−1) ≡
Qθ(yt|Zt−1) and Qθ(Yt−1) ≡ Qθ(yt|Yt−1), we have Fyt |Zt−1

{Qθ(Zt−1)|Zt−1 = θ}with prob-
able on. As an end, the hypotheses to be tested based on definitions Equations (1) and (2)
are as follows:

H0 : P
{

Fyt |Zt−1
{Qθ(Yt−1)|Zt−1} = θ

}
= 1 (3)

H1 : P
{

Fyt |Zt−1
{Qθ(Yt−1)|Zt−1} = θ

}
< 1 (4)

In order to define a measurable metric for the useful implementation of the causality-
in-quantiles tests, Jeong et al. [41] use the distance measure J =

{
εt{E(εt)|Zt−1} fZ(Z t−1

)}
,

where εt is the regression error team, and fZ(Z t−1
)

is the marginal density function of
Zt−1. In our case, the estimator of the unknown regression error is defined as

ε̂t = 1
{

yt ≤ Q̂θ(Yt−1)
}
− θ (5)

In Equation (5), Q̂θ(Yt−1) is the estimate of the θ-th conditional quartile of yt given
Yt−1. In the following, we use the nonparametric kernel method to estimate Q̂θ(Yt−1) as

Q̂θ(Yt−1)= F̂−1
yt |Yt−1

(θYt−1) (6)

where F̂−1
yt |Yt−1

(ytYt−1) is the Nadarya–Watson kernel estimator given by

F̂−1
yt |Yt−1

(ytYt−1) =
∑T

s=p+1,s 6=t L
(

Yt−1−Ys−1
h

)
1(ys ≤ yt)

∑T
s=p+1,s 6=t L

(
Yt−1−Ys−1

h

) (7)

L(·) denotes the kernel function, and h denotes the bandwidth.
Next, we examine the causal relationship in variance (2nd moment) because the

rejection of causality in moment m does not indicate non-causality in moment k for k < m,
from climate risk perception (CRP) to the volatility of coal futures returns. We can indicate
this by using the following model:

yt = g(Y t−1
)
+ σ(Xt−1)εt (8)

where the higher-order causality-in-quantiles can be tested as

H0 : P
{

FyK
t |Zt−1

{Qθ(Yt−1)|Zt−1} = θ
}
= 1 f ork = 1, 2, . . . , K (9)

H1 : P
{

FyK
t |Zt−1

{Qθ(Yt−1)|Zt−1} = θ
}
< 1 f ork = 1, 2, . . . , K (10)

We test that xt Granger causes yt in quantile θ up to the k-th moment using Equation (9)
to calculate the feasible kernel-based test statistic following Jeong et al. (2012) [53]; for each
k, we follow the sequential testing method as in Nishiyama et al. [42]. The lag order of 1 is
chosen based on the Schwarz Information Criterion (SIC) in a VAR involving both variables.
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The bandwidth value is selected by using the least squares cross-validation techniques.
Finally, for K(·) and L(·), we employ Gaussian-type kernels.

3.2. Coal Futures Return Dynamics
3.2.1. Price Return

The basis measure we consider is the coal futures returns. This paper uses logarithmic
returns, which are the first-order difference of logarithmic prices. There are two advantages
of using logarithmic returns. First, logarithmic difference processing can to some extent
eliminate the correlation between price sequences. Second, logarithmic returns have
convenient mathematical properties. The expression is as follows:

Rt = log(Pt)−log(Pt−1) (11)

where Pt is the closing price at time t. In fact, it calculates the changes between the current
and previous periods’ prices, representing the rise and fall of futures prices.

3.2.2. Realized Volatility

The second measure in our study is realized volatility (RV), proposed by Andersen and
Bollerslev (1998), which represents the risk of market volatility and is robust to microstruc-
ture effects, and They hold that no other high-frequency indicators is likely to outperform
five-minute realized volatility [59]. The realized volatility is defined as shown below.

RVt = ∑M
i=1 r2

t,i (12)

where r2
t,i is the intraday log return of i(i = 1, . . . , M) on day t. In the data description that

follows, we use the 5 min frequency of coal futures closing prices in all estimates.

3.2.3. Jump and Continuous Variations

For the purpose of inferring the different impact patterns of CRP on coal futures
volatility, we decompose realized volatility (RV) into continuous variations (C) and jump
components (J). Several studies, including Benth (2011) [60], Huang and Tauchen (2005) [61],
and Bradley et al. (2022) [62], have documented the presence of volatility jumps in higher-
frequency time series. Dunham and Friesen (2007) further show that jump risk accounts
for a large proportion of the variation in total volatility [63]. When M→ ∞ , which means
that the intraday sampling frequency becomes higher, RV can be decomposed as the
following expression:

lim
M→∞

RVt =
∫ t

t−1
σ2

s ds + ∑
t−1<s≤t

κ2
s t (13)

where
∫ t

t−1 σ2
s ds is the continuous sample path variation, and ∑t−1<s≤t κ2

s denotes the
discontinuous jump change in [t− 1, t].

According to Barndorff-Nielsen et al. [48], the continuous sample path variation∫ t
t−1 σ2

s ds can be achieved by the double-power variation (RBVt), expressed as

RBVt = z−2
1

M
M− 2

M

∑
j=3

∣∣rt,j−2
∣∣∣∣rt,j

∣∣ (14)

where z1 = E(Zt) =
√

π/2, and Zt is a random variable that drives a standard normal
distribution. The Z-statistic can be used to identify discontinuous jump changes.

Zt =
(RVt − RBVt)RV−1

t√(
µ−4

1 + 2µ−2
1 − 5

)
1

M max
(

1, RTQt
RBV−2

t

) → N(0, 1) (15)
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where µt =
√

2/π, and RTQt devotes the realized tri-power quarticity equated as

RTQt = Mµ−3
4/3

(
M

M− 4

) M

∑
j=4

∣∣rt,j−4
∣∣4/3∣∣rt,j−2

∣∣4/3∣∣rt,j
∣∣4/3 (16)

However, RBVt is not a robust estimate for testing discontinuous jump changes be-
cause it is strongly influenced by the sampling frequency. Due to factors related to market
microstructure, the estimate of RBVt does not converge to the integrated volatility as the
sampling frequency increases. So, to overcome this drawback, Andersen et al. (2012) pro-
pose a robust estimation method, MedRVt, as an alternative to RBVt [64]. Its formulation is

MedRVt =
π

6− 4
√

3 + π

(
M

M− 2

)M−1

∑
j=2

Med
(∣∣rt,j−1

∣∣∣∣rt,j
∣∣∣∣rt,j+1

∣∣)2 (17)

Accordingly, the statistic Zt for the implementation of the three-weighted quadrature
(RTQt) of the jump test is modified by MedRTQt as

MedRTQt =
3πM

9π + 72− 52
√

3

(
M

M− 2

)M−1

∑
j=2

Med
(∣∣rt,j−1

∣∣∣∣rt,j
∣∣∣∣rt,j+1

∣∣)4 (18)

Finally, the daily continuous sample path changes Ct, and the jump change in realized
volatility Jt is expressed by

Ct = I(Zt≤ φα)·RVt + I(Zt > φα)·MedRVt (19)

Jt = I(Zt > φα)·(RVt −MedRVt) (20)

where I(·) is the indicator function, and φα is the critical value of the normalized normal
distribution. In our estimation, following Andersen et al. (2012), α = 0.95 [64].

3.2.4. Realized Semi-Variance

Given that downside (upside) risk cannot be directly observed, we computed the
downside (upside) realized semi-variance based on high-frequency data, which provides
a relatively more accurate measure to capture volatility risk in different directions. This
could be an important consideration for hedging operations involving coal positions when
estimating potential losses during market downturns. Following Barndorff-Nielsen et al.
(2008) [65], the negative and positive daily realized semi-variance indicators (RSV−t and
RSV+

t ) are defined as

RSV−t =
M

∑
j=1

r2
t,j
{

rt,j ≤ 0
}

and RSV+
t =

M

∑
j=1

r2
t,j
{

rt,j > 0
}

(21)

3.2.5. Signed Realized Jump

The signed realized jump provides a proxy for volatility jump components based on
positive and negative market conditions and allows us to evaluate the asymmetric effect
at different quantiles that CRP may have on coal price. Following Patton and Sheppard
(2015) [66], we express the signed jump as the difference between the positive and negative
realized semi-variances as

SJt = RSV+
t − RSV−t (22)

4. Data and Empirical Findings
4.1. Data

Our dataset comprises intraday coal futures price data at 5 min intervals. The earliest
futures contract for coking coal was officially listed on the Dalian Commodity Exchange on
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22 March 2013. Thus, the coking coal price sample range that we selected covers all trading
periods from 22 March 2013 to 26 September 2022, including 2106 observations. For more
details, please refer to http://www.dce.com.cn/dalianshangpin/sspz/487450/index.html
(accessed on 26 September 2022). The earliest thermal coal futures contract was officially
launched on the Dalian Commodity Exchange on 26 September 2013. Similarly, the sample
period covers 26 September 2013 to 26 September 2022, including 1569 observations. For
more detailed information, please refer to http://www.czce.com.cn/cn/sspz/dlm/H770
212index_1.htm (accessed on 26 September 2022). We compiled the climate risk perception
(CRP) index as a weighted average of five extreme climates, including extreme cold, high
temperatures, waterlogging, drought, and typhoons, obtained from http://index.baidu.
com (accessed on 26 September 2022). The sample period covers 22 March 2013 to 26
September 2022. In order to maximize the use of the sample and increase the persuasiveness
of the empirical results, we matched the CRP data with both the coking coal and thermal
coal data, and we estimated the models separately. Table 1 presents the descriptive statistics
of the variables. Upon examining the skewness and kurtosis values, we observe non-
normality in the data, with the coal futures returns (R) and signed jump (SJ) showing
left-skewed distributions, while the other variables are right-skewed. All variables exhibit
excess kurtosis. The unit root tests, the augmented Dickey and Fuller (ADF) and the Phillips
and Perron (PP), in Table 1 confirm that all variables are stationary at the 1% significance
level, indicating that the data are suitable for adopting nonparametric causality-in-quantiles
methods. Figure 1 shows the time-series data of the variables mentioned above. It is not
difficult to find that there is a tendency for co-movement between the coal price series and
climate risk perception.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 19 
 

Note: Std represents standard deviation. This table reports descriptive statistics for coking coal fu-

tures returns (R), realized volatility (RV), continuous and jump changes (C, J), positive and negative 

realized semi-volatility (RSV+, RSV−), signed jumps (SJ), and climate risk perception (CRP). The 

asterisks *** represent significance at the 1% level. 

 

Figure 1. Plot data for the thermal and coking coal closing prices and climate risk perception index. 

According to Table 2, we adopt the traditional Granger causality test, and the signif-

icance is at the 5% level; we do not find a significant causal effect of climate risk perception 

on coal futures return dynamics. The relationship between climate risk perception and 

coal futures return dynamics exhibits a nonlinear structure, which can be seen in the 

Brock–Dechert–Scheinkman (BDS) test results in Table 3 [67]. The results show strong ev-

idence of nonlinearity for the different embedding dimensions (m) of the BDS test. The 

results suggest that linear models might not be able to capture the true nature of casual 

flows from climate risk perception to coal futures return dynamics, and, hence, it is legit-

imate to use nonparametric causality-in-quantiles tests. 

  

2012 2015 2018 2021

0

500

1,000

1,500

2,000

T
h

e
rm

a
l 

c
o

a
l 
c

lo
s

in
g

 p
ri

c
e

Date

 Thermal coal closing price

2011 2015 2019 2023

0

1,000

2,000

3,000

4,000

C
o

k
in

g
 c

o
a

l 
c

lo
s

in
g

 p
ri

c
e

Date

 Coking coal closing price

2009 2013 2017 2021

0

100,000

200,000

300,000

C
li

m
a

te
 r

is
k
 p

e
rc

e
p

ti
o

n

Date

 Climate risk perception
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Table 1. Descriptive Statistics.

Panel A:
Coking Mean Median Max Min Std Variance Skewness Kurtosis ADF PP

Rt 0.02 −0.03 8.20 −10.94 1.76 3.09 −0.36 6.77 −45.56 *** −45.62 ***
RVt 3.45 1.82 71.80 0.04 4.85 23.53 5.64 57.81 −15.02 *** −14.97 ***
Ct 2.92 1.52 71.80 0.00 4.23 17.93 5.80 64.70 −23.99 *** −26.91 ***
Jt 0.53 0.00 70.38 0.00 2.43 5.90 15.05 359.64 −30.56 *** −33.19 ***

RSV+
t 1.65 0.88 27.45 0.00 2.07 4.28 3.59 25.58 −19.64 *** −20.31 ***

RSV−t 1.80 0.87 70.43 0.00 3.38 11.46 10.16 170.16 −18.31 *** −21.16 ***
SJt −1555 −0.02 19.89 −70.43 2.82 7.95 −14.32 334.11 −30.64 *** −33.54 ***

CRP 7.11 6.72 11.81 5.65 1.09 1.19 1.34 4.23 −8.85 *** −8.01 ***

Panel B:
Thermal Mean Median Max Min Std Variance Skewness Kurtosis ADF PP

Rt 0.04 0.00 9.32 −10.66 1.52 2.31 −0.76 14.00 −34.80 *** −35.66 ***
RVt 2.43 1.04 101.68 0.01 6.61 43.74 9.89 123.29 −15.94 *** −17.58 ***
Ct 1.86 0.75 101.68 0.00 4.95 24.51 10.77 163.25 −15.99 *** −18.75 ***
Jt 0.57 0.00 100.33 0.00 4.31 18.38 18.38 374.90 −28.87 *** −28.41 ***

RSV+
t 1.05 0.48 26.74 0.00 2.03 4.12 6.44 58.65 −18.57 *** −19.82 ***

RSV−t 1.38 0.49 100.65 0.00 5.60 31.41 13.26 205.41 −18.09 *** −20.54 ***
SJt −0.33 −0.01 24.43 −100.34 5.23 27.33 −14.55 254.02 −21.75 *** −23.45 ***

CRP 7.24 6.84 11.81 5.84 1.11 1.23 1.28 4.01 −7.64 *** −7.02 ***

Note: Std represents standard deviation. This table reports descriptive statistics for coking coal futures returns
(R), realized volatility (RV), continuous and jump changes (C, J), positive and negative realized semi-volatility
(RSV+, RSV−), signed jumps (SJ), and climate risk perception (CRP). The asterisks *** represent significance at the
1% level.

According to Table 2, we adopt the traditional Granger causality test, and the signifi-
cance is at the 5% level; we do not find a significant causal effect of climate risk perception
on coal futures return dynamics. The relationship between climate risk perception and
coal futures return dynamics exhibits a nonlinear structure, which can be seen in the Brock–
Dechert–Scheinkman (BDS) test results in Table 3 [67]. The results show strong evidence
of nonlinearity for the different embedding dimensions (m) of the BDS test. The results
suggest that linear models might not be able to capture the true nature of casual flows from
climate risk perception to coal futures return dynamics, and, hence, it is legitimate to use
nonparametric causality-in-quantiles tests.

Table 2. Results of the linear Granger causality test.

Panel A: Coking Chi-Sq. Statistic Prob Decision

CRP ; R 5.5889 0.0610 No causality
CRP ; RVt 0.7488 0.6880 No causality
CRP ; Ct 0.4515 0.7980 No causality
CRP ; Jt 1.0688 0.5860 No causality

CRP ; RSV+
t 0.2384 0.8880 No causality

CRP ; RSV−t 1.4337 0.4880 No causality
CRP ; SJt 2.9813 0.2250 No causality

Panel B: Thermal Chi-Sq. Statistic Prob Decision

CRP ; Rt 1.2948 0.5230 No causality
CRP ; RVt 1.5616 0.9170 No causality
CRP ; Ct 0.1743 0.5230 No causality
CRP ; Jt 1.2962 0.6310 No causality

CRP ; RSV+
t 0.9219 0.2460 No causality

CRP ; RSV−t 2.8084 0.1490 No causality
CRP ; SJt 3.8108 0.8950 No causality

Note: The symbol ; indicates the null hypothesis of Granger’s non-causal relationship. The item “causality”
indicates that the original hypothesis is rejected at the 5% significance level, while the item “no causality” indicates
that the original hypothesis of Granger non-causality cannot be rejected at the 5% significance level.
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Table 3. The BDS tests with coking and thermal coal.

Panel A: BDS Test with Coking Coal

Embedding Dimension m = 2 m = 3 m = 4 m = 5 m = 6

Rt 12.7426 *** 16.2958 *** 20.2575 *** 25.3950 *** 31.9624 ***
RVt 49.5603 *** 60.2837 *** 73.7292 *** 91.769 *** 117.3047 ***
Ct 35.2802 *** 44.4288 *** 54.4439 *** 67.0186 *** 84.4758 ***
Jt 4.7613 *** 6.6792 *** 7.5063 *** 8.1157 *** 8.9451 ***

RSV+
t 47.2427 *** 60.0328 *** 75.8622 *** 98.3250 *** 131.2503 ***

RSV−t 33.4811 *** 38.5438 *** 43.6620 *** 49.3561 *** 56.7198 ***
SJt 17.4078 *** 20.8513 *** 24.0966 *** 27.5773 *** 31.1949 ***

Panel B: BDS Test with Thermal Coal

Embedding Dimension m = 2 m = 3 m = 4 m = 5 m = 6

Rt 9.0246 *** 11.9894 *** 15.1983 *** 20.0970 *** 26.7040 ***
RVt 27.8075 *** 28.4370 *** 28.7493 *** 29.1148 *** 29.7465 ***
Ct 23.9704 *** 27.0302 *** 28.6262 *** 30.1882 *** 31.9588 ***
Jt 2.2465 *** 2.9593 *** 3.6069 *** 4.7288 *** 5.5339 ***

RSV+
t 26.7867 *** 31.1099 *** 34.2424 *** 37.7584 *** 42.0198 ***

RSV−t 20.2393 *** 20.6914 *** 20.1458 *** 19.5741 *** 19.4708 ***
SJt 17.2931 *** 17.4312 *** 17.2163 *** 16.9062 *** 16.5965 ***

Note: These entries show the BDS tests based on the residuals of climate risk perception and coal futures in
different indicators. m is the embedding dimension of the BDS test. The asterisks *** represent significance at the
1% level.

4.2. Empirical Results
4.2.1. The Effects of CRP on Coal Returns and Realized Volatility

Figure 2 presents the results of the quantile causality from climate risk perception
(CRP) to the coking and thermal coal futures returns (R) and realized volatility (RV). The
horizontal axis shows the quantiles, and the vertical axis shows the nonparametric causality
test statistics corresponding to the quantile in the horizontal axis. Specifically, the critical
value for a significance level of 5% is 1.96. If the test statistic exceeds this critical value, it
indicates a strong causal effect of CRP on coal prices. The findings in Figure 2a,b indicate
that the null hypothesis of the no Granger causality of CRP on coking and thermal coal
returns cannot be rejected at any of the quantiles; this implies that the impact of CRP on
coal returns is insignificant, which is similar to findings in other commodity studies [68,69].
In the case of RV, the null hypothesis of no Granger causality-in-variance is rejected over
most of the conditional distribution, particularly at lower and medium quantiles (0.1–0.6),
suggesting predictability for coal volatility in bearish and normal markets. There are
mainly two reasons for this phenomenon: on the one hand, in normal market conditions,
the fluctuation level of coal prices is relatively low, and market investors can make relatively
rational asset allocation and investment decisions. However, during periods of extreme
market volatility, investors are dominated by extreme emotions, and the impact of climate
risk perception is relatively limited. On the other hand, extreme market conditions mean
that the market is facing a more unstable environment. As coal has both commodity and
financial attributes and is a highly liquid and high-risk asset, it is very sensitive to complex
market environments and inevitably subject to strong impacts from other uncertainties,
such as economic uncertainty, financial market uncertainty, and geopolitical risk [70]. In
conclusion, our results indicate that climate risk perception is a novel predictive factor for
coal volatility. This is consistent with the findings of Jost et al. (2019), who suggest that
climate risk perception influences the behavior of traders and investors, leading to changes
in market volatility [71].
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Figure 2. The impact of climate risk perception index on coal futures returns (R) and realized
volatility (RV).

Interestingly, the results in Figure 2 also indicate that the effects of climate risk percep-
tion on RV are heterogeneous for coking coal and thermal coal. The CRP for coking coal
peaks at the 0.2 quantile with a value of around 6.5, while the maximum for thermal coal is
only 5.5. This suggests that the causal relationship between climate risk perception and
coking coal is stronger than that for thermal coal. This may be due to the fact that coking
coal has a more complex production process and a relatively scarce reserve, which makes it
more price-elastic than thermal coal [72]. Figure 2 also shows that the volatilities of coking
coal and thermal coal futures exhibit similar trends across different quantiles, which is
consistent with the findings of Grieb and Terrance (2015), who argue that investors can
speculate on one commodity based on the returns and volatility of another commodity [73].
Therefore, investors can exploit the heterogeneity of climate risk perception in different
coal futures markets to achieve maximum profits through cross-market arbitrage when
trading coal.

4.2.2. The Effects of CRP on Jumps in Coal Volatility

Many studies in the literature suggest that volatility jumps can explain a significant
percentage of the total change in variability. Hence, a natural question is whether the impact
of climate risk perception on coal market volatility is transmitted through the permanent
component or the jump component (or both). If the impact of climate risk perception is
limited to the permanent component of volatility, one can assume that its effect is volume
driven. If the impact of climate risk perception is limited to the jump component, it would
have significant implications for predictive modeling. Inspired by Barndorff-Nielsen and
Shephard (2004) [40], we decompose realized volatility (RV) into continuous variations (C)
and jump components (J). Figure 3a suggests that the impact of climate risk perception
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on the coal futures continuous volatility is significant at the [0.4, 0.8] quantile and shows
us a saddle-shaped distribution. This means that the causal relationship between the two
is significant under most market conditions, except during extreme periods. Comparing
Figure 3a,b, we find that the impact of climate risk perception on the coking and thermal
coal futures continuous volatilities is heterogeneous. Under normal market conditions,
the effects of climate risk perception on continuous variations in thermal coal are more
significant than coking coal. One possible explanation for this is the persistent cyclical and
seasonal effects of climate risk perception in the thermal coal market, particularly during
the peak periods of summer power generation and winter heating [74].
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Figure 3. The impact of climate risk perception index on coal futures continuous (C) and jump
volatilities (J).

Next, we turn our focus to volatility jumps. Figure 3c,d suggest that the effect of CRP
is significant for both coking coal and thermal coal at almost all quantiles of the conditional
distribution of the jump values, especially at the low quantiles. This finding suggests that
the causal effect of climate risk perception is particularly strong during periods of market
downturn captured by the extreme quantiles, implying that climate risks contribute to
underlying volatility jumps in coal returns. Comparing the results in Figure 3c,d, it is
clear that coking coal is more sensitive than thermal coal. At the extreme low quantile, the
statistic value for coking coal exceeds 2000, while the volatility jump caused by climate
risk perception in thermal coal is relatively weak, with a statistic value of only 150. This
means that, as investors’ perceptions of climate risk increases, there is a high likelihood
of a sudden surge in coke futures prices. Dao et al. (2021) also mentioned that the severe
emission of greenhouse gases can easily lead to unexpected surges in coking coal prices [75].
To that end, our findings provide a new insight into the safe-haven literature regarding the
channel through which climate risks impact market volatility [76,77].
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4.2.3. Asymmetric Effects of CRP

Motivated by the works of Sheppard and Patton (2015), Zhang et al. (2023), and
Chen et al. (2019) [78–80], we differentiate between the positive/negative realized semi-
variances and signed jumps as described in Sections 3.2.4 and 3.2.5 and explore the possible
asymmetries in the effect of CRP on coal volatility. This has important implications for tail
risk modeling and cross-asset contagion, as well as for the timing and sizing of hedging
strategies [81]. According to Barndorff-Nielsen et al. (2008) [82], we first split realized
volatility (RV) into positive/negative realized semi-variance volatility (RSV+/RSV−),
where RSV+ (RSV−) measures the upward (downward) volatility of coal futures. In
Figure 4, it can be observed that the RSV+ effect of both coking coal and thermal coal
caused by extreme climate risk perception shows an increasing-then-decreasing trend, while
RSV− follows a similar arch-shaped distribution. It is evident that CRP exhibits significant
asymmetry with respect to the positive and negative volatilities of coal. Specifically, for
coking coal, we observe that the impact of CRP shocks is usually stronger on RSV− than on
RSV+, implying that the volatility of coking coal has a stronger reaction to extreme climate
events than to the dissipation of climate risks. Similarly, thermal coal also exhibits a similar
asymmetry. In fact, our research findings suggest an asymmetric predictability pattern,
indicating that greater predictive profits may be obtained when extreme climate risks occur,
which is also mentioned by Mzoughi et al. (2022) [83].

The prediction of positive and negative jumps in coal volatility due to extreme climate
events is highly relevant for the pricing of coal options and futures, as volatility jumps
are a key parameter in option pricing models. The conditional distribution of coking
coal’s SJ values reported in Figure 4e shows a significant causal relationship across the
entire quantile range, with a stronger effect at lower quantiles, indicating asymmetry. This
suggests that extreme climate risk perception can effectively predict negative jumps in coal
prices during extreme market conditions, which is an interesting finding, as extreme climate
risk may lead to a sudden collapse in the coal market. The impact of CRP on thermal coal is
also significant across the entire distribution, but it is more evenly distributed and without
a strong asymmetry (see Figure 4f). Given the role of jump risk in pricing commodity
returns in the cross-section, climate risk can serve as a systematic risk factor in asset pricing
models, and future research can build on our evidence to test its long-term effectiveness.

4.3. Robustness Test

To test the robustness of the above results, we use the kernel-based estimators proposed
by Hansen and Lunde (2006) as another measure to calculate volatility [84]. The formula is
shown as Equation (23) below. The parameters of realized kernel estimators (q) are set to 6.
In the results in Figure 5, it can be observed that the causality pattern is similar to the RV
in Figure 2, which indicates that the empirical results are robust to the choice of volatility
measures.

RKt =
M

∑
j=1

r2
i,j +

q

∑
i=1

(
1− i

q + 1

)M−i

∑
j=1

ri,jri,j+i (23)
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Figure 4. The impact of climate risk perception index on coal futures positive (RSV+) and negative
(RSV−) realized semi-variances and signed jumps (SJs).
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Figure 5. The impact of climate risk perception index on coal futures robustness checks.

5. Conclusions and Policy Implications

This paper uses the nonparametric quantile causal method to examine the influence of
climate risk perception (CRP) on the return dynamics of intraday high-frequency indicators
of coking coal and thermal coal. The main results are as follows: First, climate risk percep-
tion has a significant impact on coal futures continuous (C) and jump (J) volatilities. Second,
for coal futures, the positive semi-variance volatility (RSV+) and negative semi-variance
volatility (RSV−) indicators are asymmetrically affected by CRP. Third, coal futures are
more significantly influenced by CRP in falling markets than in rising markets. Fourth, it is
found that the impact of CRP on the two different markets of coking coal and thermal coal
is heterogeneous. In detail, coking coal is more susceptible to CRP than thermal coal.

These findings can provide insights for climate risk pricing and government decision
making. The main recommendations are as follows: First, investors can improve coal
pricing forecasts and reduce trading risks by adding public climate risk perception factors
to their investment portfolios. Second, governments can better regulate the coal and other
energy futures markets and effectively regulate high-carbon industries by implementing
climate improvement policies. Third, enterprises can deepen the integration of “futures
+ climate” information; identify possible extreme weather events in the futures markets
for thermal and coking coal; and dynamically evaluate the likelihood, consequences, and
controllability of climate risk outbreaks.

It is important to note the methodological and data limitations of this study. As
previously discussed, an important basis of this research program is the reliance of climate
risk perception data. Although the data used in this study are more suitable for researching
high-frequency financial market volatility than the monthly climate policy uncertainty
data used in previous research, real-time physical climate data would be even better. If
more fine-grained extreme climate change data (e.g., at the minute or second level) can
be obtained in the future, researchers could employ functional data analysis techniques,
such as the functional principal component analysis (FPCA), to identify deeper patterns
of dynamic evolution in high-dimensional climate risk data. This approach can help to
uncover the essential features of complex financial behavior characteristics and provide
more rational and intuitive financial interpretations. Future research would benefit from
the use of an ultra-high-frequency sample. Our research can also be extended to areas such
as green loans, climate bonds, and the pricing of renewable energy assets.
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