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Knypiński, Ł. Parameter Extraction of

Solar Photovoltaic Modules Using a

Novel Bio-Inspired Swarm

Intelligence Optimisation Algorithm.

Sustainability 2023, 15, 8407.

https://doi.org/10.3390/su15108407

Academic Editors: Luis Hernández-

Callejo, Yao Yu and Abdulaziz

Banawi

Received: 22 February 2023

Revised: 8 May 2023

Accepted: 19 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Parameter Extraction of Solar Photovoltaic Modules Using a
Novel Bio-Inspired Swarm Intelligence Optimisation Algorithm
Ram Ishwar Vais 1, Kuldeep Sahay 2, Tirumalasetty Chiranjeevi 1 , Ramesh Devarapalli 3

and Łukasz Knypiński 4,*
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Abstract: For extracting the equivalent circuit parameters of solar photovoltaic (PV) panels, a unique
bio-inspired swarm intelligence optimisation algorithm (OA) called the dandelion optimisation
algorithm (DOA) is proposed in this study. The suggested approach has been used to analyse well-
known single-diode (SD) and double-diode (DD) PV models for several PV module types, including
monocrystalline SF430M, polycrystalline SG350P, and thin-film Shell ST40. The DOA is adopted
by minimizing the sum of the squares of the errors at three locations (short-circuit, open-circuit,
and maximum power points). Different runs are conducted to analyse the nature of the extracted
parameters and the V–I characteristics of the PV panels under consideration. Obtained results show
that for Mono SF430M, the error in the SD model is 2.5118e-19, and the error in the DD model
is 2.0463e-22; for Poly SG350P, the error in the SD model is 9.4824e-21, and the error in the DD
model is 2.1134e-20; for thin-film Shell ST40, the error in the SD model is 1.7621e-20, and the error
in DD model is 7.9361e-22. The parameters produced from the suggested method yield the least
amount of error across several executions, which suggests its better implementation in the current
situation. Furthermore, statistical analysis of the SD and DD models using DOA is also carried
out and compared with two hybrid OAs in the literature. Statistical results show that the standard
deviation, sum, mean, and variance of various PV panels using DOA are lower compared to those of
the other two hybrid OAs.

Keywords: dandelion optimisation algorithm; solar PV module; parameter estimation; single-diode
model; double-diode model

1. Introduction

Various aspects of human existence are becoming progressively dominated by renew-
able energy as a viable replacement for fossil fuels [1–3]. Researchers have been inspired by
solar energy since it is renewable, accessible, ecologically benign, and simple to install and
maintain [4–6]. To be more specific, PV cells significantly contribute to the conversion of
solar radiation into electrical energy. A suitable mathematical model that mimics the be-
haviour of the PV cell and precisely determines its parameter’s optimal values is necessary
for PV cells to operate well. These parameters are useful for assessing the consistency and
accuracy of the models. The imbalanced operating scenarios, including malfunctions and
ageing, make parameter evaluation difficult. The SD and DD mathematical models are the
most popular and commonly used [5–7]. The SD model is used in the majority of situations
due to its simplicity and acceptability.
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Evaluating the PV parameters is a nonlinear, multidimensional problem that can be
thought of as an optimisation problem. For extracting parameters from solar PV systems,
stochastic methods called metaheuristics, which are inspired by nature, have proven to be
an excellent replacement for traditional optimisation algorithms. A guided random search
method deemed metaheuristic exploits and explores the entire search space. However, the
solution is imperfect and could become stuck at a local optimum point. In the metaheuristic
procedures, the quality of the solution and the time required to find it must typically be
traded off. The quality of the solution must occasionally be compromised in order to reach
a conclusion promptly [8–10].

A variety of techniques were developed and investigated to obtain more exact and
precise parameters from nonlinear implicit equations with high precision. There are two
primary types of algorithms listed in Table 1: metaheuristic and analytical. The hybrid
chimp–sine cosine algorithm (HCSCA) [5], “enhanced hybrid grey wolf optimiser-sine co-
sine algorithm (EHGWOSCA)” [6], genetic algorithm [11], particle swarm optimisation [12],
jellyfish search [13], hybrid differential evolution [14], cuckoo search with biogeography-
based optimisation [15], pattern search [16], tunicate swarm [17], differential evolution [18],
harmony search [19], tabu search [20], sooty tern [21], cat swarm [22], crow search [23],
grey wolf optimiser [24], firefly algorithm [25], artificial bee colony [26], equilibrium opti-
miser [27], social spider algorithm [28], whale optimiser [29], humming bird optimiser [30],
and bonobo optimiser [31] are examples of the metaheuristic algorithms. Analytical algo-
rithms include “Lambert W-functions” [32], the conductivity method [33], least squares [34],
the analytical mathematical method [35] and iterative method [36]. Analytical algorithms
have limited applications due to the objective functions’ persistence, uniqueness, and
roundness. These algorithms are often sensitive to the initial solution and find local optima.
Bio-related algorithms are more realistic and reliable optimisation approaches for simplify-
ing complicated fundamental equations since they do not require challenging mathematics.

Table 1. A summary of metaheuristic and analytical techniques employed in the literature.

Reference Algorithm Analytical
Method

Metaheuristic
Method Model

[5] Hybrid chimp–sine cosine algorithm
√

SD and DD models

[6] Enhanced hybrid grey wolf optimiser–sine
cosine algorithm

√
SD and DD models

[11] Genetic algorithm
√

DD model
[12] Particle swarm optimisation

√
SD and DD models

[13] Jellyfish search
√

SD model
[14] Hybrid differential evolution

√
SD and DD models

[15] Cuckoo search with biogeography-based
optimisation

√
SD and DD models

[16] Pattern search
√

SD and DD models
[17] Tunicate swarm

√
SD model

[18] Differential evolution
√

SD and DD models
[19] Harmony search

√
SD and DD models

[20] Tabu search
√

SD model
[21] Sooty tern

√
SD model

[22] Cat swarm
√

SD and DD models
[23] Crow search

√
SD model

[24] Gray wolf optimiser
√

SD and DD models
[25] Firefly algorithm

√
SD and DD models

[26] Artificial bee colony
√

SD and DD models
[27] Equilibrium optimiser

√
SD and DD models

[28] Social spider algorithm
√

SD and DD models
[29] Whale optimiser

√
Triple diode (TD) model

[30] Humming bird optimiser
√

TD model
[31] Bonobo optimiser

√
SD and DD models

[32] Lambert W-functions
√

DD model
[33] Conductivity method

√
SD model

[34] Least squares
√

SD model
[35] Analytical mathematical method

√
SD model

[36] Iterative method
√

SD model
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Gong et al. [37] recently presented the dandelion algorithm in the framework of
effective metaheuristic approaches. Based on it, two more dandelion algorithms were
proposed, the variant dandelion algorithm [38] and DOA [39], to overcome the drawbacks
of premature convergence and local optimisation.

In terms of high optimisation accuracy and effectiveness, DOA can replace the prior
bio-inspired swarm intelligence OAs and produce superior convergence accuracy with less
progressions. The main purposes of this study are as follows:

• In order to estimate the parameters of the PV modules, this work seeks to propose the
novel bio-inspired swarm intelligence OA called the DOA for the first time.

• SD and DD approaches are used to mathematically model monocrystalline SF430M,
polycrystalline SG350P, and thin-film Shell ST40 PV panels.

• The values of the practical dataset are taken into account while generating the error
values and the objective function that would be used to reduce the error at various
operational points.

• Utilizing the details from the datasheet on the three key components of a PV cell’s V–I
characteristic, an error function is suggested.

• All PV cell characteristics are optimised for SD and DD models without assuming any
cell parameters.

2. PV Models

The output properties of the PV model may be correctly represented using a mathe-
matical model. This will illustrate the biological functions that take place in the module’s
cell. The SD and DD models are the most commonly used ones. By assuming that the
cells are equivalent and operate under comparable conditions, the parameters of the PV
cell are extracted. This criterion is employed to create the objective functions for the
model’s description.

2.1. SD Model

Ideal PV and practical PV cells of SD model are shown in Figure 1. By using Kirchhoff’s
current law (KCL), the output current (I) is expressed in terms of the photocurrent (Ic),
diode current (Id), and shunt resistor current (Ish):

I = Ic − Id − Ish (1)
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The Id and Ish equations are represented by

Id = Is

[
e{

q(V+IRs)
mKNτ } − 1

]
(2)
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Ish =
V + IRs

Rsh
(3)

By using Equations (2) and (3), Equation (1) is modified to

I = Ic − Is

[
e{

q(V+IRs)
mKNτ } − 1

]
− V + IRs

Rsh
(4)

where Rs and Rsh are the series and shunt resistances, Is is the saturation current, m is the
diode quality factor, V is the output voltage, τ stands for the p-n junction’s temperature (in
Kelvin), q stands for the electron charge, N represents the number of solar cells in series,
and K stands for the Boltzmann constant.

Equation (4) shows that the SD model contains five parameters that must be extracted:
Ic, Is, Rs, Rsh and m.

Equation (4) is modified under open-circuit (OC) conditions ( I = 0; V = Voc) to

Ic = Is

[
e{

qVoc
mKNτ } − 1

]
+

Voc

Rsh
(5)

Under short-circuit (SC) conditions (V = 0; I = Isc), Equation (4) is modified to

Ic = Isc + Is

[
e{

qIsc Rs
mKNτ } − 1

]
+

IscRs

Rsh
(6)

Is is expressed by using Equations (5) and (6) as

Is =
Isc +

IscRs
Rsh
− Voc

Rsh

e{
qVoc

mKNτ } − e{
qIsc Rs
mKNτ }

(7)

Equation (4) is expressed at maximum power point (MPP) ( I = IMPP; V = VMPP) as

IMPP = Ic − Is

[
e
{ q(VMPP+IMPP Rs)

mKNτ

}
− 1
]
− VMPP + IMPPRs

Rsh
(8)

2.2. DD Model

The DD model with a second diode linked in parallel to the first is shown in Figure 2.
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By using KCL, the output current (I) is expressed as

I = Ic − Id1 − Id2 − Ish (9)

where Id1 and Id2 are the diode currents and they are represented in terms of saturation
currents Is1 and Is2 and diode quality factors m1 and m2 by

Id1 = Is1

[
e
{

q(V+IRs)
m1KNτ

}
− 1
]

(10)

Id2 = Is2

[
e
{

q(V+IRs)
m2KNτ

}
− 1
]

(11)

By using Equations (3), (10) and (11), Equation (9) is modified to

I = Ic − Is1

[
e
{

q(V+IRs)
m1KNτ

}
− 1
]
− Is2

[
e
{

q(V+IRs)
m2KNτ

}
− 1
]
− V + IRs

Rsh
(12)

Equation (12) shows that the DD model contains seven parameters that must be
extracted: Ic, Is1, Is2, Rs, Rsh, m1 and m2.

Equation (12) is modified under OC conditions ( I = 0; V = Voc) to

Ic = Is1

[
e
{

qVoc
m1KNτ

}
− 1
]
+ Is2

[
e
{

qVoc
m2KNτ

}
− 1
]
+

Voc

Rsh
(13)

Under SC conditions (V = 0; I = Isc), Equation (12) is modified to

Ic = Isc + Is1

[
e
{

qIsc Rs
m1KNτ

}
− 1
]
+ Is2

[
e
{

qIsc Rs
m2KNτ

}
− 1
]
+

IscRs
Rsh

(14)

Equation (12) is expressed at the MPP ( I = IMPP; V = VMPP) as

IMPP = Ic − Is1

[
e
{

q(VMPP+IMPP Rs )
m1KNτ

}
− 1
]
− Is2

[
e
{

q(VMPP+IMPP Rs )
m2KNτ

}
− 1
]
− VMPP + IMPPRs

Rsh
(15)

3. Dandelion Optimisation Algorithm

Recently, Zhao et al. [39] proposed a new bio-inspired swarm intelligence OA based
on the flight modes of dandelion seeds (DSs) called the DOA. Dandelion is one of the plants
that uses wind to spread its seeds. The two main parameters that influence the dispersal
of dandelion seeds are wind velocity and climate. A seed’s ability to fly long or short
distances depends on the wind speed. The ability of DSs to fly and the likelihood that they
will spread to neighbouring or distant areas are both influenced by the weather. The three
phases that DSs go through are listed below.

• When a DS is in the rising stage, a vortex is created above it, and it rises due to a
pulling force under windy and bright conditions. In contrast, when it is raining, no
eddies are above the seeds. In this situation, only local searches are possible.

• In the landing stage, DSs finally randomly settle in one location under the influence of
wind and weather to create new dandelions.

• In the descending stage, once seeds soar up to a given height, they drop continuously.

Dandelions evolve their population by dispersing their seeds to the next generation in
three stages.
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3.1. Mathematical Formulation of the DOA

This part discusses the mathematical formulas for the DOA. The mathematical formu-
las for the rising stage with the two types of weather circumstances are presented first, and
then the descending stage and landing stage mathematical formulas are examined [39].

3.1.1. Rising Stage

In the DOA, the assumption is made that each DS corresponds to a potential solution
and its population is given by

population =

 χ1
1 · · · χdm

1
...

. . .
...

χ1
pp . . . χdm

pp

 (16)

where pp is the size of the population, and dm is the variable dimension.
The individual position Xj is defined as

Xj = r1(UPB− LOB) + LOB (17)

where j = 1, 2, 3, . . . , pp; r1 is the arbitrary number between 0 and 1; UPB is the upper
bound; LOB is the lower bound of the given problem and is represented as

UPB = [upb1, · · · , upbdm], LOB = [lob1, · · · , lobdm] (18)

At the time of initialisation, the DOA considers the individual with the highest fitness
value to be the first elite, which is roughly regarded as the best situation for the DS to
grow. By using the minimum value as an illustration, the equation of the first elite, Xelite, is
given by

fbest = min
(

f
(
Xj
))

, Xelite = X
(

f ind
(

fbest == f
(
Xj
)))

(19)

where find( ) refers to two equal-value indices.
DSs in the rising stage must reach a particular height so that they can float apart

from their mother plant. DSs rise to various heights depending on the wind velocity, air
moisture, etc.

Here, two types if weather circumstances are considered.
Case 1. Wind velocities on a sunny day may be thought of as having a lognormal

distribution, ln Y∼N
(
µ, σ2). In this case, DSs are dispersed arbitrarily by the wind in the

search space. The wind speed affects how high a DS will rise. The higher the dandelion
flies and the further the seeds are dispersed, the stronger the wind is. The wind speed
changes the vortexes above the DSs, causing them to ascend in a spiral shape.

In this instance, the relevant mathematical expression is

Xt+1 = Xt + α ∗ ϑx ∗ ϑy ∗ ln Y ∗ (Xrs − Xt) (20)

where Xt denotes the position of DS when iteration t begins. The location in the search
space that is arbitrarily chosen during iteration t is represented by Xrs. The formula for the
location that is created arbitrarily is given by

Xrs = r1(1, dm) ∗ (UPB− LOB) + LOB (21)

The mathematical expression for the lognormal distribution ln Y, where µ = 0 and
σ2 = 1, is

ln Y =

 1
y
√

2π
exp
[
−1
2σ2 (ln y)2

]
y ≥ 0

0 y < 0
(22)
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where y stands for the standard normal distribution, N(0, 1), and α stands for the adaptive
parameter used to modify the search step length, and its expression is

α = r1 ∗
(

1
T2 t2 − 2

T
t + 1

)
(23)

The lift component factors of a dandelion caused by the separated eddy action are
represented by ϑx and ϑy. To determine the force acting on the variable dimension, use
Equation (24) as a guide.

r =
1
eθ

, ϑx = r ∗ cosθ, ϑy = r ∗ sinθ (24)

where θ is the arbitrary number between [−π, π].
Case 2. DSs struggle to rise properly with the wind on rainy days due to air resis-

tance, humidity, and other reasons. Since DSs are being used in this situation in the local
community, the relevant mathematical equation is

Xt+1 = Xt ∗ k (25)

where k controls the dandelion’s local search domain and the domain’s size ($) is deter-
mined using Equation (26)

$ =
1

T2 − 2T + 1
t2 − 2

T2 − 2T + 1
t +

1
T2 − 2T + 1

, k = 1− rand() ∗ $ (26)

Finally, the mathematical representation of DSs in rising stage is

Xt+1 =

{
Xt + α ∗ ϑx ∗ ϑy ∗ ln Y ∗ (Xrs − Xt

)
randn < 1.5

Xt ∗ k else
(27)

where T is the maximum number of iterations and randn() is the arbitrary value that
follows the standard normal distribution.

3.1.2. Descending Stage

The DOA likewise places a strong emphasis on exploration at this step. DSs rise up
to a given distance and then slowly begin to drop. Brownian motion is used in the DOA
to mimic the path of a dandelion as it moves. In the process of iterative updating, it is
simple for the individual to go through additional search communities since Brownian
motion follows a normal distribution with each update. The average position data after the
rising stage are used to indicate the steadiness of the dandelion’s fall. This encourages the
population’s overall growth toward promising conditions.

The mathematical representation of DSs in the descending stage is

Xt+1 = Xt − α ∗ βt ∗ (Xmean−t − α ∗ βt ∗ Xt) (28)

where βt is the Brownian motion and it is an arbitrary number from the standard normal
distribution, and Xmean−t is population’s average position in the jth iteration; its equation is

Xmean−t =
1

pp

pp

∑
j=1

Xj (29)
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3.1.3. Landing Stage

The DOA concentrates on exploitation in this section. The DS chooses where to fall
at random based on the previous two steps. Hopefully, the algorithm reaches the global
optimal solution as the iterations advance gradually. The optimal option is the approximate
location where dandelion seeds would survive most easily. Search agents use the expert
knowledge of the current elite to their advantage in their local communities in order to
precisely converge to the global optimum. Eventually, population evolution leads to the
discovery of the global optimal solution. The mathematical representation of DSs in the
landing stage is

Xt+1 = Xelite + levy(λ) ∗ α ∗ (Xelite − Xt ∗ δ) (30)

where Xelite denotes the DSs’ optimal placement in the jth iteration, δ = 2t
T , and levy(λ) is

the function of Levy flight; its expression is

levy(λ) = s ∗ ω ∗ σ

|t|1/β
(31)

where β = 1.5, s = 0.01, ω and t are the arbitrary numbers between [0, 1], and

σ =

 Γ(1+β)∗sin
(

πβ
2

)
Γ
(

1+β
2

)
∗β∗2(

β−1
2 )

.

A pseudo code [39] and flow chart of the DOA is given in Table 2 and Figure 3, respectively.

Table 2. Pseudo code of DOA.

Pseudo Code of DOA

Input variables: pp, dm, T.
Output variables: Optimal DS Xbest and its fitness value, fbest.
Initialise DSs’ X of the DOA
Determine each DSs’ fitness value, f .
Choose the optimum DS Xelite based on fitness values.
while (t < T) carry out
/*Rising stage*/
if randn() < 1.5 carry out
By using Equation (23), produce adaptive parameters.
By using Equation (20), update DSs.
otherwise, carry out
By using Equation (26), produce adaptive parameters.
By using Equation (25), update DSs.
end if
/*Declining stage*/
By using Equation (28), update DSs.
/*Landing stage*/
By using Equation (30), update DSs.
Arrange DSs in a fitness value-based hierarchy of good to bad.
Update Xelite
if f (Xelite) < f (Xbest)
Xbest = Xelite, fbest = f (Xelite)
end if
end while
Return Xbest and fbest.
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4. Formulation of the Optimisation Problem

The objective of PV module parameter estimation is the accurate estimation of the V–I
characteristics. The majority of publications just aim for MPP accuracy. SC, OC, and MPP
are the three points that this paper mainly concentrates on. It is important to reduce errors
at these three locations. The total of the squares of the three errors is the net error and the
proposed optimisation algorithm is designed to reduce this error [18,23,24,27].

In the case of the SD model, the error at the OC point is

εoc = Is

[
e{

qVoc
mKNτ } − 1

]
+

Voc

Rsh
− Ic (32)
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The error at the SC point is

εsc = Isc + Is

[
e
{

qIsc Rs
mKNτ

}
− 1
]
+

IscRs

Rsh
− Ic (33)

The error at the MPP is

εMPP = Ic − Is

[
e
{ q(VMPP+IMPP Rs)

mKNτ

}
− 1
]
− VMPP + IMPPRs

Rsh
− IMPP (34)

The net error is
ε = ε2

oc + ε2
sc + ε2

MPP (35)

In the case of the DD model, the error at the OC point is

εoc = Is1

[
e
{

qVoc
m1KNτ

}
− 1
]
+ Is2

[
e
{

qVoc
m2KNτ

}
− 1
]
+

Voc

Rsh
− Ic (36)

The error at the h point is

εsc = Isc + Is1

[
e
{

qIsc Rs
m1KNτ

}
− 1
]
+ Is2

[
e
{

qIsc Rs
m2KNτ

}
− 1
]
+

IscRs
Rsh

− Ic (37)

The error at the MPP is

εMPP = Ic − Is1

[
e
{ q(VMPP+IMPP Rs)

m1KNτ

}
− 1
]
− Is2

[
e
{ q(VMPP+IMPP Rs)

m2KNτ

}
− 1
]
− VMPP + IMPPRs

Rsh
− IMPP (38)

The net error is
ε = ε2

oc + ε2
sc + ε2

MPP (39)

5. Procedural Steps for PV Module Parameter Estimation

The following are the steps that describe how to calculate solar PV module parameters
using the applied algorithm:

Step 1: Initialise the variables for the solar PV module and the algorithm as described in
Tables 2–4.

Step 2: Verify the maximum iteration count before moving on to the next stages. If not, go
to step 7.

Step 3: Utilizing Equations (1)–(15), take into account the SD and DD models for the solar
PV module under consideration.

Step 4: Use Equations (16)–(31) to implement the suggested DOA for the research subject
under consideration.

Step 5: Reduce the net error given by Equations (35) and (39) for steps 3 and 4 for each iteration.
Step 6: Count up the iterations and go on to step 2.
Step 7: Completely analyse various solar PV modules and determine the best values for

equivalent circuit parameters.

6. Results and Analysis

Using SD and DD models, the current magnitudes under various operating situations
have been mathematically modelled. The producers of the PV modules offer the actual data
for these values for each PV model variant. To illustrate the effectiveness of the suggested
DOA, monocrystalline SF430M, polycrystalline SG350P, and thin-film Shell ST40 panels
are taken into consideration. By comparing the values of the mathematical model and the
data set, the error magnitude is determined. The DOA is used in this paper to reduce the
overall error. The DOA evaluates 30 search agents across 500 iterations using a MATLAB
environment. The following SD and DD models are used to illustrate the effectiveness of
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the entire system. Datasheet parameters of various PV panels are given by Table 3 and
parameter constraints of SD and DD models are given by Table 4.

Table 3. Datasheet parameters of various PV panels.

Monocrystalline SF430M [40] Polycrystalline SG350P [41] Thin Film Shell ST40 [42]

VMPP 41.2 V 38.7 V 16.60 V
IMPP 10.44 A 9.05 A 2.41 A
Voc 49.4 V 47.22 V 23.30 V
Isc 11.06 A 9.68 A 2.68 A

Temperature coefficient of Pmax −0.37%/◦C −0.39%/◦C −0.6%/◦C
Temperature coefficient of Voc −0.28%/◦C −0.28%/◦C −0.1%/◦C
Temperature coefficient of Isc 0.042%/◦C 0.042%/◦C 0.00035%/◦C

N 72 72 36

Table 4. Parameter constraints of SD and DD models.

SD Model DD Model UPB LOB

m m1, m2 2 0.5
Rs (Ω) 1 0.001
Rsh (Ω) 200 50

- Is1(A) 10−6 10−12

6.1. Parameter Estimation for SD Model of Various PV Panels

Monocrystalline SF430M, polycrystalline SG350P and thin-film Shell ST40 PV panels
are used for parameter estimation. Tables 5–7 list the SD model’s optimal parameters
throughout 30 runs, and Figures 4–6 display the simulation’s findings. Out of five parame-
ters in the SD model, three (m, Rs, Rsh) are optimised using the DOA, whereas the other
two (Ic, Is) are derived using the resulting analytical equations.

Table 5. SD model of monocrystalline SF430M PV panel’s optimal estimated parameters using DOA
and analytical method.

Run
DOA Analytical Method

Error (ε)
m Rs (Ω) Rsh (Ω) Is (A) Ic (A)

1 0.5066 0.1687 67.4524 1.3264e-22 11.0876 2.0477e-17
2 1.2660 0.0490 192.0358 7.4668e-09 11.0628 3.2914e-16
3 0.8881 0.2720 200 9.4742e-13 11.0750 1.1424e-15
4 0.5713 0.0039 66.9424 5.1739e-20 11.0606 1.3270e-16
5 1.3555 0.0018 199.9999 3.0059e-08 11.0601 7.2251e-18
6 0.6542 0.0016 67.7582 1.9423e-17 11.0602 4.3208e-19
7 0.5034 0.1197 66.9729 9.4619e-23 11.0797 1.5614e-17
8 0.5002 0.0368 66.6534 6.7940e-23 11.0661 2.1375e-16
9 0.5371 0.0010 66.7436 2.6568e-21 11.0601 7.8490e-17
10 1.3274 0.0010 174.4444 1.9764e-08 11.0600 3.6750e-16
11 0.7852 0.2784 120.3921 1.8180e-14 11.0855 5.1414e-16
12 1.2109 0.0278 134.2327 2.8318e-09 11.0622 3.2215e-16
13 1.2172 0.0599 166.3733 3.1930e-09 11.0639 7.9023e-16
14 1.2826 0.0012 147.3545 9.7396e-09 11.0600 2.2499e-17
15 0.7910 0.2354 99.9845 2.3137e-14 11.0860 5.7332e-16
16 0.7712 0.1772 82.5875 9.6369e-15 11.0837 3.6795e-16
17 0.7539 0.3495 199.5575 4.4962e-15 11.0793 6.0320e-15
18 0.5042 0.3379 74.4950 1.0425e-22 11.1101 1.3074e-16
19 1.0320 0.0311 91.5428 6.0852e-11 11.0637 7.1674e-18
20 0.7755 0.3104 145.9505 1.1957e-14 11.0835 8.2083e-17
21 0.5258 0.3054 73.2910 9.2226e-22 11.1060 2.7147e-16
22 1.1985 0.0324 132.1643 2.2530e-09 11.0627 7.9011e-16
23 1.1650 0.0010 107.6268 1.1776e-09 11.0601 6.5412e-16
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Table 5. Cont.

Run
DOA Analytical Method

Error (ε)
m Rs (Ω) Rsh (Ω) Is (A) Ic (A)

24 1.3158 0.0242 199.0640 1.6608e-08 11.0613 1.0871e-17
25 0.6172 0.4012 136.4209 1.7383e-18 11.0925 4.7216e-15
26 1.3098 0.0281 199.9976 1.5139e-08 11.0615 1.2625e-15
27 1.3465 0.0053 197.1366 2.6373e-08 11.0602 8.4918e-18
28 1.0055 0.0010 83.7745 3.0648e-11 11.0601 2.5118e-19
29 1.3087 0.0277 197.9710 1.4874e-08 11.0615 6.2800e-18
30 0.8707 0.0011 74.1570 4.9832e-13 11.0601 9.2189e-16

Table 6. SD model of polycrystalline SG350P PV panel’s optimal estimated parameters using DOA
and analytical method.

Run
DOA Analytical Method

Error (ε)
m Rs (Ω) Rsh (Ω) Is (A) Ic (A)

1 1.1646 0.2096 199.9853 2.8627e-09 9.6901 1.4939e-15
2 1.1653 0.0330 90.4115 2.8122e-09 9.6835 9.3348e-17
3 0.6375 0.5293 166.0917 3.8465e-17 9.7108 4.7089e-16
4 0.5844 0.3777 70.0374 9.7381e-19 9.7322 2.9725e-17
5 0.9470 0.3123 144.4529 1.8440e-11 9.7009 1.3180e-16
6 1.2380 0.0372 104.2750 1.0256e-08 9.6834 6.6337e-17
7 0.7656 0.0010 63.6454 2.9652e-14 9.6801 1.3493e-15
8 1.2212 0.0449 102.9439 7.7210e-09 9.6842 3.9785e-17
9 0.5007 0.5712 100.5910 6.7232e-22 9.7349 1.3128e-17
10 0.5058 0.0089 61.5251 1.0856e-21 9.6814 8.6616e-18
11 1.3712 0.0634 176.1996 7.7475e-08 9.6834 3.5573e-16
12 0.8829 0.0219 67.2878 2.5012e-12 9.6831 9.4824e-21
13 0.5839 0.5035 97.3535 9.5643e-19 9.7300 3.8534e-15
14 0.9045 0.2719 100.6567 5.1312e-12 9.7061 2.9987e-19
15 0.5000 0.1212 61.5931 6.0347e-22 9.6990 2.7429e-18
16 0.5482 0.3212 64.7611 5.4297e-20 9.7280 2.9782e-17
17 1.2184 0.1745 197.5454 7.5298e-09 9.6885 2.0915e-18
18 1.2666 0.0027 100.5927 1.6296e-08 9.6802 2.5461e-16
19 0.9359 0.3406 173.1933 1.3469e-11 9.6990 8.7728e-17
20 0.8806 0.0233 67.2490 2.3198e-12 9.6833 5.1891e-18
21 1.2004 0.0526 100.7845 5.3659e-09 9.6850 2.9264e-16
22 0.7652 0.0023 63.6575 2.9201e-14 9.6803 7.3543e-16
23 1.4965 0.0010 199.9981 3.6934e-07 9.6800 1.1224e-16
24 0.5805 0.3121 65.8014 7.2393e-19 9.7259 2.9825e-16
25 0.5083 0.5426 88.8710 1.4328e-21 9.7391 5.9047e-16
26 0.6885 0.0087 62.5949 7.1022e-16 9.6813 3.4635e-17
27 1.3219 0.0081 114.8555 3.8116e-08 9.6806 1.8545e-15
28 1.3854 0.0081 136.1256 9.2943e-08 9.6805 3.9759e-19
29 0.5000 0.5914 117.5315 6.3105e-22 9.7287 1.1503e-15
30 1.3227 0.0089 115.4072 3.8580e-08 9.6807 3.4042e-17

Table 7. SD model of thin-film Shell ST40 PV panel’s optimal estimated parameters using DOA and
analytical method.

Run
DOA Analytical Method

Error (ε)
m Rs (Ω) Rsh (Ω) Is (A) Ic (A)

1 0.8755 0.0196 61.6039 7.3527e-13 2.6808 6.7055e-17
2 1.9964 0.2813 93.6305 8.0806e-06 2.6880 3.6331e-19
3 1.2467 0.0010 63.1023 3.8777e-09 2.6800 1.7621e-20
4 1.9999 0.5795 129.3084 8.5035e-06 2.6920 1.2099e-18
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Table 7. Cont.

Run
DOA Analytical Method

Error (ε)
m Rs (Ω) Rsh (Ω) Is (A) Ic (A)

5 1.3212 0.7201 71.6375 1.2499e-08 2.7069 1.9623e-17
6 1.5900 0.5486 79.1210 3.1651e-07 2.6985 3.4663e-17
7 1.9994 0.2500 91.8552 8.2144e-06 2.6872 1.4853e-17
8 2 0.6332 141.8301 8.5618e-06 2.6919 9.1611e-19
9 1.2218 0.6531 67.1147 2.6236e-09 2.7060 9.8823e-18
10 1.3678 0.4519 68.0710 2.3658e-08 2.6977 7.7787e-18
11 0.9102 0.0544 61.6420 2.2034e-12 2.6823 1.1614e-17
12 1.8124 0.9591 199.1073 2.3699e-06 2.6929 8.5869e-17
13 1.9999 0.0010 80.5765 8.0980e-06 2.6800 5.0441e-18
14 1.0698 0.9999 68.3693 1.4132e-10 2.7191 2.4169e-19
15 0.5010 1 60.5315 3.4096e-22 2.7242 4.8679e-16
16 2 0.0010 80.5767 8.0983e-06 2.6800 1.7172e-16
17 0.5341 0.6183 60.8769 7.6567e-21 2.7072 9.2716e-17
18 1.6829 0.9989 150.2686 8.0317e-07 2.6978 1.0543e-18
19 0.5006 0.0010 61.4807 3.2193e-22 2.6800 2.8472e-18
20 1.9993 0.0010 80.5456 8.0632e-06 2.6800 7.4597e-20
21 1.9999 0.1435 86.1606 8.1721e-06 2.6844 2.7141e-19
22 1.6548 0.9116 118.6317 6.1330e-07 2.7005 2.3453e-16
23 1.9992 0.3316 97.5556 8.2591e-06 2.6891 6.2520e-17
24 1.3149 0.3712 65.9451 1.1203e-08 2.6950 2.0376e-18
25 1.5301 0.7428 84.3621 1.7192e-07 2.7035 4.3950e-17
26 2 0.2850 94.1917 8.2672e-06 2.6881 4.9402e-18
27 1.9999 0.6453 145.1735 8.5738e-06 2.6919 1.2349e-17
28 1.4116 0.9999 91.6732 4.3676e-08 2.7092 6.4730e-17
29 1.5287 0.9777 105.4428 1.7321e-07 2.7048 3.5642e-18
30 1.9999 0.5789 129.1812 8.5042e-06 2.6920 3.5939e-17
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Figure 6. Simulation findings of parameter extraction of SD with thin-film Shell ST40PV panel’s
(a) V–I characteristics, (b) optimal solution set, and (c) V–I characteristics with maximum Rs and Rsh.

6.2. Parameter Estimation for DD Model of Various PV Panels

For parameter estimation of the DD model, monocrystalline SF430M, polycrystalline
SG350P, and thin film Shell ST40 PV panels are taken into consideration. Tables 8–10 list
the various PV module parameters for the DD model that were taken from 30 runs, and
Figures 7–9 show the simulation results. Two parameters are determined analytically and
five parameters are optimised using the DOA method in the DD model of the monocrys-
talline SF430M, polycrystalline SG350P and thin-film Shell ST40 PV panels.

Table 8. DD model of monocrystalline SF430M PV panel’s optimal estimated parameters using DOA
and analytical method.

Run
DOA Analytical Method

Error (ε)
m1 m2 Rs (Ω) Rsh (Ω) Is1 (A) Is2 (A) Ic (A)

1 1.9995 0.5011 0.2134 85.7834 9.9900e-07 7.1045e-23 11.0875 1.3680e-19
2 1.9941 0.9350 0.2368 200 1.7376e-07 4.2362e-12 11.0730 3.5206e-19
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Table 8. Cont.

Run
DOA Analytical Method

Error (ε)
m1 m2 Rs (Ω) Rsh (Ω) Is1 (A) Is2 (A) Ic (A)

3 1.9990 0.9463 0.0170 88.6811 7.2968e-07 5.5871e-12 11.0621 1.6737e-19
4 1.9831 0.7116 0.0507 73.0153 3.0009e-07 5.1353e-16 11.0676 2.0463e-22
5 1.9705 1.0186 0.1882 187.9229 5.5469e-08 4.4296e-11 11.0710 8.8287e-19
6 1.9999 0.6093 0.3803 176.9380 7.2569e-07 9.5962e-19 11.0837 1.6842e-16
7 0.9387 0.9433 0.0219 80.4309 1.0000e-12 4.1537e-12 11.0630 2.9206e-16
8 1.7637 0.5832 0.3348 84.4166 1.0000e-12 1.3681e-19 11.1038 3.2421e-16
9 2 0.5183 0.1934 81.9717 8.7052e-07 4.1912e-22 11.0861 1.7695e-16
10 1.9474 0.9676 0.0086 88.5960 4.9116e-07 1.0402e-11 11.0610 8.2954e-16
11 1.9990 0.5264 0.1129 78.6888 9.4928e-07 9.1653e-22 11.0758 2.9086e-17
12 1.9874 1.3112 0.0010 164.3995 3.3751e-08 1.5345e-08 11.0600 4.7554e-18
13 1.7323 1.0026 0.0751 127.0942 2.5112e-07 2.5595e-11 11.0665 1.8711e-16
14 1.7614 0.6797 0.0010 68.1359 2.0044e-12 8.9493e-17 11.0601 1.0901e-16
15 2 0.6713 0.0015 68.0090 1.0088e-12 5.4977e-17 11.0602 1.0573e-16
16 1.3563 0.5015 0.0598 66.7099 1.0826e-12 7.7550e-23 11.0699 3.8492e-16
17 1.8579 0.6638 0.1562 123.6696 9.4765e-07 3.0473e-17 11.0739 6.8046e-17
18 1.8319 0.9528 0.2162 197.7403 1.3632e-07 7.0970e-12 11.0720 4.6200e-17
19 1.6426 0.9898 0.0255 90.0449 3.5376e-08 1.9408e-11 11.0631 1.5991e-16
20 1.6029 0.5095 0.0526 107.4908 1.8031e-07 1.2991e-22 11.0654 4.1592e-15
21 1.8880 1.1372 0.0525 165.7020 7.4178e-07 6.1687e-10 11.0635 1.7752e-15
22 1.8109 1.2843 0.0065 187.9730 3.4398e-07 9.2667e-09 11.0603 5.5379e-16
23 1.9597 0.5000 0.0047 66.6119 1.0438e-12 6.5820e-23 11.0607 1.9587e-17
24 1.8886 0.7354 0.0353 86.8116 7.8832e-07 1.5982e-15 11.0645 3.0808e-17
25 2 1.1299 0.1322 200 1.5061e-10 5.8883e-10 11.0673 2.6998e-16
26 1.1637 1.1580 0.1035 177.9818 4.4891e-12 1.0385e-09 11.0664 2.1860e-17
27 1.9179 0.5033 0.0934 70.0183 1.9303e-07 9.2160e-23 11.0747 4.6731e-19
28 1.9962 1.1017 0.0743 139.7824 6.4939e-07 3.0600e-10 11.0658 3.5561e-17
29 1.9077 0.5204 0.3728 133.9937 5.6407e-07 5.2070e-22 11.0907 5.5428e-16
30 1.9965 1.1041 0.0468 109.3303 1.0491e-12 3.3271e-10 11.0647 3.5995e-17

Table 9. DD model of polycrystalline SG350P PV panel’s optimal estimated parameters using DOA
and analytical method.

Run
DOA Analytical Method

Error (ε)
m1 m2 Rs (Ω) Rsh (Ω) Is1 (A) Is2 (A) Ic (A)

1 1.6576 1.1248 0.0069 81.6958 1.0000e-12 1.2698e-09 9.6808 2.8303e-20
2 1.9906 0.8543 0.2141 83.0836 4.2553e-07 9.4815e-13 9.7049 5.1853e-17
3 1.9991 1.4048 0.0448 199.1375 8.2938e-07 1.1759e-07 9.6821 3.6797e-16
4 1.9748 0.5000 0.3272 65.7817 2.5592e-07 5.9983e-22 9.7281 3.5763e-18
5 1.9064 0.5879 0.0019 61.7913 2.2285e-09 1.2414e-18 9.6802 4.8951e-17
6 1.9998 0.7282 0.1379 68.0113 4.5339e-07 5.2963e-15 9.6996 2.8251e-16
7 1.9999 1.0190 0.1063 83.1975 2.2911e-10 1.2078e-10 9.6923 1.4634e-15
8 1.5716 1.4399 0.0010 157.4846 5.6125e-10 1.8746e-07 9.6800 2.1316e-15
9 1.8653 0.6441 0.5353 197.3307 8.8741e-09 5.8293e-17 9.7062 7.2147e-16
10 1.9704 0.6267 0.4949 111.2720 1.4728e-11 1.9082e-17 9.7230 7.2748e-16
11 1.6477 0.7135 0.3122 114.7205 2.2562e-07 2.3532e-15 9.7063 4.9865e-16
12 1.7373 1.3321 0.0551 199.8697 6.8321e-07 3.7210e-08 9.6826 1.3725e-17
13 1.8840 0.7507 0.2461 72.4010 2.9376e-11 1.5532e-14 9.7129 2.1134e-20
14 1.6456 0.8476 0.0809 76.6722 1.6312e-07 6.8326e-13 9.6902 1.3079e-18
15 1.9994 0.6146 0.4998 108.5198 3.2942e-12 8.5399e-18 9.7245 1.6354e-16
16 1.9598 1.3700 0.0710 188.9893 1.2227e-07 7.5924e-08 9.6836 5.3382e-18
17 1.9999 0.5478 0.2567 63.1606 1.0011e-12 5.2160e-20 9.7193 1.3152e-17
18 2 1.3115 0.0673 148.3423 3.6112e-07 3.2618e-08 9.6843 1.4973e-16
19 1.4739 0.5323 0.1791 168.9302 1.5029e-07 6.5953e-21 9.6902 1.1615e-14
20 1.9225 0.7838 0.0588 66.3288 1.8026e-07 6.3978e-14 9.6885 4.9555e-17
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Table 9. Cont.

Run
DOA Analytical Method

Error (ε)
m1 m2 Rs (Ω) Rsh (Ω) Is1 (A) Is2 (A) Ic (A)

21 1.9432 0.5265 0.2173 65.8755 4.1640e-07 7.7455e-21 9.7119 6.1819e-17
22 2 0.5001 0.4326 81.9582 9.9875e-07 5.9915e-22 9.7311 9.3837e-18
23 1.9498 0.7612 0.0010 67.8896 8.6552e-07 2.3430e-14 9.6801 1.7277e-18
24 1.7804 1.1646 0.0484 93.4726 6.3280e-09 2.7793e-09 9.6850 3.3843e-18
25 2 0.5013 0.1490 62.3844 1.4445e-07 6.8580e-22 9.7031 3.2879e-17
26 2 1.2065 0.1408 161.4284 7.0345e-07 5.9391e-09 9.6884 1.8631e-18
27 1.9981 1.2430 0.1555 199.9746 2.2934e-07 1.1303e-08 9.6875 7.7431e-16
28 1.8329 1.2342 0.1258 199.9587 7.7650e-07 8.9471e-09 9.6860 4.1349e-19
29 1.4228 1.5533 0.0430 200 1.4494e-07 3.4957e-08 9.6820 5.2704e-15
30 1.8869 0.6304 0.4559 158.2097 8.6741e-07 2.2883e-17 9.7078 2.9661e-16

Table 10. DD model of thin-film Shell ST40 PV panel’s optimal estimated parameters using DOA and
analytical method.

Run
DOA Analytical Method

Error (ε)
m1 m2 Rs (Ω) Rsh (Ω) Is1 (A) Is2 (A) Ic (A)

1 1.5337 0.5224 0.9630 60.6195 2.8984e-10 2.6833e-21 2.7225 2.9122e-19
2 1.9950 1.9695 0.2862 91.7166 1.5122e-08 6.7733e-06 2.6883 1.6850e-19
3 1.5738 0.9588 0.2969 64.9617 9.5282e-08 5.7604e-12 2.6922 1.4021e-19
4 1.7927 1.2757 0.8267 90.1395 8.5012e-07 3.6404e-09 2.7045 7.8745e-18
5 1.7581 1.6149 0.7695 96.0318 1.7189e-07 3.6506e-07 2.7014 5.4478e-17
6 1.7006 1.6202 0.6361 86.4797 1.7810e-07 3.4442e-07 2.6997 7.9361e-22
7 1.7268 1.9671 0.6621 139.2834 1.4930e-08 6.8429e-06 2.6927 1.5140e-17
8 1.8625 2 0.7590 189.6899 9.8681e-08 8.4479e-06 2.6907 3.0559e-17
9 1.9609 0.5022 0.2818 62.4350 3.8901e-07 3.5835e-22 2.6920 2.8063e-17
10 1.4998 1.3868 0.7457 77.8482 4.6590e-08 1.9246e-08 2.7056 1.4370e-18
11 1.9999 1.2008 0.2011 63.5729 1.2148e-07 1.7740e-09 2.6884 2.1936e-17
12 1.7096 0.5011 0.2120 61.2789 7.6222e-10 3.4104e-22 2.6892 7.9437e-19
13 1.9896 0.5933 0.4116 61.1869 3.1508e-08 8.4217e-19 2.6980 4.0059e-17
14 1.9815 1.1111 0.3436 64.3788 4.7572e-07 3.1011e-10 2.6943 9.2057e-18
15 1.8152 1.4450 0.0141 68.2482 8.4748e-07 3.8618e-08 2.6805 6.7612e-19
16 2 2 0.3566 99.7046 1.2391e-07 8.1947e-06 2.6895 1.1594e-16
17 1.8557 1.3175 0.0023 65.6913 6.1106e-07 9.1759e-09 2.6800 1.0629e-18
18 1.5496 1.9748 0.2055 87.3912 1.3397e-09 6.9365e-06 2.6863 5.0120e-19
19 1.6816 1.4256 0.9895 139.7725 7.2838e-07 4.2003e-09 2.6989 4.2693e-21
20 1.6349 1.2090 0.0032 63.6576 7.3524e-08 1.7453e-09 2.6801 1.3077e-19
21 2 0.5190 0.9018 62.8391 3.7291e-07 1.8721e-21 2.7184 3.6896e-16
22 2 0.9059 0.4616 63.2416 4.6508e-07 1.8429e-12 2.6995 1.0258e-17
23 1.7901 1.8366 0.1787 78.1192 5.0307e-07 1.9202e-06 2.6861 3.0518e-17
24 2 1.7622 0.9995 200 3.9830e-07 1.5223e-06 2.6934 3.9379e-18
25 1.7659 1.9976 0.8407 173.0700 8.0742e-07 4.3160e-06 2.6930 5.4780e-17
26 1.9742 1.9979 0.4966 114.8640 1.4283e-10 8.3194e-06 2.6915 7.8382e-16
27 1.9985 0.5398 0.0012 62.7582 6.9058e-07 1.1420e-20 2.6800 4.7297e-18
28 1.9985 2 0.6262 139.9758 8.1939e-07 7.7275e-06 2.6920 1.4919e-18
29 1.0491 1.9914 0.7876 199.9999 1.0000e-12 8.1763e-06 2.6905 1.2339e-16
30 1.8426 1.6893 0.9997 153.1942 1.8332e-09 8.4999e-07 2.6974 2.2748e-16
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Monocrystalline SF430M
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Figure 7. Simulation findings of parameter extraction of DD with monocrystalline SF430M PV panel:
(a) V–I characteristics, (b) scatter plot, and (c) V–I characteristics with maximum Rs and Rsh.



Sustainability 2023, 15, 8407 20 of 27

Polycrystalline SG350P
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Figure 8. Simulation findings of parameter extraction of DD with polycrystalline SG350P PV panel:
(a) V–I characteristics, (b) scatter plot, and (c) V–I characteristics with maximum Rs and Rsh.
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Thin-film Shell ST40 PV
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Figure 9. Simulation findings of parameter extraction of DD with thin-film Shell ST40PV panel:
(a) V–I characteristics, (b) scatter plot, and (c) V–I characteristics with maximum Rs and Rsh.
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From Figures 4a–9a of various PV panels, we can observe that all 30 V–I characteristics
pass through three locations, which is the primary factor taken into account while designing
the objective function. The error at three locations is almost negligible (10−16), but in most
of the investigations, the error is only considered at the MPP. As a result, all 30 runs produce
essentially identical V–I characteristics with various conceivable parameter extractions.
Figures 4b–9b of the various PV panels show the optimal solution set scatter plots. The
optimal solutions, or V–I curves, obtained in each run are owed to various optimised
parameters in the specified search space boundaries since the suggested algorithm is
metaheuristic. Figures 4c–9c of the various PV panels show the V–I characteristics with the
maximum Rs and Rsh. The slope of the curve at the OC and SC points is constrained by the
values derived for the Rs and Rsh. It is clear from the data that the two curves that have
the highest values of Rs and Rsh meet the main requirements by passing through all three
crucial points of the features.

It is clear from the simulation results of the SD and DD models of various PV panels
that the parameters estimated using the suggested DOA method ensure the accuracy of
the V–I characteristics and that the three points acquired are in accordance with those in
the datasheet.

Furthermore, Figure 10 displays the convergence curves of the SD and DD models
of different PV panels, which are displayed using the optimal solution from 30 different
studies conducted over 500 iterations. Clearly, the DOA achieved a quick convergence
speed on each of the PV models.
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Figure 10. Convergence curves for SD and DD models of various PV panels.
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In addition, a statistical evaluation of SD and DD models using the DOA in terms
of standard deviation, sum, mean, and variance is presented in Table 11 and Figure 11
and compared with the HCSCA [5] and EHGWOSCA [6] algorithms. From Table 11 and
Figure 11, we can observe that the standard deviation, sum, mean, and variance of the
various PV panels using the DOA are lower compared to those of the other two hybrid
algorithms. Therefore, we can conclude that the solar parameters obtained using the DOA
are more accurate compared with the those obtained using the other two algorithms.
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Figure 11. Statistical analysis curves for SD and DD models of various PV panels. 
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Figure 11. Statistical analysis curves for SD and DD models of various PV panels.
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Table 11. Statistical evaluation of SD and DD models.

SD Model

Algorithm DOA HCSCA [5] EHGWOSCA [6] DOA HCSCA [5] EHGWOSCA [6] DOA HCSCA [5] EHGWOSCA [6]

Type of Solar PV Monocrystalline Polycrystalline Thin Film

Commercial
Solar PV

Mono
SF430M

Mono
CS6K280M

Mono
CS6K280M

Poly
SG350P

Poly
KD210GH-2PU

Poly
S75

Thin Film
ST40

Thin Film
ST40

Thin Film
ST40

Standard
deviation 1.32e-15 2.38e-09 9.70e-12 8.00e-16 1.70e-09 4.55e-12 9.71e-17 3.53e-10 4.42e-13

Count 30 30 30 30 30 30 30 30 30

Sum 1.98e-14 5.22e-08 1.25e-10 1.34e-14 3.23e-08 5.03e-11 1.48e-15 6.50e-09 5.76e-12

Mean 6.60e-16 1.74e-09 4.15e-12 4.46e-16 1.08e-09 1.68e-12 4.93e-17 2.17e-10 1.92e-13

Variance 1.74e-30 5.65e-18 9.41e-23 6.41e-31 2.88e-18 2.07e-23 9.42e-33 1.25e-19 1.96e-25

DD Model

Algorithm DOA HCSCA [5] EHGWOSCA [6] DOA HCSCA [5] EHGWOSCA [6] DOA HCSCA [5] EHGWOSCA [6]

Type of Solar PV Monocrystalline Polycrystalline Thin film

Commercial
Solar PV

Mono
SF430M

Mono
CS6K280M

Mono
CS6K280M

Poly
SG350P

Poly
KD210GH-2PU

Poly
S75

Thin film
ST40

Thin film
ST40

Thin film
ST40

Standard
deviation 7.91e-16 5.38e-08 5.06e-12 2.25e-15 0.0026917 2.07e-12 1.55e-16 6.18e-09 5.09e-13

Count 30 30 30 30 30 30 30 30 30

Sum 1.03e-14 7.26e-07 5.83e-11 2.48e-14 0.0153284 2.54e-11 1.94e-15 1.91e-07 5.34e-12

Mean 3.45e-16 2.42e-08 1.94e-12 8.25e-16 0.0005109 8.47e-13 6.46e-17 6.37e-09 1.78e-13

Variance 6.25e-31 2.89e-15 2.56e-23 5.04e-30 7.25e-06 4.27e-24 2.39e-32 3.81e-17 2.59e-25
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7. Conclusions

A novel bio-inspired swarm-intelligence OA called the DOA has been proposed in
this paper for extracting the parameters of SD and DD models of monocrystalline SF430M,
polycrystalline SG350P, and thin-film Shell ST40 PV panels. In both SD and DD models, two
parameters were calculated using an analytical approach, and the remaining parameters
were obtained using the DOA. By reducing the objective function, the effectiveness of the
suggested technique was assessed. The major findings of the proposed work are as follows:

1. The DOA yields more accurate results in over 30 trials with the specified error function
as the objective function.

2. The simulation findings show that the parameters estimated provide V–I curves that
pass through all three important points with approximately a 10e-22 error.

3. A statistical evaluation of SD and DD models using the DOA has been performed and
they have been compared with two hybrid OAs. From the statistical analysis, we can
observe that the standard deviation, sum, mean, and variance of various PV panels
using the DOA are lower compared with those using the other two hybrid OAs.

4. The results show that the suggested algorithm produced adequate performance
characteristics and that its practical ie was recommended.

Therefore, finally we conclude that the DOA has demonstrated to be a successful
method of parameter estimation. By enhancing the suggested algorithm’s performance
with cutting-edge learning techniques, its application can also be expanded to the future
parameter estimation of triple-diode PV panels.
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