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Abstract: In-vehicle traffic lights (IVTLs) have been identified as a potential means of eco-driving.
However, the extent to which they influence driving characteristics in the event of obstructed on-road
traffic lights (ORTLs) has yet to be fully examined. Firstly, the situation of partially deployed IVTLs
in both vehicles was analyzed to identify the factors that affect driving characteristics. Through the
following distance model, relative vehicle speed, acceleration and deceleration, and following distance
were recognized as the contributing factors. The evaluation indicators for driving characteristics
were thereby further established. Then, a hardware-in-the-loop simulation platform was built using
PreScan 8.5-MATLAB/Simulink R2018b joint simulation software and a Logitech G29 device. IVTLs
were implemented using modules in the joint simulation software. Finally, under the scenarios of
obstructed ORTLs and various deployment conditions of IVTLs, the original data were collected from
50 experimental subjects with simulated driving. The subjects included 25 males and 25 females, all
of whom were non-professional drivers, with ages ranging from 20 to 40 years old. The conclusion
was reached that IVTLs could improve driving comfort by approximately 10% in sunny weather
(p = 0.008 < 0.05, p = 0.023 < 0.05; p = 0.046 < 0.05, p = 0.001 < 0.05), driving maneuverability by
approximately 30% in foggy weather (p = 0.033 < 0.05), and driving safety by approximately 50% in
the ORTLs obstructed by a truck scenario (p = 0.019 < 0.05). In general, even if only one vehicle was
equipped with IVTLs, certain gain effects on the driving characteristics of both vehicles could still
be provided.

Keywords: IVTL; driving characteristics; obstructed ORTL; deployment condition; simulated driving

1. Introduction

The dynamics of driving characteristics are shaped by the interplay between intricacies
of road conditions and capabilities of advanced driver-assistance systems (ADASs). Road
conditions include natural factors and the road environment. Natural factors encompass
a diverse array of meteorological conditions, including but not limited to bright and
sunny weather, dense and misty weather, inclement and rainy weather, and tempestuous
sandstorms. The road environment encompasses a multifaceted array of elements, such as
traffic congestion, vehicular collisions, and ongoing construction projects. The technologies
of ADASs include lane-keeping assist systems and in-vehicle traffic lights (IVTLs). All of
the above collectively shape the driving experience.

1.1. The Impact of Road Conditions on Driving Characteristics

Historically, scholars have focused more intently on studying the nuances of driving
characteristics during inclement weather conditions, as opposed to during clear and sunny
weather. The authors in [1] meticulously expounded upon the micro-mechanisms of how
abnormal weather conditions impact transportation and proffered a method for intercon-
necting various types of equipment to facilitate the exchange of information. In [2], the

Sustainability 2023, 15, 8416. https://doi.org/10.3390/su15108416 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15108416
https://doi.org/10.3390/su15108416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1950-1158
https://orcid.org/0009-0006-5425-8586
https://doi.org/10.3390/su15108416
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15108416?type=check_update&version=3


Sustainability 2023, 15, 8416 2 of 26

authors presented the Smog Full Velocity Difference Model (SMOG-FVDM) as a means of
providing a realistic simulation of smoggy weather conditions and demonstrated through
validation the efficacy of a stadia model. The authors in [3] discovered that the implemen-
tation of an in-vehicle warning information system served to mitigate the risk of collisions
during sandstorms, a relatively uncommon meteorological phenomenon in certain regions.
With the aim of comprehending the driving patterns of highway drivers during rainy
weather, the authors in [4] employed a methodology that incorporated a sports index
with driver behavior analysis. The findings revealed that, in general, drivers tended to
maintain a higher speed on straight road sections and exhibited an extended recognition
time for signage when compared to sunny weather conditions. Additionally, the roadway
environment is defined by both its inherent properties and dynamic fluctuations. In [5], the
authors meticulously examined 34 driving simulator studies that delved into the impact of
road geometry on driver behavior and provided a comprehensive overview of the current
practices regarding driving simulator experiments for analyzing road geometry features.
Their analysis revealed potential sources of bias and common shortcomings in reporting.
The authors in [6] conducted a study that evaluated the effect of geometrical design on
driver behavior errors, the results of which revealed that the incidence of such errors
was reduced to 14% when drivers were provided with guidance through direction signs.
In [7], the authors conducted an assessment of driving risk within a continuous tunnel
environment, the results of which revealed that driving behaviors varied significantly in
response to different risk feature points within the tunnel. Furthermore, they found that
the combination of high speeds and variations in luminance resulted in an increased risk of
accidents. Similarly, in [8], the authors analyzed a three-legged unsignalized intersection
using traffic conflict analysis to quantitatively evaluate safety performance.

1.2. The Impact of ADAS on Driving Characteristics

It has been established through research that drivers tend to place trust in driving
assistance systems [9]. There has been a plethora of literature published on the topic
of driving characteristics when utilizing driving assistance systems [10–17]. In [10–12],
the authors procured driver behavior data and implemented a system that enabled the
timely feedback of this information to the driver through the utilization of the in-vehicle
controller area network (CAN) system and the differential global navigation satellite
system (DGNSS). The authors in [13] demonstrated that the implementation of an in-
vehicle adaptive stop sign had a positive impact on vehicle safety across a wide range of
traffic scenarios, including instances of equipment malfunction.

1.3. The Impact of Road Conditions and ADAS on Driving Characteristics

Given that driving characteristics are shaped by both the intricacies of the road envi-
ronment and the capabilities of ADAS, it is imperative to validate the dependability of the
latter, which is currently a focal point in road safety research [18–23]. In [19], the authors
conducted an investigation of driver behavior at road junctions by utilizing smartphone
sensors. Their findings revealed that traffic characteristics had the most statistically sig-
nificant impact on the frequency of harsh driving events, in contrast to factors related to
road geometry or driver behavior. The authors in [20] explored the impact of a lane sup-
port system (LSS) under various road characteristics and conditions by utilizing proposed
threshold values of LSS and found that the performance of LSS was not affected by wet
pavement when compared to dry conditions. Similarly, in [22], the authors conducted an
analysis of driver characteristics and temporal and meteorological factors, as well as the
effect of geometric features on mean speed under simulated conditions. The results of
their study revealed that the presence of a curve on the road encouraged drivers, including
young drivers, to slow down.
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1.4. The Impact of IVTLs on Driving Characteristics

Furthermore, the authors in [24] highlighted the functionality of in-vehicle traffic
lights (IVTLs), which operate by synchronizing the in-vehicle traffic lights with the on-
road traffic lights when the vehicle is within a specific proximity. Scholars from the K.
Nakano Laboratory at the University of Tokyo conducted a series of investigations on
in-vehicle traffic lights (IVTLs). By assuming a hypothetical scenario of 100% penetration
rate of IVTLs, the authors evaluated the capability of IVTLs in assisting drivers to navi-
gate through unsignalized intersections. The results of their study revealed that IVTLs
significantly improved post-encroachment time and reduced the maximum brake stroke,
thereby indicating an enhancement in driving safety [25]. To further optimize the IVTL
system in unsignalized intersections, the authors considered an IVTL scheme based on
waiting time. The results indicated that applying IVTLs with consideration of waiting
time significantly reduced the maximum acceleration and maximum lateral acceleration
of vehicles on minor roads, indicating improved driving safety and stability [26]. In [27],
the authors carried out an assessment of a partially deployed IVTLs by comparing the
behavior of IVTL-equipped and -unequipped vehicles when exiting an intersection. The
conclusion of their study was that the utilization of IVTLs in a preceding vehicle led to a
significant reduction in the maximum deceleration of the following vehicle, even when
the latter was not equipped with the system. Based on partial deployment of IVTLs, to
validate the trust of drivers to IVTLs, the authors proposed the trust model. Simulated
driving experiments verified that the model could be utilized to predict drivers’ trust under
the partial deployment condition of IVTLs [28]. By utilizing traffic-simulation software of
NS-3 and Divert, it was determined that the flow rate of vehicular traffic was improved
by over 60%, and the quantity of carbon dioxide emissions was reduced by 18% [29,30].
Further analysis of the different penetration rates of IVTL vehicles was conducted, and
driving simulation results showed that when IVTLs were fully deployed, the driving safety
in unsignalized intersections was significantly improved. For partial deployment of IVTLs,
there was a need to accelerate the deployment of IVTLs, especially when the penetration
rate was below 50%, to ensure driving safety [31].

Previous studies have verified the effectiveness of IVTL-equipped vehicles in normal
environmental conditions. However, line-of-sight obstruction to on-road traffic lights
(ORTLs) can have a negative impact on normal driving, and IVTLs may potentially mitigate
or even eliminate this adverse effect. Nevertheless, the influence of different deployment
conditions of IVTLs on driving characteristics under line-of-sight obstruction to ORTL
remains unclear. In order to address this gap in knowledge, this paper will first present
vehicle models that include only the preceding vehicle equipped with IVTLs and only the
following vehicle equipped with IVTLs. Following this, evaluation indicators related to
vehicle safety, maneuverability, and comfort were used. A total of 50 recruited participants
aged 20 to 40 years old participated in driving scenarios involving sunny weather, foggy
weather, and ORTLs blocked by a truck, under different deployment conditions of IVTLs,
using two driving simulators. The evaluation indicators were analyzed using one-way
repeated measures. Ultimately, the influence of different deployment conditions of IVTLs
on driving characteristics under line-of-sight obstruction to ORTLs were reported. The
research flow chart of the paper is shown in Figure 1.
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Figure 1. The research flow chart of the paper.

2. Methods
2.1. Following Distance Model with Partial Deployment of IVTLs

In this study, due to the following distance during the straight-ahead phase of ORTLs
being most evident, this phase was mainly considered. At the same time, considering the
complexity and uncertainty of the reaction time and road conditions on driving charac-
teristics, the reaction time and road conditions were not considered in the vehicle models.
Simplification and focus on the study make the models easier to understand and explain.
The proposed vehicle models present different deployment conditions of IVTLs, including
one model where only the preceding vehicle is equipped with IVTLs, and a second model
where only the following vehicle is equipped with IVTLs.

2.1.1. Only the Preceding Vehicle Equipped with IVTLs

The schematic diagram (Figure 2) illustrates the deployment condition in which only
the preceding vehicle is equipped with IVTLs, and ORTL conditions include the display
of both a green light and a red light. It is evident that the utilization of IVTLs extends the
distance over which drivers can perceive (signal phase and timing message) SPAT, thereby
influencing driving characteristics.

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 27 
 

 

 

Figure 1. The research flow chart of the paper. 

2. Methods 

2.1. Following Distance Model with Partial Deployment of IVTLs 

In this study, due to the following distance during the straight-ahead phase of ORTLs 

being most evident, this phase was mainly considered. At the same time, considering the 

complexity and uncertainty of the reaction time and road conditions on driving charac-

teristics, the reaction time and road conditions were not considered in the vehicle models. 

Simplification and focus on the study make the models easier to understand and explain. 

The proposed vehicle models present different deployment conditions of IVTLs, includ-

ing one model where only the preceding vehicle is equipped with IVTLs, and a second 

model where only the following vehicle is equipped with IVTLs. 

2.1.1. Only the Preceding Vehicle Equipped with IVTLs 

The schematic diagram (Figure 2) illustrates the deployment condition in which only 

the preceding vehicle is equipped with IVTLs, and ORTL conditions include the display 

of both a green light and a red light. It is evident that the utilization of IVTLs extends the 

distance over which drivers can perceive (signal phase and timing message) SPAT, thereby 

influencing driving characteristics.  

  
(a) (b) 

Figure 2. The deployment condition of only the preceding vehicle equipped with IVTLs: (a) green 

light of ORTL; (b) red light of ORTL. 

The impact of in-vehicle traffic lights on 
driving characteristics in the presence of 

obstructed line-of-sight

Following distance model with partial 
deployment of IVTL in dual vehicles

IVTL mechanism of both vehicles

Evaluation indicators for driving 
characteristics based on influencing 

factors

Driving simulator experiments under 
external environment and internal 

conditions

Analysis of driving characteristics

External environment

Sunny weather

Foggy weather

ORTL obstructed by 
a truck

Neither vehicle with IVTL

Only preceding vehicle 
with IVTL

Only following vehicle 
with IVTL

Both vehicles with IVTL

Internal conditions

SPAT Reception 
Area

x1

D

x2
SPAT Reception 
Area

x1

D

x2

Figure 2. The deployment condition of only the preceding vehicle equipped with IVTLs: (a) green
light of ORTL; (b) red light of ORTL.
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The driving status of only the preceding vehicle equipped with IVTLs is restricted by
ORTLs. According to the status of ORTLs, both vehicles exhibit the corresponding driving
status, as shown in Figure 3.
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Green Light of ORTL

The illustration in Figure 4 portrays the displacement curve of the vehicle strategies
in the scenario of a green light indication from the ORTL. The vehicle strategies depict
the operational state of the vehicles under standard driving conditions, specifically, ac-
celeration during the green traffic light indication and deceleration during the red traffic
light indication.

Only the preceding vehicle is equipped with IVTLs, which can obtain SPAT infor-
mation from a farther distance than the following vehicle. When the ORTL is displayed
as green, compared with the case without IVTL deployment, the preceding vehicle can
accelerate appropriately to pass the intersection faster and arrive at the intersection within
the remaining time of the green light. The following vehicle can also accelerate correspond-
ingly, but the pass-ability of the preceding vehicle is greater than that of the following
vehicle. Therefore, on the green traffic light indication, there are three possible scenarios
for the traversal of the intersection by the two vehicles, namely, both vehicles travers-
ing the intersection, only the preceding vehicle traversing the intersection, and neither
the preceding vehicle nor the following vehicle traversing the intersection. These three
scenarios correspond to the ORTL being green with longer remaining time, the ORTL
being green with shorter remaining time, and the ORTL beginning to turn yellow or red
with longer remaining time, respectively. A detailed analysis of each of these scenarios is
provided below.
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Figure 4. The displacement curve of the preceding vehicle equipped with IVTLs during a green light
indication from ORTLs and including three scenarios: (a) both vehicles traverse the intersection;
(b) only the preceding vehicle traverses the intersection; (c) neither the preceding vehicle nor the
following vehicle traverses the intersection.

• Both vehicles traverse the intersection

If the distance between the preceding vehicle and the stop line, denoted as x1, is less
than the maximum distance, denoted as xG, that the vehicle can travel within the remaining
green time, denoted as tG, the vehicle will be able to traverse the intersection. As depicted in
Figure 4a, the preceding vehicle initiates acceleration with a′11 and reaches the road speed
limit vRSL within time t11. The vehicle then maintains this speed for the duration of time t12.
Then, as the vehicle approaches the intersection, it reduces speed to the intersection speed
limit vISL over a period of time t13, until traversing the intersection. The maximum distance
xG1 that the vehicle can travel within the remaining green time tG can be calculated using
Equation (1). The following vehicle initially maintains its initial speed v2 for a duration of
time t21, subsequently increasing its speed to v′2 (which is less than vRSL) over time t22. The
trajectory of this vehicle is similar to that of the preceding vehicle, as described by Equation
(2), whereby the maximum distance xG2 that the vehicle can travel within the remaining
green time tG can be calculated. The distance covered by the following vehicle over time
can be computed using Equation (3).

xG1 =
v2

RSL−v2
1

2a′11
+ vRSLt12 +

v2
ISL−v2

RSL
2a11

+ vISLt14

t11 = vRSL−v1
a′11

t13 = vISL−vRSL
a11

tG = t11 + t12 + t13 + t14

. (1)
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
xG2 = v2t21 +

v′2
2−v2

2
2a′21

+
v2

ISL−v′2
2

2a21
+ vISLt24

t22 =
v′2−v2

a′21

t23 =
vISL−v′2

a21
tG = t21 + t22 + t23 + t24

. (2)

D′ =



D + 1
2 a′11t2, 0 < t < t21

D + 1
2 a′11t2 − 1

2 a′21(t− t21)
2, t21 < t < t11

D + (t− t11)(vRSL − v1) +
1
2 a′11t2

11 −
1
2 a′21(t− t21)

2, t11 < t < t12 + t11

D + (t− t11)(vRSL − v1) +
1
2 a′11t2

11 +
1
2 a11(t− t12 − t11)

2 − 1
2 a′21(t− t21)

2

, t12 + t11 < t < t22 + t21

D + (t22 − t11 + t21)(vRSL − v1) +
1
2 a′11t2

11 +
1
2 a11(t− t12 − t11)

2 − 1
2 a′21t2

22−
1
2 a21(t− t22 − t21)

2, t22 + t21 < t < t13 + t12 + t11
D + t11(v1 − vISL) + (t12 + t13)(vRSL − vISL) + (t21 + t22)(v′2 − v2)− t(v′2 − vISL)+

1
2 a′1t2

11 +
1
2 a11t2

13 −
1
2 a′21t2

22 −
1
2 a21(t− t22 − t21)

2, t13 + t12 + t11 < t < t23 + t22 + t21
D + (t11 + t21 + t22)(v1 − vISL) + (t12 + t13)(vRSL − vISL)− t23(v′2 − vISL) +

1
2 a′11t2

11+
1
2 a11t2

13 −
1
2 a′21t2

22 −
1
2 a21t2

23, t23 + t22 + t21 < t < tG
v1 = v2

. (3)

• Only the preceding vehicle traverses the intersection

In the vehicle strategy where only the preceding vehicle traverses the intersection,
the following vehicle reduces its speed until it comes to a stop at the stop line. The
distance between the following vehicle and the stop line, denoted as x2, is greater than the
maximum distance, denoted as xG2, that the vehicle can travel within the remaining green
time, denoted as tG, which can be calculated using Equation (4).

xG2 = v2t21 +
v′2

2−v2
2

2a′21
+
−v′2

2

2a21

t22 =
v′2−v2

a′21

t23 =
−v′2
a21

tG = t21 + t22 + t23

. (4)

In this scenario, the distance covered by the following vehicle over time, denoted as
D′, can be computed using Equation (5).

D′ =



D + 1
2 a′11t2, 0 < t < t21

D + 1
2 a′11t2 − 1

2 a′21(t− t21)
2, t21 < t < t11

D + (t− t11)(vRSL − v1) +
1
2 a′11t2

11 −
1
2 a′21(t− t21)

2, t11 < t < t12 + t11

D + (t− t11)(vRSL − v1) +
1
2 a′11t2

11 +
1
2 a11(t− t12 − t11)

2 − 1
2 a′21(t− t21)

2

, t12 + t11 < t < t22 + t21

D + (t22 − t11 + t21)(vRSL − v1) +
1
2 a′11t2

11 +
1
2 a11(t− t12 − t11)

2 − 1
2 a′21t2

22−
1
2 a21(t− t22 − t21)

2, t22 + t21 < t < t13 + t12 + t11
D + t11(v1 − vISL) + (t12 + t13)(vRSL − vISL) + (t21 + t22)(v′2 − v2)− t(v′2 − vISL)+

1
2 a′11t2

11 +
1
2 a11t2

13 −
1
2 a′21t2

22 −
1
2 a21(t− t22 − t21)

2, t13 + t12 + t11 < t < tG
v1 = v2

. (5)
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• Neither the preceding vehicle nor the following vehicle traverses the intersection

In the event that both vehicles are unable to traverse the intersection, as depicted in
Figure 4c, the maximum distances, xG1 and xG2, that each vehicle can travel within the
remaining green time tG can be calculated using Equations (6) and (7), respectively.

xG1 =
v2

RSL
2a′11

+ vRSLt12 +
−v2

RSL
2a11

t11 = vRSL
a′11

t13 = −vRSL
a11

tG = t11 + t12 + t13

. (6)


xG2 = v2t21 +

v′2
2−v2

2
2a′21

+
−v′2
2a21

t22 =
v′2−v2

a′21

t23 =
−v′2
a21

tG = t21 + t22 + t23

. (7)

As inferred from the displacement curve, the distance covered by the following vehicle
over time, denoted as D′, can be calculated using Equation (8).

D′ =



D + 1
2 a′11t2, 0 < t < t21

D + 1
2 a′11t2 − 1

2 a′21(t− t21)
2, t21 < t < t11

D + (t− t11)(vRSL − v1) +
1
2 a′11t2

11 −
1
2 a′21(t− t21)

2, t11 < t < t12 + t11

D + (t− t11)(vRSL − v1) +
1
2 a′11t2

11 +
1
2 a11(t− t12 − t11)

2 − 1
2 a′21(t− t21)

2

, t12 + t11 < t < t22 + t21
D− t11(vRSL − v1) + (t21 + t22)(v′2 − v2) + t(vRSL − v′2) +

1
2 a′11t2

11+
1
2 a11(t− t12 − t11)

2 − 1
2 a′21t′22 − 1

2 a21(t− t22 − t21)
2, t22 + t21 < t < tG

v1 = v2

. (8)

Red Light of ORTL

The displacement curve of the vehicle strategies in the scenario of a red light indication
from the ORTL is illustrated in Figure 5. When the ORTL is displayed as red, compared
with the case without IVTL deployment, the preceding vehicle can decelerate appropriately
to pass through the intersection without stopping and arrive at the intersection outside
the remaining time of the red light. The following vehicle is restricted by the state of
the preceding vehicle and can only adopt deceleration measures. Therefore, on the red
traffic light indication, there are two possible scenarios for the traversal of the intersection
by the two vehicles, namely, both vehicles traversing the intersection and neither the
preceding vehicle nor the following vehicle traversing the intersection. These two scenarios
correspond to the ORTL being red with shorter remaining time (the ORTL beginning to
turn green with longer remaining time), and the ORTL being yellow or red with longer
remaining time.
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Figure 5. The displacement curve of the preceding vehicle equipped with IVTLs during a red light
indication from the ORTL and including two scenarios: (a) both vehicles traverse the intersection;
(b) neither the preceding vehicle nor following vehicle traverses the intersection.

• Both vehicles traverse the intersection

In the vehicle strategy where both vehicles traverse the intersection, if the distance
between the preceding vehicle and the stop line, denoted as x1, is less than the maximum
distance, denoted as xR, that the vehicle can travel within the remaining time, denoted as
tR, the vehicle will be unable to traverse the intersection. The maximum distances, xR1
and xR2, that the preceding and following vehicles can travel within the remaining time
tR, respectively, can be determined by applying Equations (9) and (10). As illustrated in
Figure 5a, the preceding vehicle, by decelerating at a rate of a11, reduces its velocity to
v′1 over the course of time t11, while the following vehicle maintains its initial velocity
for a duration of time t21. Subsequently, the preceding vehicle, by accelerating at a rate
of a′11, increases its velocity to v”1 over time t12. Furthermore, the following vehicle, by
first decelerating at a rate of a21 and then accelerating at a rate of a′21, over time t22 and t23,
respectively, adjusts its velocity. Finally, both the preceding and following vehicles reduce
their velocities below the intersection speed limit to traverse the intersection.

xR1 =
v′1

2−v2
1

2a11
+

v′′1
2
−v′1

2

2a′11
+

v′′′1
2
−v′′1

2

2a12

t11 =
v′1−v1

a11

t12 =
v′′1 −v′1

a′11

t13 = v′′′−v′′
a12

tR = t11 + t12 + t13
vISL < v′1 < v1, v1 < v′′1 ≤ vRSL, 0 < v′′′1 ≤ vISL

. (9)



xR2 = v2t21 +
v′2

2−v2
2

2a21
+

v′′2
2
−v′2

2

2a′21
+

v′′′2
2
−v′′2

2

2a22

t22 =
v′2−v2

a21

t23 =
v′′2 −v′2

a22

t24 =
v′′′2 −v′′2

a22
tR = t21 + t22 + t23 + t24
vISL < v′2 < v2, v2 < v′′2 ≤ vRSL, 0 < v′′′2 ≤ vISL

. (10)
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The distance-over-time of the following vehicle can be obtained by applying Equation (11).

D′ =



D + 1
2 a11t2, 0 < t < t21

D + 1
2 a11t2 − 1

2 a21(t− t21)
2, t21 < t < t11

D− (t− t11)(v1 − v′1) +
1
2 a11t2

11 +
1
2 a′11(t− t11)

2 − 1
2 a21(t− t21)

2

, t11 < t < t22 + t21
D + t11(v1 − v′1)− (t21 + t22)(v2 − v′2)− t(v′1 − v′2) +

1
2 a11t2

11+
1
2 a′11(t− t11)

2 − 1
2 a21t2

22 −
1
2 a′21(t− t22 − t21)

2, t22 + t21 < t < t12 + t11
D− t21(v2 − v′2)− t11(v

′′
1 − v1)− t22(v2 − v′2)− t12(v

′′
1 − v′1)+

t(v′′1 − v′2) +
1
2 a11t2

11 +
1
2 a′11t2

12 +
1
2 a12(t− t12 − t11)

2 − 1
2 a21t2

22−
1
2 a′21(t− t22 − t21)

2, t12 + t11 < t < t23 + t22 + t21
D + t21(v

′′
2 − v2)− t11(v

′′
1 − v1) + t22(v

′′
2 − v2)− t12(v

′′
1 − v′1)+

t23(v
′′
2 − v′2) + t(v′′1 − v′′2 ) +

1
2 a11t2

22 +
1
2 a′11t2

22 +
1
2 a12(t− t12 − t11)

2−
1
2 a21t2

22 −
1
2 a′21t2

23 −
1
2 a22(t− t23 − t22 − t21)

2, t23 + t22 + t21 < t < tG

. (11)

• Neither the preceding vehicle nor following vehicle traverses the intersection

In this vehicle strategy, the preceding vehicle decelerates until it comes to a stop
at the stop line. The maximum distances, xR1 and xR2, that the preceding and follow-
ing vehicles can travel within the remaining time tR can be determined by applying
Equations (12) and (13), respectively. Furthermore, the distance-over-time of the following
vehicle, D′, can also be obtained by utilizing Equation (11).

xR1 =
v′1

2−v2
1

2a11
+

v′′1
2
−v′1

2

2a′11
+
−v′′1

2

2a12

t11 =
v′1−v1

a11

t12 =
v′′1 −v′1

a′11

t13 =
−v′′1
a12

tR = t11 + t12 + t13
vISL < v′1 < v1, v1 < v′′1 ≤ vRSL

. (12)



xR1 = v2t21 +
v′2

2−v2
2

2a21
+

v′′2
2
−v′2

2

2a′21
+
−v′′2

2

2a22

t22 =
v′2−v2

a21

t23 =
v′′2 −v′2

a′21

t24 =
−v′′2
a22

tR = t21 + t22 + t23 + t24
vISL < v′2 < v2, v2 < v′′2 ≤ vRSL

. (13)

2.1.2. Only the Following Vehicle Equipped with IVTLs

The scenario in which only the following vehicle is equipped with IVTLs is depicted in
Figure 6. The conditions of the green and red traffic lights are illustrated in Figure 6a,b, respectively.
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Figure 6. The deployment condition of only the following vehicle equipped with IVTLs: (a) green
light of the ORTL; (b) red light of the ORTL.

The driving status of only the following vehicle equipped with IVTLs is restricted by
ORTLs and the driving status of the preceding vehicle. According to the status of ORTLs
and the preceding vehicle, both vehicles exhibit corresponding driving status, as shown in
Figure 7.
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Figure 7. Driving status of both vehicles under only the following vehicle equipped with IVTLs.

Green Light of ORTLs

The trajectory of the vehicles in the green light scenario, where only the following
vehicle is equipped with IVTLs, is illustrated in Figure 8. Only the following vehicle
is equipped with IVTLs, which can obtain SPAT information from a farther distance
than the preceding vehicle. When the ORTL is displayed as green, compared with the
case without IVTL deployment, the following vehicle can accelerate to the safe following
distance. The preceding vehicle cannot obtain SPAT remotely, which is in the normal
driving state. Whether the following vehicle can traverse the intersection depends entirely
on the preceding vehicle. Therefore, on the green traffic light indication, there are two
possible scenarios for the traversal of the intersection by the two vehicles, namely, both
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vehicles traversing the intersection, and neither the preceding vehicle nor the following
vehicle traversing the intersection.
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Figure 8. The displacement curve of the following vehicle equipped with IVTLs during a green light
indication from the ORTL and including two scenarios: (a) both vehicles traverse the intersection; (b)
neither the preceding vehicle nor following vehicle traverses the intersection.

• Both vehicles traverse the intersection

As shown in Figure 8a, the preceding vehicle strategy is similar to the vehicle that
is not equipped with IVTLs. First, the initial velocity in time t11 is maintained and then
decreased to the intersection speed limit in time t12, and the velocity is maintained in
time t13. However, the following vehicle with acceleration a′21 increases the velocity to v′2
(below vRSL) in time t21, and then with deceleration a21 decreases to the intersection speed
limit using time t22. Finally, the vehicle retains the velocity in time t23. In addition, xG1 and
xG2 can be calculated by Equations (14) and (15), respectively.

xG1 = v1t11 +
v2

ISL−v2
1

2a11
+ vISLt13

t12 = vISL−v1
a11

tG = t11 + t12 + t13

. (14)


xG2 =

v′2
2−v2

2
2a′21

+
v2

ISL−v2
2

2a21
+ vISLt23

t21 =
v′2−v2

a′21

t22 = vISL−v2
a21

tG = t21 + t22 + t23

. (15)

Combined with the displacement curve, the following distance over time D′ can be
calculated by Equation (16).

D′ =



D− 1
2 a′21t2, 0 < t < t21

D− (t− t21)(v′2 − v2)− 1
2 a′21t2

21 −
1
2 a21(t− t21)

2, t21 < t < t11

D− (t− t21)(v′2 − v2) +
1
2 a11(t− t11)

2 − 1
2 a′21t2

21 −
1
2 a21(t− t21)

2

, t11 < t < t12 + t11
D + (t11 + t12)(v1 − vISL) + t21(v′2 − v2)− t(v′2 − vISL) +

1
2 a11t2

12−
1
2 a′21t2

21 −
1
2 a21(t− t21)

2, t12 + t11 < t < t22 + t21
D + (t11 + t12)(v1 − vISL)− t21(v2 − vISL)− t22(v′2 − vISL) +

1
2 a11t2

12−
1
2 a′21t2

21 −
1
2 a21t2

22, t22 + t21 < t < tG

. (16)

• Neither the preceding vehicle nor following vehicle traverses the intersection
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If the preceding vehicle cannot cross the intersection, the following vehicle also can-not
cross the intersection. The displacement curve is shown in Figure 8b. xG1 and xG2 can easily
be obtained using Equations (17) and (18), respectively.

xG1 = v1t11 +
−v2

1
2a11

t12 = −v1
a11

tG = t11 + t12

. (17)


xG2 =

v′2
2−v2

2
2a′21

+
−v′2

2

2a21

t21 =
v′2−v2

a′21

t22 =
−v′2
a21

tG = t21 + t22

. (18)

Subsequently, the temporal distance metric, D′, can be calculated utilizing Equation (19).

D′ =


D− 1

2 a′2t2, 0 < t < t21

D− (t− t21)(v′2 − v2)− 1
2 a′2t2

21 −
1
2 a2(t− t21)

2, t21 < t < t11

D− (t− t21)(v′2 − v2) +
1
2 a1(t− t11)

2 − 1
2 a′2t2

21 −
1
2 a2(t− t21)

2, t11 < t < tG

. (19)

Red Light of the ORTL

The displacement curve of the scenario of the red traffic light with only the following
vehicle equipped with IVTLs is depicted in Figure 9. When the ORTL is displayed as
yellow or red, compared with the case without IVTL deployment, the following vehicle
can decelerate to reduce waiting time for stopping. The preceding vehicle can still drive
normally. Whether the following vehicle can traverse the intersection depends entirely on
the preceding vehicle. Therefore, on the red traffic light indication, there are two possible
scenarios for the traversal of the intersection by the two vehicles, namely, both vehicles
traversing the intersection, and neither the preceding vehicle nor the following vehicle
traversing the intersection.
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Figure 9. The displacement curve of only the following vehicle equipped with IVTLs during a red
light indication from the ORTL and including two scenarios: (a) both vehicles traverse the intersection;
(b) neither the preceding vehicle nor following vehicle traverses the intersection.

• Both vehicles traverse the intersection

For the successful traversal of the intersection by both vehicles, it is essential that
the distance between the preceding vehicle and the stop line, denoted as x1, exceeds the
maximum distance that the vehicle can cover in the remaining time, tR, represented as xR1.
Analogously, the same condition applies to the subsequent vehicle. The values of xR1 and
xR2 can be computed through the application of Equations (20) and (21), respectively. As
depicted in Figure 9a, during the latter stages of the journey, the preceding vehicle reduces
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its speed as opposed to coming to a complete halt at the stop line. This is achieved through
a combination of deceleration, denoted as a21, which reduces the velocity to v′2 in time t21,
followed by acceleration, denoted as a′21, which increases the velocity to v′′2 (below vRSL)
in time t22, and finally deceleration, denoted as a22, which reduces the velocity to v′′′2 in
time t23. 

xR1 = v1t11 +
v′1

2−v2
1

2a11

t12 =
v′1−v1

a11
tR = t11 + t12

. (20)



xR2 =
v′2

2−v2
2

2a21
+

v′′2
2
−v′2

2

2a′21
+

v′′′2
2
−v′′2

2

2a22

t21 = v′−v2
a21

t22 =
v′′2 −v′2

a′21

t23 =
v′′′2 −v′′2

a22
tR = t21 + t22 + t23
0 < v′2 < v2, v2 ≤ v′′2 < vRSL, 0 < v′′′2 ≤ vISL

. (21)

In the latter scenario, the temporal distance metric, D′, can be determined by utilizing
Equation (22).

D′ =



D− 1
2 a21t2, 0 < t < t21

D + (t− t21)(v2 − v′2)− 1
2 a21t2

21 −
1
2 a′21(t− t21)

2, t21 < t < t11

D + (t− t21)(v2 − v′2) +
1
2 a11(t− t11)

2 − 1
2 a21t2

21 −
1
2 a′21(t− t21)

2, t11 < t < t22 + t21

D + t22(v
′′
2 − v′2)− (t− t21)(v

′′
2 − v2) +

1
2 a11(t− t11)

2 − 1
2 a21t2

21−
1
2 a′21t2

22 −
1
2 a22(t− t22 − t21)

2, t22 + t21 < t < tR

. (22)

• Neither the preceding vehicle nor following vehicle traverses the intersection

In the event that the intersection cannot be traversed by both the preceding and
following vehicles, the vehicle strategy is illustrated in Figure 9b. The maximum distance
that the preceding vehicle can travel in the remaining time, tR, denoted as xR1, and the
same for the following vehicle, denoted as xR2, can be computed through the application of
Equations (23) and (24), respectively. Furthermore, the temporal distance metric, D′, can
also be obtained through the utilization of Equation (22).

xR1 = v1t11 +
−v2

1
2a11

t12 = −v1
a11

tR = t11 + t12

. (23)



xR2 =
v′2

2−v2
2

2a21
+

v′′2
2
−v′2

2

2a′21
+
−v′′2

2

2a22

t21 = v′−v2
a21

t22 =
v′′2 −v′2

a′21

t23 =
−v′′2
a22

tR = t21 + t22 + t23
0 < v′2 < v2, v2 ≤ v′′2 < vRSL

. (24)

2.1.3. IVTL Mechanism of Both Vehicles

Vehicles equipped with IVTLs can receive SPAT, and their drivers can slow down or
speed up in advance based on the status of the ORTL, thereby reducing waiting time and
intersection congestion. When only the preceding vehicle is equipped with IVTLs, it will try
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to drive to the nearest position to the intersection stop line before the ORTL turns red and
then wait for the green light. At the same time, the following vehicle without IVTLs can
adjust its own driving status according to the driving status of preceding vehicle, ensuring
a safe following distance. When the preceding vehicle speeds up, the following vehicle
will also speed up, and when the preceding vehicle slows down, the following vehicle
will also slow down. When only the following vehicle is equipped with IVTLs, its driving
status is limited by the driving status of the preceding vehicle, but the following vehicle
can also approach the preceding vehicle as much as possible while ensuring safety through
acceleration and deceleration strategies. Currently, only a part of the vehicles is equipped
with IVTLs, so the proposed two-vehicle following distance model does not include all
situations. However, this model shows that the IVTL mechanism for two vehicles needs to
consider factors such as relative vehicle speed, acceleration and deceleration, and following
distance between the two vehicles to ensure safe driving and smooth traffic flow.

2.2. Evaluation Indicators

In the above-mentioned model for the following distance between two vehicles, the
IVTL is introduced to extend the reception range of SPAT, thereby increasing the possible
passing strategies. However, this also leads to closer vehicle interactions, and the model
emphasizes the importance of the following distance. From the model, it can be seen that
the maximum distance that can be traveled within the remaining time of the ORTL is
related to driving maneuverability. Therefore, the travel time is chosen as an evaluation
indicator for driving maneuverability. By using Equation (25), the average travel time of
the preceding and following vehicles can be obtained.

Taverage =
Tpreceding + Tf ollowing

2
(25)

wherein Tpreceding denotes the travel time of the preceding vehicle, and Tfollowing denotes the
travel time of the subsequent vehicle. The metric Taverage signifies the average travel time of
both the preceding and following vehicles.

As time changes, the following distance will be affected by various factors, including
vehicle speed, acceleration, deceleration, travel time, etc. The following distance can also
be used as an indicator to evaluate driving safety. In addition, TTC is also one of the
indicators to evaluate driving safety, which is calculated by the following distance and
relative speed. When 0 < TTC < the minimum time to conflict (minTTC), the following
distance is considered too close, and there is a risk of collision, which is unsafe. On the
contrary, when TTC > minTTC, it is a safe state, and the larger the value, the higher the
safety, so minTTC can also be used as an evaluation indicator of driving safety. TTC can be
calculated by the following formula:

TTC =
D

Vf ollowing −Vpreceding
(26)

wherein Vfollowing denotes the velocity of the subsequent vehicle, Vpreceding denotes the
velocity of the preceding vehicle, and D represents the following distance.

With respect to vehicle comfort, the maximum rates of change in the absolute values of
the steering angle (maxS) and brake pressure (maxP) are considered as crucial indicators. The
rate of change in the absolute value of the steering angle serves as an indicator of the driver’s
stability while executing a turn and can be computed through the following equation:

S′ =
|St+nT − St|

nT
(27)

where S′ denotes the rate of change in the absolute value of the steering angle, St represents
the absolute value of the steering angle at a given instant, St+nT represents the absolute
value of the steering angle at the subsequent instant, and T signifies the sampling period.
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The rate of change in the absolute value of the brake pressure serves as an indicator of
the speed at which the driver depresses or releases the brake pedal, thereby characterizing
the smoothness and stability of the driving experience. The equation for this metric is
presented in Equation (28).

P′ =
|Pt+nT − Pt|

nT
(28)

wherein P′ denotes the rate of change in the absolute value of the brake pressure, Pt
represents the absolute value of the brake pressure at a given instant, and Pt+nT represents
the absolute value of the brake pressure at the subsequent instant.

2.3. Simulated Scenarios with Obstructed ORTLs

Compared to V2X on actual roads, communication between vehicles and road in-
frastructure is easier to achieve in simulation software of PreScan 8.5 and MATLAB/Simulink
R2018b. Based on existing modules, simulation software can achieve the same effect as
actual road V2X, which lays a solid foundation for later driving simulation experiments. In
simulation software, settings need to be made for both the “vehicle” and “road” sides.

2.3.1. “Vehicle” Configuration of Simulation Software

In actual V2X scenarios, the vehicle side not only needs to have installed high-precision
onboard sensors to obtain road condition information, but it also needs to collect road
information sent by the roadside unit through the onboard unit and then display it in the
onboard system to achieve environmental perception and long-distance warning functions.
The PreScan simulation software can comprehensively develop and test advanced driver
assistance systems, including sensor models, scene generation functions, vehicle dynamics
options, third-party software and hardware interfaces, etc. The software has a clear and
simple graphical user interface, and it provides multiple sensors and visual pedestrian and
vehicle models. The main control module is based on MATLAB/Simulink software, which
can directly call the functions of Simulink. In the simulation software, the “vehicle” side
needs to have installed a traffic participant information receiver to detect the distance from
the preceding vehicle and a radiofrequency onboard unit for short-distance communication.
At the same time, the simulation vehicle is set to a two-dimensional vehicle dynamics
model, and the Logitech G29 controller and automatic transmission are selected. Finally,
the vehicle’s position information (horizontal and vertical coordinates), speed, throttle
opening, steering wheel angle, and brake pedal pressure are output to the workspace of
MATLAB simulation software.

For the “vehicle” side, a human–machine interface also needs to be set up, which
requires real-time display of the current vehicle speed and the SPAT of ORTLs within the
SPAT receiving range. To achieve the human–machine interface, the application modules
in MATLAB can be used. Firstly, sub-modules are dragged from the component library to
the design panel generating the target interface, then the view is switched to the code view,
adding the corresponding code and initialization function, and finally the ORTL phase and
timing in Simulink are configured.

2.3.2. “Road” Configuration of Simulation Software

In V2X on actual roads, in addition to upgrading and transforming detection equip-
ment into intelligent connected devices, the roadside unit must also be connected to
promptly issue warning information, SPAT, and traffic flow status to the onboard unit. In
simulation software, the setting of simulation scenarios is classified as “road” side settings,
including scenarios such as sunny, foggy, and ORTLs obstructed by a large vehicle, as well
as different deployments of IVTLs if two vehicles are considered. The overview of the
simulation scenarios is shown in Table 1. In addition, the “road” side also needs to set up
ORTLs with a timing plan of 33 s for red lights, 30 s for green lights, and 3 s for yellow
lights, only considering the straight-through phase. It is also equipped with radiofrequency
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beacons that communicate wirelessly with the radiofrequency onboard unit on the “vehicle”
side to achieve unobstructed communication when receiving SPAT within a specified range.

Table 1. Experimental conditions.

No. Weather Intersection Preceding Following

1 / / Unequipped Unequipped
1-1 / / Equipped Unequipped
1-2 / / Unequipped Equipped
1-3 / / Equipped Equipped
2 Foggy / Unequipped Unequipped

2-1 Foggy / Equipped Unequipped
2-2 Foggy / Unequipped Equipped
2-3 Foggy / Equipped Equipped
3 / Blocked by truck Unequipped Unequipped

3-1 / Blocked by truck Equipped Unequipped
3-2 / Blocked by truck Unequipped Equipped
3-3 / Blocked by truck Equipped Equipped

3. Experiment
3.1. Participants

The recruitment information for the experiment was disseminated through public
announcements within the school. During the recruitment process, participants were pro-
vided with a brief overview of the experimental content and the minimal risk of simulator
sickness. Additionally, the participants were ensured that they had no connection to the
research team. Following confirmation, on the first day of the experiment, participants were
familiarized with the experimental equipment and procedures, and the formal experiments
were conducted on the second day. In total, 50 participant drivers were recruited for the
study comprised of 25 males and 25 females, none of whom were professional drivers.
The age range of the participants was between 20 and 40 years old, with a mean age of
30.2 years. All participants held a valid driving license, with a mean acquisition period of
5.9 years. All participants had visual acuity (including corrected visual acuity) of above 1.0
in both eyes. The participants were in good physical condition and exhibited high energy
levels during the test.

3.2. Experimental Apparatus

In the experiment, two sets of Logitech G29 driving simulation equipment, a note-
book computer, and two 17-inch displays were employed. Figure 10 depicts the visual
representation of two test subjects operating the driving simulators.
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Figure 10. The visual representation of two test subjects operating driving simulation equipment.

3.3. Experiment Process

The experimental setup, as illustrated in Figure 11, encompassed crucial information
such as the driving route, static elements present, and the range of reception of the IVTL.
To ensure that the participants were adequately acclimated to the operation of the driving
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simulators, additional routes were implemented in addition to the primary driving route.
Adequate time was allocated prior to the commencement of the test, allowing participants
to familiarize themselves with the driving simulators and the driving route.
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Figure 11. The fundamental details of the experiment.

As depicted in Table 1, the experimental design included various scenarios of line-
of-sight obstruction to ORTLs and different deployment conditions of IVTLs. Specifically,
three scenarios of ORTL obstruction were considered, including sunny weather, foggy
weather, and a truck obstructing the ORTLs. Additionally, different deployment conditions
of IVTLs were evaluated, including both vehicles being equipped with IVTLs, only the
preceding vehicle being equipped with IVTLs, only the following vehicle being equipped
with IVTLs, and both vehicles being unequipped with IVTLs. The control group for the
experiments consisted of sunny weather and both vehicles being unequipped with IVTLs,
while the experimental groups included foggy weather, ORTL obstruction by a truck,
and various deployment conditions of IVTLs. The results were then compared across the
different scenarios and deployment conditions to assess the influence of IVTLs on driving
characteristics under line-of-sight obstruction to the ORTLs.

The subject pool of fifty participants was systematically divided into twenty-five pairs
through a randomized process. Each dyad consisted of one individual operating the virtual
leading vehicle and the other operating the virtual trailing vehicle. The experiment was
executed with a counterbalanced design, with data outputted including metrics such as
speed, location, steering angle, throttle opening, brake pressure, and the following distance
of both the leading and trailing virtual vehicles. Illustrative screenshots of the scenarios are
presented in Figure 12.
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Figure 12. Illustrative visualizations of the simulated scenarios: (a) natural driving conditions with
the preceding vehicle equipped with IVTLs; (b) foggy environment with the following vehicle
equipped with IVTL; (c) the ORTLs blocked by a truck with the preceding vehicle equipped with
IVTLs. (I) The perspective of the preceding vehicle; (II) the perspective of the following vehicle.

4. Analysis

The data of vehicle status were sampled at a frequency of 20 Hz. After completing the
driving simulator experiment, the data of vehicle status were directly obtained from the
simulation software. Then, the data were filtered and transformed to the evaluation indica-
tors of driving characteristics. To highlight the differences between evaluation indicators,
minTTC, Taverage, maxS and maxP were extracted. Finally, the evaluation indicators were
classified according to the scenarios and different deployments of IVTLs. The statistical
significance threshold was set at 0.05. External environmental factors (sunny or foggy
weather or ORTLs obstructed by a large vehicle) and internal conditions (incomplete or
complete deployment of IVTLs) were used as variables for one-way analysis of variance.

4.1. Analysis of Driving Safety

This study used minTTC as the primary indicator to evaluate driving safety. Figure 13
shows the distribution of minTTC under the influence of the external environment and
internal conditions. The numerical values marked with a red “+” sign are considered
outliers for this data. Due to their extremely high or low values, they may have an impact
on the overall analysis. Therefore, they have been removed from the dataset.
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Figure 13. Outcome of minTTC derived from the designed external environment and internal
conditions: (a) outcome of minTTC in the scenario of sunny weather; (b) outcome of minTTC in the
scenario of foggy weather; (c) outcome of minTTC in the scenario of being blocked by a truck.

A one-way analysis of variance was performed focusing on the impact of different
internal conditions under the same external environment. In sunny and foggy scenar-
ios, the indicator did not meet the homogeneity of variance condition (p = 0.053 > 0.05,
p = 0.399 > 0.05), but in the scenario of ORTLs obstructed by a large vehicle, the indicator
met the homogeneity of variance condition (p = 0.020 < 0.05). In this scenario, compared to
the non-deployment of IVTLs, minTTC was reduced by about 50% (p = 0.019 < 0.05), indi-
cating that the deployment of IVTLs in this scenario can effectively improve driving safety.

4.2. Analysis of Driving Maneuverability

The main evaluation indicator of driving maneuverability was travel time. Figure 14
shows the distribution of travel time under the influence of the external environment and
internal conditions. Since the experiment started from the preceding vehicle entering the
driving route and stopped when the following vehicle passed through the intersection and
stopped, the travel time of the following vehicle was the same as Taverage. The numerical
values marked with a red “+” sign are considered outliers for this data. Due to their
extremely high or low values, they may have an impact on the overall analysis. Therefore,
they have been removed from the dataset.
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Figure 14. Outcome of travel time from the designed external environment and internal conditions:
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Similarly, a one-way analysis of variance was conducted on indicators with the same
external environment and different internal conditions. In the foggy scenario, whether
partially or fully equipped with IVTLs, the travel time of the preceding and following
vehicles showed statistical significance (p = 0.018 < 0.05, p = 0.033 < 0.05). Specifically,
in the foggy scenario, compared to the non-deployment of IVTLs, the travel time of the
preceding and following vehicles was reduced (p = 0.017 < 0.05, p = 0.033 < 0.05). Taverage
decreased by about 30%, indicating that deploying IVTLs can effectively improve driving
maneuverability in this scenario.

4.3. Analysis of Driving Comfort

The main evaluation indicators for driving comfort were maxS and maxP, as shown
in Figures 15 and 16, respectively. The numerical values marked with a red “+” sign are
considered outliers for this data. Due to their extremely high or low values, they may have
an impact on the overall analysis. Therefore, they have been removed from the dataset.
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A one-way analysis of variance was performed focusing on the changes in the in-
dicators under the same external environment but different internal conditions. In the
sunny scenario, there were statistically significant differences in maxS of both vehicles
(p = 0.000 < 0.05, p = 0.008 < 0.05). Specifically, compared to the non-deployment of IVTLs,
the maxS of both vehicles decreased (p = 0.008 < 0.05, p = 0.023 < 0.05), with a decrease of
about 15%. There were also statistically significant differences in maxP of both vehicles
(p = 0.006 < 0.05, p = 0.033 < 0.05). Specifically, compared to the non-deployment of IVTLs,
the maxS of both vehicles significantly decreased (p = 0.046 < 0.05, p = 0.001 < 0.05), with a
decrease of about 10%. These indicated that deploying IVTLs in this scenario can effectively
improve driving comfort.

5. Discussion

The IVTL system represents a pivotal technology in the realm of vehicle–road collabo-
ration and serves to materialize the SPAT of ORTLs. Its in-vehicle display enables the driver
to receive relevant information even in cases when the ORTLs are not discernible. Previous
research has revealed that the integration of the IVTL system into the traffic flow results in a
marked improvement, with flow rates being increased by over 60% and a significant reduc-
tion in carbon dioxide emissions, estimated at 18%. However, it must be acknowledged that
the full integration of the IVTL system cannot be achieved in its entirety at present, thereby
necessitating consideration of partial deployment scenarios. Research on the driving char-
acteristics of IVTLs has mainly been conducted by Yang [25,27]. In [25], the capability of
IVTLs in assisting drivers to navigate through unsignalized intersections was evaluated by
a 100% penetration rate of IVTLs. The results showed that IVTLs significantly improved
post-encroachment time and reduced the maximum brake stroke, thereby indicating an
enhancement in driving safety. In [27], the impact of the IVTL system on driving conditions
was evaluated by examining the interaction between IVTL-equipped and -unequipped
vehicles as they exited an intersection. The results indicated that the deployment of IVTLs
in the lead vehicle could significantly mitigate the maximum deceleration experienced by
the trailing vehicle, even in cases where the latter was not equipped with the system. The
present investigation, which outlines the road conditions and evaluation criteria, builds
upon this previous research and further advances our understanding of the impact of
IVTLs on driving conditions.

There has been a lack of theoretical analysis and specific explanation of the critical
factors affecting driving characteristics under different deployment conditions of IVTLs.
In addition, the experimental scenarios have been relatively limited without considering
ORTL-obstructed scenarios. This study aimed to investigate the impact of line-of-sight
obstructions to the ORTLs on driving characteristics and the efficacy of IVTLs in different
deployment scenarios. Three distinct scenarios were considered: clear weather, inclement
weather, and ORTLs obscured by an obstructing vehicle. A comprehensive set of evaluation
metrics was proposed, including minTTC as a measure of vehicle safety, travel time as a
measure of vehicle maneuverability, and maxS and maxP as indicators of vehicle comfort.
Data were collected through two driving simulators using a sample of 50 participants. The
results showed that under clear weather conditions, IVTL utilization improved vehicle
comfort, reducing maxP of the preceding vehicle and maxS of the following vehicle. During
inclement weather, IVTLs improved vehicle maneuverability by decreasing travel time and
reduced the adverse effects of weather conditions on driver perception. In the scenario of
ORTLs obscured by a truck, IVTLs improved vehicle safety, stabilizing driver’s speed and
following distance and enhancing road efficiency, thereby avoiding the risk of running a
red light.

Future studies ought to encompass the scenario of ORTLs obstructed by a truck,
taking into account not only the characteristics of the truck but also the mechanisms of
obstruction. To gain a more comprehensive understanding of the impact of IVTLs, it would
be advantageous to incorporate physiological indicators of drivers into the evaluation
process. Moreover, further research should explore the effectiveness of IVTLs in extreme
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weather conditions, such as heavy rain or snow, in scenarios where line-of-sight obstruction
is caused by adverse weather environments. Ultimately, the optimization of IVTL placement
and the improvement of display methods to provide a more intuitive head-up-display
system would be intriguing avenues of study aimed at achieving the same level of efficacy
with minimal driver distraction.

6. Conclusions

This study aimed to investigate the impact of IVTLs on driving characteristics, with
a specific focus on line-of-sight obstruction to the ORTLs. To this end, three scenarios
were considered, comprised of sunny weather, foggy weather, and ORTLs obstructed by a
truck, in addition to different deployment of IVTLs between two vehicles. An analysis of
driving characteristics under line-of-sight obstruction to ORTLs and IVTLs was conducted
by selecting various vehicle models, driving safety, and maneuverability and comfort indi-
cators. The relevant data were procured from driving simulators, and the aforementioned
indicators were subsequently analyzed mathematically. The outcome of the study indicated
an improvement in driving characteristics due to the implementation of IVTLs in scenarios
of line-of-sight obstruction to ORTLs, which can be utilized as a case study for replication.

(1) With the objective of addressing the issue of line-of-sight obstruction to ORTLs at
intersections, an IVTL system was proposed for signalized intersections. The system makes
use of a SPAT message, containing information about the traffic light, which is transmitted
to a vehicle equipped with the system within the range of reception. This assists the
driver in navigating the intersection by providing real-time information about the traffic
light status. The functionality of the system, including the transmission of traffic light
information and the display of the human–machine interaction interface, was evaluated
through the use of simulation software.

(2) Three distinct scenarios of line-of-sight obstruction to the ORTLs were constructed
utilizing the PreScan and Simulink software, and two varying scenarios of deployment of
the IVTLs for two vehicles were employed. Additionally, corresponding vehicle models
and targeted evaluation indicators were proposed. Evaluation indicators of vehicle safety,
including minTTC, vehicle maneuverability corresponding to travel time, as well as ve-
hicle comfort corresponding to maxS and maxP were analyzed to determine the driving
characteristics.

(3) A comprehensive experiment was conducted to evaluate the impact of the IVTLs
on driving characteristics utilizing a sample of 50 participants. The evaluation indicators,
which were tailored to vehicle safety, maneuverability, and comfort, were analyzed based on
one-way analyses of variance. The results indicated that in scenarios of sunny weather, the
maxS and maxP were reduced by approximately 15% and 10%, respectively, in comparison
to the same scenario without IVTLs, thus improving vehicle comfort. In scenarios of foggy
weather, the Taverage was approximately 30% lower in comparison to the same scenario
without IVTLs, indicating an improvement in vehicle mobility. In scenarios where the
ORTLs were blocked by a truck, the minTTC was approximately 50% lower in comparison
to the same scenario without IVTLs, thus enhancing vehicle safety. In conclusion, the IVTLs
can effectively aid drivers in traversing intersections, even under conditions of line-of-sight
obstruction to ORTLs and incomplete deployment of IVTLs.
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