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Abstract: A mathematical model is proposed to minimize the sum of vehicle fixed cost, fuel cost,
carbon-emission cost, cooling cost, time-penalty cost and split-compensation cost, on the basis of
considering the three-level cold-chain-logistics network of manufacturer, distribution center, and
seller. The model is constructed based on the constraints of customer time window, vehicle load,
demand-splitable, and semi-open driving of multiple distribution centers. We to divide the customer
areas according to geographical locations and to carry out the transportation processes in stages. The
target solution, which includes vehicle routing, service time and type, cargo details, etc., has been
formulated. A two-stage hybrid-heuristic-path-scheme solution algorithm that combines a taboo table,
a genetic algorithm, an optimal-path-generation algorithm, a load-capacity-constraint algorithm, and
a time-window-constraint algorithm is designed in view of the complexity of the model and the
uniqueness of the solution scheme. This paper aims to reasonably plan the resource allocation of
cold chain logistics enterprises, reduce the comprehensive cost of cold chain transportation, improve
customer satisfaction, and respond to the green logistics policy advocated by the state by reducing
vehicle transit time and fuel consumption, and promote energy conservation and emission reduction.

Keywords: cold chain logistics; demands splitting; time window; vehicle routing; cargo plan

1. Introduction
1.1. Importance and Motivation

With the improvement of living standards in developing countries, especially in China,
consumer demand for fresh refrigerated and frozen food has increased significantly, thus
promoting the rapid development of the cold chain industry. China’s cold chain logistics
market has reached RMB 1.437 billion yuan in 2022, and it was reported that the global cold
chain logistics market will reach 5661.896 billion yuan by 2028, with a Compound Annual
Growth Rate (CAGR) of 14.37% during the forecast period [1]. Distribution is an important
link in cold-chain logistics, and it accounts for over 80% of the time required for cold-chain
products to be transferred from the manufacturers to the final consumers [2]. Cold chain
logistics distribution involves the delivery of perishable food, agricultural products, or
drugs to retailers or supermarkets in different locations with minimal transportation time
and cost. As an important part of cold chain logistics, the distribution process affects not
only the customer service levels, but also the logistics operating costs and the quality of cold
chain products [3]. Macharis et al. [4] pointed out that urban goods distribution (UGD) has
an important impact on the sustainable development of cities. According to a report, the
economic losses due to the lack of efficient path design and refrigeration during cold chain
transportation even exceeded one hundred billion RMB just for vegetables and fruit in
China from 2012 to 2015, let alone for other agricultural products [5]. Therefore, there is an
urgent need to optimize the routing path of the vehicles in cold chain logistics distribution
considering the freshness of perishable agricultural products as well as total cost. The
routing of cold chain logistics is a special application in the vehicular routing problem
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(VRP), which is more concerned with the delivery time of perishable products [3]. However,
the development of cold chain logistics still has problems, such as high distribution cost,
the high rate of cargo loss, and serious environmental pollution. Therefore, it is of great
importance to rationalize the dispatch of vehicles in the process of cold chain logistics in
order to achieve significant enterprise and social benefits.

1.2. Literature Review

In the existing research on cold chain logistics transportation optimization, most
scholars’ research focuses on cold chain logistics distribution path optimization. With the
improvement of living standards, consumer demand for fresh, refrigerated, and frozen
foods is gradually increasing, thus promoting the rapid development of the cold chain in-
dustry. Most scholars in domestic and international research on cold chain logistics network
optimization focus on optimizing distribution routes and selecting distribution centers.
When it comes to optimizing distribution routes, the focus is on considering temperature
constraints, minimizing distribution costs, and minimizing green costs. Among them is
distribution route optimization. Sobhi et al. addressed the issue of perishable product fresh-
ness in cold chain transportation and developed a distribution path optimization model [6].
Chen et al. [7] analyzed the strict requirements of fresh agricultural products on the distri-
bution process in cold chain logistics from the perspective of the low-carbon economy. They
constructed a cold chain logistics vehicle routing optimization model that comprehensively
considers the relationship between economic benefits and environmental impacts. They
proposed a swarm intelligence optimization algorithm–particle swarm algorithm, which
was improved in terms of the inertia weight, convergence factor, learning factor, and popu-
lation size. They demonstrated the superiority of their improved algorithm by comparing
it with the traditional particle swarm algorithm. Zou et al. [8] studied the three-level cold
chain network of “producer-distributor-seller” and constructed a three-level cold chain
integrated inventory model to maximize total profit. They used an adaptive genetic algo-
rithm to solve the problem. Zhao et al. [9] proposed a cold chain logistics path optimization
method by improving the multi-objective ant colony algorithm, aiming to minimize total
cost, total time, and total carbon emissions. Fu et al. [10] proposed a fresh product cold
chain logistics delivery path optimization method based on a hybrid genetic algorithm,
considering factors such as energy consumption and transportation costs, in order to mini-
mize total cost and total transportation time. Ren et al. [11] studied the cold chain logistics
path optimization problem under multiple distribution centers and considered the factor of
carbon emissions. The research results show that using optimization algorithms can reduce
total costs and total carbon emissions. Xiong [12] proposed an ant colony algorithm-based
optimization algorithm for cold chain logistics distribution paths, aiming to minimize total
distance and transportation costs while ensuring that product temperatures remain within
a specified range. Liu [13] designed a dynamic programming model based on the Meme
algorithm for optimizing multi-objective cold chain logistics deployment paths. The model
aims to minimize transportation costs and transportation time while considering product
temperature restrictions. Pan [14] proposed a conventional cold chain logistics distribution
path optimization model from a low-carbon perspective for agricultural products. The
model considers factors such as logistics costs, energy consumption, and carbon emissions,
aiming to minimize total costs and total carbon emissions. Chen [15] proposed a green
cold chain logistics location and path optimization method based on an improved genetic
algorithm from a low-carbon and environmentally friendly perspective. The method aims
to minimize total costs and total carbon emissions. Liu et al. [16] studied the optimization
of cold chain logistics transportation routes to achieve energy conservation and emission
reduction goals. The research conclusion shows that using optimization algorithms can
reduce transportation costs and carbon emissions. Zhang [17] proposed a fresh cold chain
logistics distribution path optimization method based on a genetic algorithm. The method
considers factors such as transportation costs, energy consumption, and time, aiming to
minimize total costs and total transportation time.



Sustainability 2023, 15, 8431 3 of 28

Wu et al. [18] proposed a comprehensive cold chain vehicle path optimization model to
minimize the unit cost of product freshness and a carbon trading mechanism to calculate the
cost of carbon emissions. The model considers cost, product freshness, and carbon emission
environmental factors simultaneously. An improved adaptive chaotic ant colony algorithm
is used to compute experiments on the model, and the feasibility and effectiveness of the
model are analyzed by classical examples and practical cases. Wu et al. [19] proposed a low-
carbon fresh food cold chain logistics distribution route optimization model considering
customer satisfaction, and combined time, space, weight, distribution rules, and other
constraints to optimize the distribution model. In this paper, the improved A* algorithm and
ant colony algorithm are used to construct the model solution. The effectiveness, efficiency,
and correctness of the single-objective low-carbon fresh produce cold chain model designed
with the improved ant colony algorithm are verified through the simulation analysis
results of different computational arithmetic cases. Kang et al. [20] proposed a logistics
distribution route optimization model with total cost minimization as the objective function
under the carbon tax system. The model integrates the technical advantages of IoT and the
characteristics of cold chain logistics; introduces soft time window, customer satisfaction,
and carbon emission as the main constraints; solves the mathematical model using an
improved genetic algorithm; uses a matrix for coding; and demonstrates the effectiveness
and rationality of the model and algorithm through examples. Zhou et al. [21] proposed
to use of green technology to solve a variety of fresh produce cold chain distribution
path optimization problems with transportation, refrigeration, and carbon emission cost
as the objective function. A hybrid particle swarm optimization (HPSO) algorithm was
designed to solve the problem of minimum freshness requirements for different types of
cold chain distribution. Ma et al. [22] optimized local distribution paths for immediate
demand, balancing enterprise economic efficiency and customer satisfaction while reducing
the environmental pollution. To minimize distribution costs and maximize customer
satisfaction, we designed an improved ant colony algorithm to solve the initial distribution
path with an insertion method for immediate customer demand. The results show that
the proposed model and algorithm are practical in meeting the sustainable development
of cold chain logistics in China. Li et al. [23] proposed a multi-objective CCL model with
the objectives of minimal carbon transaction cost, minimal network cost, and maximum
customer satisfaction. Experimental data showed that the proposed method effectively
improved customer satisfaction, reduced the total distribution cost, and promoted energy
saving and emission reduction. Li et al. [24] proposed an optimized fresh food distribution
path model with the minimum total cost and carbon emission as the objective function, and
used an improved ant colony algorithm to optimize and determine the optimal distribution
path. The optimization results provide a basis for fresh food distribution in the capital sub-
center. Dong [25] proposed a TDVRP mathematical model for the low-carbon distribution
of fresh agricultural products in the cold chain, taking the sum of the vehicle transportation
cost, the cargo damage cost of fresh agricultural products, and the refrigeration cost of fresh
agricultural products as the economic cost of distribution, and carbon emission cost as the
environmental cost, in order to minimize the sum of economic cost and the environmental
cost of distribution and customer satisfaction, and time penalty cost as the constraints.
Qin et al. [26] proposed a comprehensive cold chain vehicle path optimization model with
the minimization of customer cost per unit of satisfaction as the objective function. The
cost of the cold chain logistics path optimization problem, customer satisfaction, and the
carbon emission cost were also considered. The model enriches the optimization study of
cold chain logistics distribution, and the research results complement the study of the effect
of carbon price on carbon emissions and customer satisfaction. Liao et al. [27] proposed a
green vehicle path problem (VRP) for perishable products to optimize the operation cost,
deterioration cost, carbon emissions, and customer satisfaction. The model also considers
time windows, different travel times during peak and off-peak hours, and working hours.
The paper solves the proposed model using the multi-objective gradient evolution (MOGE)
algorithm. Experimental results show that the MOGE algorithm has more significant
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results than other algorithms. Goodarzian et al. [28] proposed a new responsive green
cold vaccine supply chain network and designed a new mathematical model for the multi-
objective, multi-cycle, multi-echelon distribution-distribution-positioning problem. The
paper proposed Gray Wolf Optimization (GWO) and Variable Neighborhood Search (VNS)
algorithms to solve the model, and the experimental results showed that the algorithm has
higher quality and better performance than other algorithms. Fang et al. [29] transformed
energy saving and emission reduction in the green cost into the path optimization problem
and established a mathematical model of cold chain logistics path optimization with total
cost minimization as the research objective. To address the problem of slow convergence
due to insufficient pheromones in the initial stage of the ant colony algorithm, a hybrid
ant colony algorithm was constructed by combining the A* algorithm with the ant colony
algorithm, using the global convergence of the A* algorithm and the positive feedback
of the ant colony algorithm. The effectiveness of the model and algorithm was verified
through simulation optimization and the comparative analysis of the examples. Li [30]
proposed a collaborative optimization model of urban fresh agricultural products′ cold
chain logistics inventory distribution based on distribution centers, proposed a partitioning
solution strategy for the multi-distribution center problem, and proposed a collaborative
optimization urban fresh agricultural products logistics inventory distribution system.

Jing [31] proposed an optimization model of demand-splitable cold storage multi-
temperature co-distribution for the problems of high distribution cost and low vehicle
loading rate in the traditional single-temperature distribution model. Chang [32] also
improved the traditional single-temperature distribution model and proposed a multi-
temperature co-distribution vehicle path optimization model, with significant results.
Zhang [33] constructed a splitting mathematical model for multi-center semi-open delivery
and pickup demand with the goal of the shortest vehicle delivery distance for the vehicle
path problem. The experiments show that the multi-center semi-open delivery and pickup
demand splitting model is better than the single-center delivery and pickup demand
splitting model under independent delivery. At present, most convenience store chains use
single-temperature cold chain vehicles for distribution, which a have serious duplication of
vehicles and a low distribution efficiency. Chen [34] proposed an optimization model of
demand splitting and cold storage multi-temperature co-distribution considering customer
satisfaction, and compared the original distribution plan and the optimized distribution
plan of the company. Li [35] proposed a multi-center semi-open cold chain logistics vehicle
route optimization model considering carbon emissions, and showed that multi-center
semi-open is more advantageous in cost reduction and route length reduction through the
comparison of distribution modes. Jiang et al. [36] proposed a dual-objective cold chain
logistics path optimization model for the multi-center semi-open vehicle path problem with
time windows, with the objectives of minimizing total distribution costs and maximizing
customer satisfaction. Fan [37] proposed a time-varying multi-temperature co-distribution
path optimization model under the time-varying road network by considering the cargo
mixing problem in cold chain logistics transportation, and found that the mixed load of
goods in the same temperature layer can effectively improve the vehicle utilization rate
and reduce the distribution cost by analyzing the solution results.

The vehicle loading scheme belongs to the category of the vehicle loading problem,
which represents the relationship between goods and distribution vehicles, i.e., making full
use of vehicle load under various constraints to achieve effective loading. Compared with
the vehicle path problem, there are fewer studies on vehicle loading problems at home and
abroad, and they mainly focus on the research direction of making full use of cargo loading
space to improve space utilization. Paquay et al. [38] studied the multi-box size crating
problem and constructed a mathematical model considering complex constraints such as
stability, item fragility, box rotation, and item center of gravity distribution. Ding [39]
proposed a split-loading strategy considering the characteristics of dispersed customers
and long spacing at the end of rural “last mile” logistics and verified its superiority and ra-
tionality through practical cases. Wang [40] jointly considered the vehicle loading problem
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and vehicle path problem, established a multi-objective optimization mathematical model,
improved the existing crating algorithm, and proved the effectiveness of the algorithm
through experiments. Furthermore, the problems of single-vehicle loading or multi-vehicle
loading, single cargo loading, or multiple cargo loading are usually considered jointly with
the vehicle path problem. Few scholars in China and abroad have studied them.

Table 1 compares some of the research results of the optimization of cold chain logis-
tics solutions.

Table 1. Comparison of research results (Y: Yes, N: No).

Literature Conditional Constraints Cargo Loading
Solutions

Routing
Solutions

Two-Way
Logistics

Wu et al. [19]

(Y)Time window (Y)Weight capacity

N Y N(N)Mixed cargo loading (N)Demand splitting

(N)Muti-distribution center semi-open

Zhou et al. [21]

(Y)Time window (N)Weight capacity

N Y N(N)Mixed cargo loading (N)Demand splitting

(N)Muti-distribution center semi-open

Dong [25]

(Y)Time window (Y)Weight capacity

N Y Y(N)Mixed cargo loading (N)Demand splitting

(N)Muti-distribution center semi-open

Jing [31]

(N)Time window (Y)Weight capacity

N Y N(N)Mixed cargo loading (Y)Demand splitting

(N)Muti-distribution center semi-open

Chang [32]

(Y)Time window (N)Weight capacity

N Y N(N)Mixed cargo loading (Y)Demand splitting

(N)Muti-distribution center semi-open

Zhang [33]

(N)Time window (N)Weight capacity

N Y Y(N)Mixed cargo loading (Y)Demand splitting

(Y)Muti-distribution center semi-open

Chen [34]

(Y)Time window (Y)Weight capacity

N Y N(Y)Mixed cargo loading (Y)Demand splitting

(N)Muti-distribution center semi-open

Jiang et al. [36]

(Y)Time window (N)Weight capacity

N Y N(N)Mixed cargo loading (N)Demand splitting

(Y)Muti-distribution center semi-open

Fan [37]

(Y)Time window (N)Weight capacity

N Y N(Y)Mixed cargo loading (N)Demand splitting

(N)Muti-distribution center semi-open

Paquay et al. [38]

(N)Time window (Y)Weight capacity

Y N N(N)Mixed cargo loading (N)Demand splitting

(N)Muti-distribution center semi-open

Ding [39]

(N)Time window (Y)Weight capacity

Y N N(N)Mixed cargo loading (Y)Demand splitting

(N)Muti-distribution center semi-open

This study

(Y)Time window (Y)Weight capacity
Y

Y Y(Y)Mixed cargo loading (Y)Demand splitting

(Y)Muti-distribution center semi-open
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Although some scholars have conducted a significant amount of research on cold chain
logistics transportation problems, there are additional limitations in the existing literature.

(1) In the actual transportation process of cold chain logistics, there will be a variety
of constraints such as time window, vehicle load, mixed cargo, demand that can be
split, and semi-open multiple distribution centers. In addition, most of the literature
only considers some of these constraints, and therefore cannot meet the complex
requirements of enterprises in the actual transportation process.

(2) In the research on cold chain logistics transportation optimization, most of the litera-
ture focuses on path optimization, and the research on vehicle loading schemes mainly
focuses on making full use of cargo loading space to improve space utilization, and
the joint optimization of vehicle loading scheme and driving path is relatively rare.
It is not possible to provide specific transportation solutions for cold chain logistics
enterprises, which is not of practical significance for them.

1.3. Objective and Research Contribution

The research objectives of this paper are to analyze the vehicle management cost,
transportation energy cost, refrigeration cost, carbon emission cost, loading and unloading
cost, etc. in the process of cold chain transportation, to minimize the total transportation cost
considering the time window of customers and the actual distribution situation of cold chain
logistics enterprises, and to develop a reasonable loading plan and transportation route.

In order to cope with the increase in the number of customers and the increase in the
complexity of the model and algorithm due to the increase in the number of customers and
the splitting of demand, we set up a mixed transport optimization model of “production-
storage”, “storage-sales” and “production-sales”. In order to cope with the problems caused
by the increase of customer types and demand splitting, and the increase of model and
algorithm complexity, we establish a mixed transport optimization model of “production-
warehouse, warehouse-sales, production-sales”, and study a two-stage mixed heuristic
path scheme optimization algorithm. The final solution can be directly applied in the actual
transportation process of cold chain logistics enterprises.

The main contributions of this paper are as follows: (i) Theoretical implications: new
solutions are provided for the cold chain logistics transportation optimization problem;
(ii) Managerial implications: Establishing a cold chain logistics load scheme and route
optimization model with the objective of minimizing the total cost of transportation, en-
riching the form of the solution, including both vehicle paths and load schemes, making
full use of the existing resources of the enterprise, saving operational costs and maximizing
efficiency. Additional implications are the centralized planning of enterprise resource allo-
cation, considering the “supplier-seller” transportation process, and saving the inventory
of enterprise cold storage. Shortening the time of vehicles in the distribution process to
reduce the cost of damage, which is conducive to the improvement of customer satisfaction,
fully demonstrates the enterprise’s customer-centric business philosophy, while helping to
enhance the core competitiveness of enterprises; (iii) Implications for the policymakers: By
analyzing the actual operation of a cold chain transportation enterprise, this paper applies
the theoretical research in real life, and responds to the green logistics policy advocated
by the state by reducing the vehicle in-transit time and fuel consumption, which provides
strong support for the enterprise’s decision.

2. Problem Description and Model Assumptions
2.1. Problem Description

The research in this article focuses on the optimization problem of mixed trans-
portation in scenarios involving “producer-warehouse, warehouse-customer, producer-
customer”. The problem is described as follows: A cold chain transportation company owns
multiple distribution centers to serve multiple suppliers and sellers. The demands of each
customer, their time windows, and their geographic locations are known. Homogeneous
refrigerated trucks are used as the transportation tool, departing from any distribution
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center, and returning to any center for replenishment during the journey, and are reusable.
Customer orders include bulk goods and less-than-truckload (LTL) goods, with a variety
of cargo types. Some cargo cannot be transported together. When the demand-splitting
condition is met, orders from different customers can be split or combined for transporta-
tion. The goal is to minimize the total cost by arranging the vehicle loading plan and the
driving routes.

2.2. Model Assumptions

The cold chain logistics cargo plan and route optimization process is a very compli-
cated problem. In the process of mathematical modeling, many influencing factors and
constraints are involved. This paper mainly considers the core constraints in the modeling
process, and puts forward the following hypotheses at the same time conditions (suppliers
and sellers are collectively referred to as customers):

(1) Assuming that there are multiple distribution centers with known locations and
a sufficient supply of goods, each center has limited refrigerated vehicles to meet
delivery demands, and the vehicle’s carrying capacity is limited.

(2) Refrigerated vehicles depart from one distribution center, complete their demand,
and can return to any distribution center. If time allows, the returning vehicles can
perform deliveries again.

(3) The locations of each supplier, the amount of supplied goods, and the service time
window are known. The locations of each seller, the demand for goods, and the service
time window are known. There is no additional demand during the service process.

(4) Refrigerated vehicle service types can be divided into three categories: (a) directly
delivering goods from the distribution center to the seller, (b) picking up goods from
the supplier before delivering them to the seller, and (c) picking up goods from the
supplier and returning to the distribution center for storage, with any combination of
the three types under certain rule constraints. The refrigerated vehicle can pick up
goods from suppliers and deliver them to sellers at any time.

(5) The distance between suppliers, distribution centers, and sellers are the actual road
distance, and road traffic conditions are consistent, with refrigerated vehicles traveling
at a steady speed during transportation.

(6) If the refrigerated vehicle arrives at the customer’s location earlier than the service
time window, it cannot provide the service in advance and incurs waiting costs. If
it arrives later than the service time window, it can provide immediate service but
incurs penalties. There is no fuel consumption or carbon emissions during waiting
and service.

(7) Each vehicle can serve multiple customers, and each customer can be served by
multiple vehicles.

(8) The divisibility of customer orders varies depending on factors that affect demand
splitting, such as customer requirements, mixing relationships between cold chain
products, and the operational feasibility of demand splitting. Each time the customer’s
demand is split, the customer pays additional compensation for the split. The amount
of goods supplied by the supplier and demanded by the seller is less than or equal to
the maximum carrying capacity of the refrigerated vehicle. If it exceeds the maximum
carrying capacity, the customer must agree to split the demand.

2.3. Symbol Description

The known parameters of the cold chain logistics stowage scheme and path optimiza-
tion model studied in this paper are shown in Table 2.
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Table 2. Model symbol description.

Symbol Meaning

Z total delivery cost.

M Distribution Center Collection, m ∈ M.

N Supplier and seller demand node set, n ∈ N.

U The collection of demand points in a certain delivery of delivery vehicle k.

K The collection of delivery vehicles used, k ∈ K.

Q The maximum load capacity of the delivery vehicle.

pi, qi Pick-up quantity of supplier i, demand quantity of seller i.

Dij The distance between nodes i and j.

fk The fixed cost of the kth delivery vehicle.

α2 Cooling cost of a refrigerated truck per unit time during loading and unloading.

λ f , ft Fuel consumption rate of distribution vehicles (L/km).

λc, ct Carbon emission rate of distribution vehicles (kg/km).

ti Time required to load and unload goods at node i.[
ETj, LTj

]
The period when customer demand point j receives service.

cp1 Unit waiting cost for vehicles older than ETj.

cp2 Unit stock-out cost for vehicles later than LTj.

tik The moment when the kth delivery vehicle departs from node i.

xk
ij =

{
1
0 The vehicle travels from node i to node j, if its value is 1, otherwise, it is 0.

yi =

{
1
0 Indicates that the demand of customer i is 1, if it is split, and it is 0. if it is not split. i ∈ N.

yk
ij The load when the kth car is driving on the road (i, j).

zk
ijt =

{
1
0

Decision variable, indicating that the value is 1 when the road (i, j) has vehicle k driving in the period t,
otherwise, it is 0.

vij Average vehicle speed.

tijk Time spent by vehicle k on road (i, j).

α1 Refrigeration cost of a refrigerated truck per unit time during transportation.

Cs The cost of split compensation for splitting the customer’s needs once.

3. Construction of Optimization Model for Mixed Transportation Scheme
3.1. Objective Function

Equation (1) is the objective function of the mixed transportation scheme optimiza-
tion model:

minZ = Ck + Cr + C f + Cc + Cp + Csc

= ∑
k∈K

fk + ∑
i∈M∪N

∑
j∈M∪N

∑
k∈K

α1tijkxk
ij + ∑

j∈M∪N
∑

k∈K
α2tj

+ ∑
i∈M∪N

∑
j∈M∪N

∑
k∈K

∑
t∈T

vijtijkctλczk
ijt

+ ∑
i∈M∪N

∑
j∈M∪N

∑
k∈K

∑
t∈T

vijtijk ftλ f zk
ijt + cp1

N∪S
∑

i=1
max

{
ETi − tk

i , 0}+

cp2 ∑N∪S
i=1 max

{
tk
i − LTi , 0}+ ∑j∈N Csyj

(
∑k∈K ∑j∈N xk

ij −
⌈ pj

Q

⌉
−
⌈ qj

Q

⌉)
(1)



Sustainability 2023, 15, 8431 9 of 28

Vehicle fixed cost: Vehicle fixed cost refers to the fixed cost incurred by the cold
chain transportation enterprise for providing transportation services with refrigerated
vehicles, including depreciation costs, driver salaries, rental fees, etc. It is usually constant
and independent of the distance traveled by the refrigerated vehicles and the number of
customers served. Therefore, the total fixed cost of the vehicle is:

Ck = ∑
k∈K

fk (2)

Refrigeration cost: The refrigeration cost mainly includes two aspects. The first is
the cost of refrigeration in the truck compartment. In the transportation process, there is
a temperature difference between the outside and inside of the truck compartment. To
maintain the temperature inside the compartment, refrigeration is necessary. The second
aspect is the additional refrigeration cost incurred when opening the truck door for loading
and unloading at customer demand points. Therefore, the total refrigeration cost is the
sum of these two parts:

Cr = Cr1 + Cr2 = ∑
i∈M∪N

∑
j∈M∪N

∑
k∈K

α1tijkxk
ij + ∑

j∈M∪N
∑
k∈K

α2tj (3)

Green cost: Green cost includes two parts, namely vehicle fuel consumption cost and
carbon emission cost:

Vehicle fuel consumption cost:

C f = ∑
i∈M∪N

∑
j∈M∪N

∑
k∈K

∑
t∈T

vijtijk ftλ f zk
ijt (4)

Carbon emissions cost:

Cc = ∑
i∈M∪N

∑
j∈M∪N

∑
k∈K

∑
t∈T

vijtijkctλczk
ijt (5)

The time penalty cost caused by the discrepancy between the delivery time and the
transportation time window:

Cp = cp1

N∪S

∑
i=1

max
{

ETi − tk
i , 0}+ cp2

N∪S

∑
i=1

max
{

tk
i − LTi , 0} (6)

Split compensation costs. When the customer’s demand is not split, the split com-
pensation cost due to the split is zero; when the customer’s demand is split into as, the
additional cost of receiving, loading, and unloading due to the split demand is called the
split cost, which is Cs × as. The total number of services for customer j minus the number
of services, when the order is not split, is as. The total split cost increased due to the split
is thus:

Csc = ∑
j∈N

Csyj

(
∑
k∈K

∑
j∈N

xk
ij −

⌈ pj

Q

⌉
−
⌈ qj

Q

⌉)
(7)

3.2. Constraints

Equations (8)–(17) are the constraints of the model:

∑
i∈M∪N

∑
j∈M∪N

xk
ijy

k
ij ≤ Q, ∀k ∈ K (8)

∑
i∈M∪N

∑
k∈K

xk
ij = 1, ∀j ∈ N (9)
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∑
j∈M∪N

∑
k∈K

xk
ij = 1, ∀i ∈ N (10)

∑
i∈M

∑
j∈M

xk
ij = 0, ∀k ∈ K (11)

∑
i∈M

∑
j∈N

xk
ij = ∑

i∈N
∑

j∈M
xk

ij, ∀k ∈ K (12)

∑
i∈U

∑
j∈U

xk
ij ≤ |U| − 1, ∀U ∈ M ∪ N, |U| ≥ 2, ∀k ∈ K (13)

xk
ij

(
tk

j − tk
i

)
≥ 0, ∀i, j ∈ M ∪ N, ∀k ∈ K (14)

tk
j =


(

max
{

tk
i , ETi

}
+ ti +

Dij
vij

)
xk

ij, ∀i ∈ N, ∀j ∈ M ∪ N, ∀k ∈ K(
tik +

Dij
vij

)
xk

ij, ∀i ∈ M, ∀j ∈ M ∪ N, ∀k ∈ K
(15)

yk
ij ≥ 0, ∀i, j ∈ M ∪ N, ∀k ∈ K (16)

pi ≥ 0, qi ≥ 0, Q ≥ 0, ∀i ∈ M ∪ N (17)

Equation (8) is the weight limit of refrigerated trucks, which means that the vehicle
load of refrigerated truck k during transportation cannot exceed the maximum load capacity
of refrigerated trucks. Equation (9) indicates that each demand point is only visited once.
Equation (10) means that the delivery vehicle must leave after completing the service of
the customer node. Equation (11) indicates that there is no situation where the delivery
vehicle starts from the distribution center and goes directly to the distribution center.
Equation (12) indicates that the delivery vehicle can start from any distribution center.
After the delivery task, the driver can return to any distribution center. Equation (13)
eliminates the constraints of the branch road. Equation (14) means to strictly follow the
driving sequence. Equation (15) refers to the moment when the delivery vehicle k arrives at
the demand point j, and tk

j means to take the maximum value. Equation (16) indicates that
the load of the kth delivery vehicle from node i to j is a non-negative value. Equation (17)
indicates that the pick-up and delivery volume at any customer node is a non-negative
value, and the delivery maximum load capacity of the vehicle is a non-negative value.

3.3. Target Solution Form

V: vehicle, v: license plate number, T: task list, J: task list details.
Solution form: {V1, V2, . . . , Vn}, Vi = {vi, Ti}, Ti = {J1, J2, . . . , Jm},
Ji= (job sequence number, job type, job time, job content, goods/quantity, job location . . . ).
Operation types include M (vehicle move), L (load), and U(unload).

4. Hybrid Heuristic Transportation Scheme Optimization Algorithm

The extended problem of the VRP has been proven to be an NP-hard problem. This
study has made many extensions based on this, considering factors such as demand split-
ting, pickup and delivery, time windows, multiple centers, and semi-openness, which
greatly increase the complexity of the model and algorithm. Simply using heuristic al-
gorithms cannot meet the solution requirements and cannot obtain a more valuable set
of solutions. Therefore, this paper designs a two-stage hybrid heuristic path solution
algorithm that combines tabu search and traversal and genetic algorithms.
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4.1. Region Segmentation

“Region” refers to the division of geographical space into regions with approximate
boundaries according to certain methods and indicators. The characteristics of the region
are as follows: the region has a certain boundary; the region has obvious continuity and
similarity, and the interconnection between the regions has significant differences. Due
to the different purposes, the methods and indicators used are also different, so the areas
divided are also different.

4.1.1. Purpose of Regional Segmentation

The concept of “region” is innovatively added to shrink the solution space. Since this
article involves the three roles of manufacturer, seller, and distribution center, the needs of
customers are complex and numerous, and the locations are widely distributed. If each
customer is regarded as an independent individual with regard to the formulation of a
transportation plan, the number of solutions cannot be measured, which greatly increases
the algorithm time complexity and space complexity. This paper considers that there will
be a problem in that the distance between customers in the same area is relatively close in
the actual transportation process. If these customers are planned separately, a “garbage
solution plan” that “detours” will be formed due to factors such as time windows, as shown
in Figure 1. Therefore, this article first divides customers by region, virtualizes a regional
center, plans according to the regional center, and then formulates transportation plans for
customers within the region according to the time window demands, as shown in Figure 2.
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According to the supplier and sales distribution shown in Figure 2, the advantage
of dividing the area is evident. There are 11 customers in total, and they are divided into
four regions. We assume that each customer’s demand can be split up to a maximum of
three times.

Before the area is divided, the time complexity of route planning would be 11! if the
customer demand is not split. If each customer demand is split once, the time complexity
would be 22!.

After the area is divided, with the route planning method described above, the time
complexity for four regions is 4!. Even if a complex traversal search is performed on all
customers within each region, the time complexity is 4! + 2! + 3! + 3! + 3!. If each customer
demand is split once, the time complexity would be 4! + 4! + 6! + 6! + 6!. Currently, there
are only 11 customers, and the time complexity of unsplitted demand is significantly higher
than the time complexity of 4! + 2! + 3! + 3! + 3!.
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In actual cold chain transport operations, the number of customers is much larger
than 11, so to meet the requirements of transportation efficiency, the algorithms should
be continuously optimized to reduce the execution time. Therefore, this paper adopts the
concept of “region” to greatly reduce the time complexity of cargo loading and route opti-
mization, and to design an optimization algorithm that is suitable for the actual operation
of cold chain transportation enterprises.

4.1.2. Region Segmentation Rules

(1) Assumptions: Based on the road conditions of the city, the average driving speed of
vehicles is assumed to be 30 km/h. According to the convention, the acceptable delay
time range for customers’ tasks is within 10 min.

(2) Basic region division: This is divided according to the actual regions of the city (for
example, Shanghai is divided into the Xuhui District, Yangpu District, Jing’an District,
Minhang District, etc.), which also facilitates the setting of accessible areas for vehicles
and solves problems such as urban area restrictions.

(3) Region boundary adjustment: To control the vehicle’s travel time between two cus-
tomers within the same region to no more than 10 min, according to 30 × 10/60 = 5,
the maximum distance that a vehicle can travel within 10 min is 5 km. Therefore, if
the distance between customers within a region is greater than 5 km, the region is
divided again.

(4) Dynamic division method: The two customers farthest apart within the region that
needs to be redivided are selected as the cluster center points. The k-means algorithm
is used to assign all customer nodes within the region to the nearest cluster center
point, and the region is eventually divided into two regions.
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The flow chart of region segmentation, as shown in Figure 3, assumes that area a
contains suppliers N1, N2, N3, N4 and sellers S5, S6, S7, S8, and its spacing set A includes
d12, d13, d14, d15, . . . , d75, d76, d77, a total of 56 kinds, known as set A[56].
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4.2. Customer Demand Partition Mark

V: vehicle, v: license plate number, T: task list, J: task list details.
Solution form: {V1, V2, . . . , Vn}, Vi = {vi, Ti}, Ti = {J1, J2, . . . , Jm},
Ji = (job sequence number, job type, job time, job content, goods/quantity, job location . . . ).
Operation types include M (vehicle move), L (load), and U(unload).

(1) Customer demand representation: customer demand information includes customer
name, origin, origin time window, destination, destination time window, cargo name,
cargo weight, whether it can be split, and other information. The following use tasks
represent customer demand.

(2) Relationship between the refrigerated truck lines and customer demand.

Collection of lines: S = {L1, L2, · · · , Li, · · · , Lk}.
Customer demand set for line i: Li = (task1, task2, task3, · · · , taskn).
Different refrigerated trucks have different driving routes, and different driving routes

need to complete different customer demands (tasks). After dividing the region, each
customer demand task (origin-destination) is marked as a task (origin region-destination
region). After analysis, it was found that many different customer demand tasks have the
same mark after marking, and to reduce the search space of the solution, the customer
demand tasks are grouped into jobs according to the same driving direction (origin region-
destination region). The customer demand task set of a route can then be reduced to a job
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sequence; and the job sequence arranged in a certain order represents the regional driving
order of the current vehicle. The grouping method is shown in Figure 4.
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4.3. Two-Stage Hybrid Heuristic Path Optimization Algorithm
4.3.1. Algorithm Implementation Steps

The core of the solution algorithm designed in this paper is the two-stage genetic algo-
rithm, and the optimal path generation algorithm, the time window constraint algorithm,
and the load constraint algorithm are also designed to combine with it.

(1) Since the customer order demand task contains a lot of valid information, it is im-
possible to obtain a valid solution by using only one customer serial number, so the
first stage of the genetic algorithm is a genetic mutation process based on the initial
order demand task of the supplier and the seller. Firstly, according to the customer
order demand task and the basic parameter information of the reefer truck, the initial
solution of the population is generated by using the vehicle proximity principle and
the maximum loading principle (the greedy method), and each reefer truck is matched
with an unordered set of customer order demand tasks. Since the same region con-
tains multiple suppliers and sellers, each supplier and seller may have multiple order
demand tasks, and the order demand may be split; if the customer order demand
task is used as the initial data to develop the loading scheme and route optimization,
the scale of change of the feasible solution of the algorithm is huge, and the optimal
solution cannot be obtained quickly in a predictable time frame. Therefore, the first
stage of the genetic algorithm only performs the overall variation among the sets of
unordered customer order task sets of multiple reefer trucks and does not involve the
ranking order of tasks or the reefer truck driving routes of each reefer truck.

(2) The task groups are marked as job sequences. According to the customer demand
task marked after the introduction of the concept of “area” above, it was found that
there are many customer orders that require tasks with the same starting area and
destination area, so the tasks with the same vehicle driving direction are grouped into
a group and expressed as a job sequence. The grouping method is shown in Figure 3.

(3) The second stage of the genetic algorithm is the genetic variation process of the job
sequence based on the offspring individuals of the first stage. The order of the job
sequence indicates the order of the reefer executing the customer demand and also
determines the regional driving order of the reefer, so this paper adopts a special
chromosome coding method and genetic variation process and designs a special
decoding method: the optimal path generation algorithm, which transforms job
sequences into reefer truck driving paths, and at the same time, the optimal path of
each job sequence is used as the fitness value for evaluating the merits of the offspring.
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(4) Optimal path generation algorithm. The algorithm is designed by a unique method
according to the job sequence of the customer demand job sequence, so that the
generated vehicle driving paths are all feasible solutions, and the shortest path is
found in the feasible solution as the fitness value of the current offspring chromosome.

(5) The load constraint algorithm is combined with the time window constraint algo-
rithm to generate the load scheme. According to the optimal individual (i.e., the job
sequence) of the second stage of the genetic algorithm, the optimal path obtained
by calling the optimal path generation algorithm is checked by the load constraint
algorithm to see if the load is less than the maximum load of the vehicle throughout
the whole process, and detailed data such as the load information of each road section
of the vehicle, and the loading and unloading information of the customer point are
obtained in the process of checking. The time window constraint algorithm designed
in this paper is then used to check whether the load scheme meets the time window
required by the customer, and the detailed data such as vehicle departure time, driv-
ing time, and customer service time are obtained during the checking process; if both
are verified to pass, it is been proven that the children obtained in the first stage of the
genetic algorithm are feasible solutions, and the detailed vehicle loading scheme is
obtained, and the next iteration is carried out; if one is verified to fail, it means that
the customer order demand insertion fails, and reselect a new path and repeat the
above operation.

4.3.2. The First Stage of the Genetic Algorithm

(1) Coding design. The first stage of the genetic algorithm is based on the cross-mutation
process of tasks. Due to the diversity of tasks, natural integer encoding is used in this
stage, and a chromosome is expressed as (1, 2, 3) and the corresponding matching
(task1, task2, task3 · · ·). A chromosome corresponds to a reefer truck, and the genes
on the chromosome correspond to the set of order requirements that should be fulfilled
by that reefer truck.

(2) Population initialization: Generate a feasible initial solution based on the greedy
algorithm and Pan Lijun’s proposed “time difference method” [41] as the initial
population, which can improve the starting point of the genetic algorithm, reduce the
number of iterations, and improve the algorithm’s performance.

(3) Fitness function: Use the objective function of the “three-in-one” mixed transportation
optimization model as the fitness function.

(4) Selection operator: Use the roulette selection method to select individuals, but to
avoid losing the optimal individual, introduce the elite strategy (with a parameter
of 3) and directly copy the three parent individuals with the smallest fitness function
value to the next generation.

(5) Crossover operator: All individuals in the population are randomly paired and new
individuals are generated using the single-point crossover principle, as shown in
Figure 5.
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(6) Mutation operator. Due to the uniqueness of the initial data, the chromosome coding
method, and the solution scheme in this paper, it is very easy to generate invalid
offspring by using the conventional mutation operation. To avoid the formation of



Sustainability 2023, 15, 8431 16 of 28

infeasible codes, we adopted a simple and efficient mutation operation, as shown in
Figure 6.
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First, select a random chromosome (a refrigerated vehicle), select a random gene
(a customer order demand task) on that chromosome, and delete it from that chromosome;
then select a random one from other chromosomes (other vehicles), and insert the deleted
gene (customer order demand task) into the current chromosome. First, we should judge
that the cargo class of the genetic gene to be inserted is the same as the cargo class of the
chromosome, and then continue the subsequent operation; otherwise, the insertion fails.

(7) Termination condition one is to set the maximum number of iterations of the first
stage genetic algorithm to 150, and termination condition two is that the optimal
solution still does not produce any changes after 10 consecutive iterations; if the
termination condition is satisfied, the algorithm optimization process is terminated,
and the optimal cargo solution and vehicle driving route are output.

4.3.3. Task Composition Transformation Job Sequence

As revealed in the first stage of the genetic algorithm, each chromosome in the current
population contains multiple genetic genes, representing the fulfillment of multiple cus-
tomer demands (tasks) by a refrigerated truck. To simplify the chromosome representation,
customer demand tasks are categorized by their region and direction (start region-end
region) into a group called a job. Thus, a set of customer demand tasks on a single chro-
mosome can be condensed into a job sequence. This job sequence serves as the input data
for the second stage of the genetic algorithm. The transformation process is illustrated in
Figure 4.

4.3.4. The Second Stage of the Genetic Algorithm

Transform the tasks of the first stage genetic algorithm into jobs and remove the
duplicates in order to reduce the search space and improve the efficiency of the algorithm.
The converted data will serve as the input for the second stage genetic algorithm.

(1) Coding design. The second stage genetic algorithm is based on job sorting for genetic
variation. In encoding, the path problem studied in this paper is influenced by
the transportation requirements, where each transport task has a fixed origin and
destination, and the transportation process has strong directionality. Binary and
natural integer encoding can easily produce invalid solutions. Therefore, a character
sequence-based encoding method is used, where jobs are used as genetic units and a
chromosome can be represented as (001-002; 003-004 . . . ). This encoding method is
beneficial for generating paths.

(2) Fitness function. We used the optimal path generation algorithm. Each job sequence
can generate multiple vehicle travel routes, and the job sequence is evaluated accord-
ing to the length of the optimal route.

(3) Select operator. Select the job sequence with the smallest fitness function value in the
candidate set.
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(4) Mutation operator. The order of jobs in a job sequence determines the order in which
vehicles perform tasks; that is, the regional driving path. Therefore, the second stage
of the genetic algorithm is to mutate the job order on a chromosome to generate new
individuals. The mutation process is as follows: randomly select two jobs on the same
chromosome to exchange, as shown in Figure 7.
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(5) Termination conditions. If the optimal chromosome of the current population still
does not produce changes in six consecutive iterations, the second stage of the genetic
algorithm is terminated and the loading scheme is generated.

4.3.5. Optimal Path Generation Algorithm

The optimal path generation algorithm (best_route) is a method for calculating the
fitness value of the second-stage genetic algorithm, and it is also the core algorithm for
solving the cold chain logistics load scheme and route optimization model. The algorithm
parameters are shown in Table 3. The basic logic of best_route is shown in Algorithm 1.

Algorithm 1: Optimal Path Generation Algorithm (best_route )

Input: turns, sr, regions, Li, Ljij
Output: The sequence of vehicle driving paths in the effective region.
1: if i < Li, then
2: Ci= Li+1
3: while Ci < regions + 1 do
4: Insert the new Job into the path sequence sr
3: if j ≥ Ci, then
4: Output the sequence of vehicle driving paths in the current region
5: else
6: Cj = Ci + 1, The destination region of the new Job is one digit after the start region.
7: while Cj 5 regions + 1 do
8: Insert the new Job into the path sequence sr, output the sequence of vehicle
driving paths in the current region
9: Cj= Cj + 1
10: end while
11: Ci= Ci + 1
12: end while
13: else
14: Ci = i
15:: if j > Ci then
16: Output the sequence of vehicle driving paths in the current region
17:: else
18: Cj= Ci + 1
19: while Cj < regions + 1 do
20: Insert the new Job into the path sequence sr, output the sequence of vehicle
driving paths in the current region
21: Cj = Cj + 1
22: end while
23: end if
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Table 3. Algorithm parameters (best_route).

Parameter Description

S_JOBS The current complete Job sequence.

turns The Job number of the current path to be inserted in the Job sequence.

sr The optimal path after the las Job insertion is completed.

Li The position of the starting region of the previous Job in the current optimal path sr, indicated by a numeric sequence.

Lj The position of the destination region of the previous Job in the current optimal path sr, indicated by a numeric sequence.

i The position in sr of the starting region of the Job whose path is to be inserted (before the start of the algorithm), indicated by a
numerical number. If there is no starting region of the Job in sr, i is 0.

j The position in sr of the destination region of the current Job to be inserted into the path (before the start of the algorithm),
expressed as a numerical number. If there is no destination region of the Job in sr, j is 0.

regions Total number of regions of the current optimal path sr.

Ci The location of the start region of the Job where the current path will be inserted (during the algorithm).

Cj The location of the destination region of the current Job that will be inserted into the path (during the algorithm).

4.3.6. Load Capacity Constraint Algorithm

After the genetic mutation process of the two-stage genetic algorithm, we verify
whether the offspring of the second-stage genetic algorithm is a feasible solution. One of the
constraints is to judge whether each refrigerated truck is overloaded during transportation,
but the cold chain logistics process designed in this paper happens between the three roles
of the supplier, distribution center, and seller, which means that there are both unloading
and loading services during the transportation of refrigerated trucks, so the total load of
the vehicle may exceed the maximum load.

In view of the complex transportation process in this paper, we introduce the concept
of “road section” in the load constraint algorithm. For example, if the vehicle travel path
is 001-003-002, it is first decomposed into road sections 001-002 and 002-003, and then the
refrigerated truck travels from area 001. Whether there is overloading when traveling
to area 003, and whether there is overloading when driving from area 003 to area 002, if
each road section meets the load constraint, the whole vehicle transportation process is
reasonable and feasible. Apply the above operations to the load constraint algorithm, the
specific operations of which are as follows:

(1) According to the offspring Job sequence with the smallest fitness value in the candidate
set of the genetic algorithm in the second stage, call the optimal path generation
algorithm (best_route) to obtain the optimal route.

(2) Decompose the optimal path into an array of “segments”.
(3) Construct a road section cargo loading plan. Proceed as follows:

Step 1: Traverse the “road section” array, and select each road section in turn;
Step 2: Match the start region, destination region, and road segment start region and
destination region of each job in the Job sequence required by the customer order. If
the Job start region is the same as the road segment start region, insert this Job into
the road segment. The vehicle’s current add the cargo weight of this Job to the load
capacity. If the destination region of the Job is the same as the starting area of the road
segment, delete this Job from the customer order demand of this road segment.
Step 3: According to the increase or decrease of the vehicle load in Step 2, the vehicle
load of each section is calculated and compared with the maximum load of the vehicle.

An example to illustrate the execution process of the load constraint algorithm: As-
sume that the maximum load capacity of the vehicle is 3 t, the order requirement of sellers
includes Job1 = (region 001-region 003, cargo weight 1 t), and Job2 = (region 001-region 005,
cargo weight 1 t). The order requirement of suppliers is Job3 = (region 003-region 002, cargo
weight 3 t), and the optimal path is 001-003-002-005. Therefore, the road section loading
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scheme is constructed, as shown in Table 4, in which L means Load loading, and U means
Unload unloading.

Table 4. Loading plan of the road section.

Road Section Customer Order Requirements Vehicle Load (t)

001-003 Job1 (L), Job2 (L) 1 + 1 = 2
003-002 Job1 (U), Job3 (L) 2 − 1 + 3 = 4
002-005 Job1 (U) 4 − 3 = 1

It can be seen from the road section cargo loading scheme that the vehicle load
in section “003-002” is greater than the maximum vehicle load, and overload occurs.
Therefore, the current cargo loading scheme does not meet the vehicle load constraints,
which is unreasonable. Faced with such a situation, there are two ways to deal with it.
The first is that if the customer’s order requirement, Job1 does not allow the splitting of
the requirement, then this solution is unfeasible; the second way is that if the customer’s
order requirement Job3 allows for the splitting of the requirement, then split Job3 into two
parts; one part is the maximum load capacity of the vehicle minus the used load capacity,
and the other part is 3 − 2 = 1 t, and this part is used as the new supplier order demand
Job4 (region 003-region 002, cargo Weight 1 t) is inserted into the loading scheme of other
vehicles. The loading scheme of the road section after the current vehicle is updated is
shown in Table 5.

Table 5. Updated plan of the road section.

Road Section Customer Order Requirements Vehicle Load (t)

001-003 Job1(L), Job2(L) 1 + 1 = 2
003-002 Job1(U), Job3(L) 2 − 1 + 2 = 3
002-005 Job1(U) 3 − 3 = 0

In summary, the load constraint algorithm designed in this paper can not only judge
whether the offspring of the two-stage genetic algorithm is a feasible solution, but can also
provide a direct basis for the demand splitting of the load scheme. The detailed vehicle
pre-allocation plan is shown in Table 6, and M in the table represents the moving process of
the vehicle.

Table 6. Vehicle pre-allocation plan.

Vehicle
Code

Service Order
Number

Customer Order
Requirements

Service
Type

Starting
Location Destination Order

Quantity Vehicle Load (t)

1 10 Job1 L 001 003 1 t 1
1 20 Job1 L 001 005 1 t 1 + 1 = 2
1 30 M 001 003 2
1 40 Job1 U 001 003 1 t 2 − 1 = 1
1 50 Job1 L 003 002 2 t 1 + 2 = 3
1 60 M 003 002 3
1 70 Job1 U 003 002 2 t 3 − 2 = 1
1 80 M 002 005 1
1 90 Job1 U 001 005 1 t 1 − 1 = 0

4.3.7. Time Window Constraint Algorithm

The time window constraint algorithm further processes the result of the load con-
straint algorithm; the vehicle pre-allocation plan judges whether the current plan meets
the customer’s time window requirements and generates the final vehicle loading plan.
According to the starting region, the destination area, and the operation type of the vehi-
cle, we divide the customer order types into four categories: loading in the same region,
unloading in the same region, loading in the same region, and unloading in the same
region, using four different time windows constraint algorithms further processes the
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vehicle provisioning plan. Algorithms 2 and 3 represent the basic logic implementation of
loading and unloading goods in the same region. The algorithm process of cross-region
loading is the same as that of same-region loading. The difference is that the calculation
method of vehicle arrival time is different. Lines 4, 9, and 18 of Algorithm 2 are changed to
END_TIME = begin_t_time + cross-region vehicle travel time. The algorithm process of
inter-area unloading is the same as that of unloading in the same region. The difference
is that the calculation method of vehicle arrival time is different. Change the fifth line
of Algorithm 2 to END_TIME = begin_t_time + cross-region vehicle travel time. The
algorithm parameters are shown in Table 7.

Algorithm 2: Time Window Constraint Algorithm (The loading and unloading plan is “loading in the
same region”)

1: if The current task is the first task (task number = 1) then
2: if Currently in the first segment then
3: BEGIN_TIME = begin_t_time
4: END_TIME = begin_t_time + 10 min
5: else Currently not the first segment
6: BEGIN_TIME = Vehicle end time of the previous section
7: Get the previous segment LAST_AREA
8: Calculate travel_timeaccording to the distance between LAST_AREA

and BEGIN_AREA
9: END_TIME= begin_t_time+travel_time
10: end if
11: TASK_TYPE = M
12: Add tmp_c_transport_task
13: task number + 1
14: end if
15: if LAST_AREA! = BEGIN_AREA then
16: TASK_TYPE = M
17: BEGIN_TIME = Vehicle end time of the previous section
18: END_TIME= BEGIN_TIME + 10 min
19: Add tmp_c_transport_task
20: task number + 1
21: end if
22: if the current time is more than 24 h old then
23: return − 1(The time window does not match, insert failed)
24: end if
25: TASK_TYPE = L
26: if END_TIME < early_time then
27: Current task loading start time = early_time
28: Current task loading end time = early_time + 10 min
29: Add tmp_c_transport_task
30: else
31: Current task loading start time = END_TIME
32: Current task loading end time = END_TIME + 10 min
33: Add tmp_c_transport_task
34: end if

Table 7. Time window constraint algorithm parameters.

Parameter Description Parameter Description

ROUTE_NO Route number. TASK_TYPE Job type.
M Vehicle movement. L Loading.
U Unload. S_ROUTE Route.

PLATE_NO License plate number. s_l_address The current departure place of the vehicle.
begin_t_time Vehicle departure time. tmp_c_transport_task Vehicle loading schedule.

To sum up, the time window constraint algorithm designed in this paper can not only
judge whether the offspring of the two-stage genetic algorithm is a feasible solution, but
also generate a complete vehicle loading scheme during the algorithm execution process.
This is assuming that Job1 includes Task1 and Task2, Job2 includes Task1, and Job3 includes
Task1, Task5, and Task6. The completed vehicle loading scheme is shown in Table 8.
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Algorithm 3: Time Window Constraint Algorithm (The loading and unloading plan is “Unload in
the same region”)

1: task number + 1
2: if LAST_AREA! = BEGIN_AREA then
3: TASK_TYPE = M
4: BEGIN_TIME = Vehicle end time of the previous section
5: END_TIME = BEGIN_TIME + 10 min
6: Add tmp_c_transport_task
7: task number + 1
8: end if
9: if the current time is more than 24 h old then
10: return − 1 (The time window does not match, insert failed)
11: end if
12: TASK_TYPE = U
13: if END_TIME < early_time then
14: Current task unload start time = early_time
15: Current task unload end time = early_time + 10 min
16: Add tmp_c_transport_task
17: else
18: Current task unload start time = END_TIME
19: Current task unload end time = END_TIME + 10 min
20: Add tmp_c_transport_task
21: end if

Table 8. Vehicle loading scheme.

Service
Order

Number

Customer
Order

Requirements

Service
Type

Starting
Region

Starting
Location

Target
Region Destination Order

Quantity Vehicle Load (t)

10 task1 L 001 01 003 07 0.5 t 0.5
20 task2 L 001 01 003 08 0.5 t 1
30 M 001 01 001 02 1
40 task3 L 001 02 005 09 0.5 t 1 + 1 = 2
50 M 001 02 003 07 2
60 task1 U 001 01 003 07 0.5 t 2 − 0.5 = 1.5
70 M 003 07 003 08 1.5
80 task2 U 001 01 003 08 0.5 t 1.5 − 0.5 = 1
90 M 003 08 003 05
100 task4 L 003 05 002 04 0.5 t 1 + 1 = 2
110 task5 L 003 05 002 04 0.5 t 2 + 0.5 = 2.5
120 task6 L 003 05 002 03 0.5 t 2.5 + 0.5 = 3
130 M 003 05 002 03 3
140 task6 U 003 05 002 03 0.5 t 3 − 0.5 = 2.5
150 M 002 03 002 04 2.5
160 task4 U 003 05 002 04 0.5 t 2.5 − 1 = 1.5
170 task5 U 003 05 002 04 0.5 t 1.5 − 0.5 = 1
180 M 002 04 005 09 1
190 task3 U 001 02 005 09 0.5 t 1 − 1 = 0

4.3.8. Algorithm Performance Improvement

The time complexity and space complexity of an algorithm can reflect the pros and
cons of the algorithm to a large extent. Cold chain logistics companies need to carry
out daily transportation planning, which has extremely high requirements for algorithm
efficiency. In addition to the “customer regionalization” method mentioned above, this
paper also adopts the method of “trading space for time” to reduce the time complexity
and improve algorithm efficiency.

(1) Introduce a “taboo list”. Use the tabu table to save the recent crossover or mutation
operation so that it cannot be used as the next search direction of genetic optimization,
and avoid the optimization process from falling into a loop.
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(2) Utilize the storage and memory function of the database. In the first stage of the
genetic algorithm, compare the task sequences of the current population with the
task sequences of individuals in the database table. If there is a matching sequence,
assign the fitness value of the individual in the database table to the individual in the
current population directly. In the second stage of the genetic algorithm, compare
the job sequences of the current population with the job sequences of individuals
in the database table. If there is a matching sequence, assign the optimal route
and fitness value of the individual in the database table to the individual in the
current population. Therefore, this approach takes up more physical space but avoids
redundant calculations, saving computation time.

(3) Apply Python to realize parallel computing. Incorporating parallel computing mod-
ules and genetic optimization at the same time increases the space complexity of the
algorithm, but greatly reduces the time complexity and speeds up the solution.

5. Application Case Analysis

In order to test the validity of the model and algorithm, this paper uses data from
a cold chain logistics company in Shanghai. The company has two distribution centers
(Pudong cold storage and Jing’an cold storage), and provides “pick-up” service for manu-
facturers and “delivery” service for sellers at the same time, and currently needs to process
32 delivery orders and 18 pick-up orders from 18 customer points (different orders cannot
be mixed according to the type of goods). The orders are not mixed according to the
different types of goods The orders of each customer point are shown in Table 9 below; the
data in the table are excerpted data, and each piece of data contains information about the
starting point, end point, customer time window, goods, the number of goods, whether the
goods can be mixed, and whether the demand can be split.

Table 9. Information about orders from sellers and manufacturers (excerpts).

Starting Point End Client Point
Time Window Goods Number of

Pieces Demand Can It Be
Mixed

Can It Be
Split

Pudong Cold
Storage Xinduhui Food Street 05:30–08:30 Fish 15 600 No Yes

Jing’an Cold
Storage

Golden Bridge
Shopping Center 17:00–20:00 Banana 12 600 No Yes

Xinduhui Food Street Pudong Cold Storage 05:30–20:00 Soy Sauce 20 200 Yes Yes
Golden Bridge

Shopping Center Jing’an Cold Storage 05:00–20:00 Banana 30 300 No Yes

Metro Pudong Cold Storage 06:00–08:00 Shrimp 1 50 No No
Hang Lung Plaza 889 Square 05:00–20:00 Pitaya 20 200 No Yes

The grid distribution map and area division of customer points and distribution center
geographic locations are shown in Figure 8 below. The rules of area division are shown in
Figure 3, and Figure 8 indicates that all customer points are divided into six regions. It is
known that the fixed cost Ck of the vehicle is CNY 500, the maximum loading capacity Q is
2t, the inter-regional distance data is consistent with the actual road distance, the average
vehicle speed v is 30 km/h, the unit fuel consumption cost λ f is 2 yuan/L, and the average
fuel consumption rate per unit distance ft is 1.5 L/km, the unit carbon emission cost λc is
CNY 0.1/kg, the carbon emission rate ct is 3.91 kg/km, the refrigeration cost a1 during the
transportation is 2 yuan/h, and the refrigeration cost a2 during loading and unloading is
CNY 4/h, the waiting cost of the early unit is CNY 5/h, the out-of-stock cost of the late
unit is CNY 10/h, and the compensation cost for one split is CNY 200.

The multi-objective optimization model is solved using the hybrid heuristic trans-
portation scheme solution algorithm studied in this paper to obtain the optimal path and
minimum distribution cost for each vehicle, as shown in Table 10 below. The experimental
results include the service order of customers as well as the driving path of the reefer trucks.
The driving path of one of the reefer trucks is displayed on the map, and the results are
shown in Figure 9.
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Table 10. Algorithm solution results.

Vehicle Customer Service Sequence Mileage (km) Vehicle
Utilization

Total Delivery
Cost (Yuan)

1 02-14-15-01-11-02 87.238

82.5% 13,116.776

2 02-17-5-01-7-8-01 76.194
3 02-6-8-13-4-01 88.298
4 02-14-4-5-12-02 81.458
5 02-3-01-3-01-9-02-7-18-01-2-01-8-02 86.391
6 01-1-01-16-15-01-13-02 102.431
7 01-1-01-5-6-18-02-16-01-9-02 91.7
8 02-10-01-12-2-17-14-02 73.042
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Using the hybrid heuristic transportation scheme-solving algorithm studied in this
paper to solve the multi-objective optimization model, the optimal path, minimum cost
(Table 10), and loading scheme of the whole transportation process (Table 9) for each vehicle
are obtained, and it is displayed on the map (as shown in Figure 9 below). It can be seen
that the transportation process after algorithm optimization makes the total distribution
cost controlled at about CNY 7000 (including the vehicle fixed cost of CNY 4000, fuel
consumption cost of CNY 2060, carbon emission cost of CNY 268, refrigeration cost of
CNY 324, and a time penalty cost of CNY 264. The split cost is CNY 200), and the vehicle
utilization rate reaches 82.5%. Figure 10 shows the number of iterations of the algorithm in
the current case. It can be seen that the optimal solution can be reached about 50 times.
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Table 11 shows the loading scheme of the whole transportation process (excerpted
data). The loading scheme includes the license plate number of the refrigerated truck, the
wave of the transported cargo, the task type, the task start time, the task end time, the task
start point, the task endpoint, and the service volume of each stage. The results can provide
cold chain logistics companies with exact transport solutions.

Table 11. Loading scheme for the whole transportation process (excerpt).

Number
Plate Stage Sequence

Code
Task
Type Task Start Time Task End Time Starting Point End Demand

1 1 20 L 21 August 2022
0:35

21 August 2022
0:45 Jing’an Cold Storage Shangjia Cente 600

1 1 30 L 21 August 2022
0:45

21 August 2022
0:55 Jing’an Cold Storage Friendship Mall 300

1 1 40 L 21 August 2022
0:55

21 August 2022
1:05 Jing’an Cold Storage Friendship Mall 300

1 1 50 M 21 August 2022
1:05

21 August 2022
1:20 Jing’an Cold Storage Shangjia Cente

1 1 60 U 21 August 2022
8:00

21 August 2022
8:10 Jing’an Cold Storage Shangjia Cente 600

1 1 70 M 21 August 2022
8:10

21 August 2022
8:25 Shangjia Center Friendship Mall

1 1 80 U 21 August 2022
8:25

21 August 2022
8:35 Jing’an Cold Storage Friendship Mall 300
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Figure 10 shows the number of iterations of the algorithm for the current case. When
we solve the problem using two-stage genetics, the optimal solution is reached in about
50 iterations, which is a significant effect of the algorithm.

In addition, by comparing the time complexity, optimization process, and the results
of the algorithm with and without the “region” concept in both parallel and non-parallel
computing cases, as shown in Table 12, it is concluded that the objective value obtained
without the “region” concept is slightly smaller than that obtained with the “region”
concept, but the resulting time cost is unacceptable for the actual operation of the enterprise,
so the algorithm with the “region” concept is superior in the case of parallel computing.
Therefore, the algorithm with the concept of “region” is more superior in the case of parallel
computing, and the superiority of “region” will be more obvious as the volume of data
becomes larger.

Table 12. Comparison of algorithms in different situations.

Not Divided into
Regions

(No Parallelism)

Divided into Regions
(No Parallelism)

Not Divided into
Regions (Parallelism)

Divided into Regions
(Parallelism)

Algorithm Time Complexity O(n!) O
(
m! + m ∗ n

m !
)

O
(

n!
2

)
O
((

m! + m ∗ n
m !
)
/2
)

Algorithm execution time 123.3 min 12.3 min 68.1 min 5.4 min
Target optimal solution 12,909.5 13,220.7 12,897 13,116.776

n: the total number of suppliers and vendors; m: the assumption that all customers are
divided into m regions equally; according to the real situation, the aggregation of business
districts makes the geographic location of customers generally more dense, so n >> m;
currently using 2 CPUs for parallel computation of the model. In the actual operation of
the algorithm, because the vehicle travel time of customer spacing in the same area is less
than 10 min, the cost gain brought by vehicle path planning for customers in the same area
is very small, so it can be ordered according to the customer time window, and the time
complexity O

(
m ∗ n

m !
)

is negligible.
As can be seen from Table 10, after the algorithm optimization of the total transporta-

tion process, the total distribution cost is about CNY 13,000 (including the vehicle fixed
cost of CNY 4000, fuel costs of CNY 2339, the carbon emission cost of CNY 305, the cooling
cost of CNY 513, the time penalty cost of CNY 564, and the splitting compensation cost of
CNY 5000). The reason for more splitting compensation costs is that the same customer has
to split due to the different cargo types of orders submitted. The total vehicle utilization
rate reaches 82.5%. The total distribution cost and vehicle utilization rate before and after
algorithm optimization are shown in Table 13.

Table 13. Comparison of total cost and vehicle utilization before and after optimization.

Total Distribution Cost (CNY) Vehicle Utilization

Not optimized 20,000 50%
After optimization 13,000 82.5%

Compared with the actual total cost of distribution of nearly CNY 20,000, the solution
result saves nearly 35%; moreover, as the number of customer orders increases, the solution
advantage of the algorithm designed in this paper will be more obvious.

6. Conclusions and Prospects
6.1. Conclusions

Based on considering the impact of manufacturers joining the overall logistics dis-
tribution, we propose a two-stage partitioning strategy based on multiple distribution
centers and demand splitting. The strategy combines vehicle load capacity, mixed cargo
restrictions, and service time window constraints, and provides services in multiple waves.
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We fully consider factors such as vehicle travel distance, waiting time, and vehicle occu-
pancy rate, and construct a mathematical model with the sum of fixed vehicle cost, green
cost, refrigeration cost, time penalty cost, and split compensation cost as the optimization
objective. To deal with the complexity of the model and the uniqueness of the solution, we
designed a two-stage hybrid heuristic path solution algorithm combining tabu search and
a genetic algorithm. We obtained more practical solutions and presented the path planning
results as a web map in a more intuitive way. Finally, we conducted a verification analysis
of the model’s feasibility and the algorithm’s effectiveness through an actual case study.
The experimental results show that the mixed transportation scheme optimization model
proposed in this paper can sufficiently solve the cold chain logistics transportation problem
under complex conditions. This model can effectively improve vehicle utilization, reduce
driving paths, save transportation costs and inventory costs, and improve customer satis-
faction. The two-stage hybrid heuristic algorithm solution algorithm proposed in this paper
can better solve the problem model, further improve the solution speed, result in a more
reasonable optimal solution, and the algorithm performance has been effectively verified.

6.2. Prospects

For the cold chain logistics vehicle loading scheme and route optimization problem
under the influence of complex demand, this paper has already achieved certain results.
However, due to the special characteristics of cold chain logistics, the prolongation of time
means that the cost of goods loss is continuously generated, and the increase of the cost of
goods loss seriously affects the customer satisfaction, which in turn concerns the survival
of the third party logistics enterprises.

(1) The cold chain products are characterized by continuous cargo loss costs, but since
there are many types of cold chain products considered in this paper, and the cal-
culation process is too complicated because of the different cargo loss coefficients
of different products, the cargo loss costs are not considered. In the future research,
complex cargo loss coefficients can be introduced into the mathematical model, which
can further improve the optimization accuracy.

(2) The development of technology and the improvement of the navigation software is
constantly optimized, the planning of vehicle travel distance and time is increasingly
accurate, and the planning process integrates various different road conditions, espe-
cially traffic congestion. In future research, the actual planned path length and time of
the navigation software can be quantified and the traffic congestion coefficient can be
designed. The daily traffic congestion coefficients of different customer-to-customer
road sections are then recorded, and the traffic congestion coefficients for the next
transportation cycle are predicted using a time series and neural networks. Finally,
the traffic congestion coefficient is added to the mathematical model for more accurate
transportation scheme planning.
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