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Abstract: Using a multilevel modelling approach, this study investigates the impact of urban in-
equalities on changes to rail ridership across Chicago’s “L” stations during the pandemic, the mass
vaccination rollout, and the full reopening of the city. Initially believed to have an equal impact,
COVID-19 disproportionally impacted the ability of lower socioeconomic status (SES) neighbour-
hoods’ to adhere to non-pharmaceutical interventions: working-from-home and social distancing. We
find that “L” stations in predominately Black or African American and Hispanic or Latino neighbour-
hoods with high industrial land-use recorded the smallest behavioural change. The maintenance of
higher public transport use at these stations is likely to have exacerbated existing health inequalities,
worsening disparities in users’ risk of exposure, infection rates, and mortality rates. This study also
finds that the vaccination rollout and city reopening did not significantly increase the number of users
at stations in higher vaccinated, higher private vehicle ownership neighbourhoods, even after a year
into the pandemic. A better understanding of the spatial and socioeconomic determinants of changes
in ridership behaviour is crucial for policymakers in adjusting service routes and frequencies that
will sustain reliant neighbourhoods’ access to essential services, and to encourage trips at stations
which are the most impacted to revert the trend of declining public transport use.

Keywords: urban inequalities; multilevel modelling; spatial patterns; COVID-19; mobility; health
inequalities

1. Introduction

Public transport is one of the most important city services, connecting citizens to
essential services including their workplaces, education, and healthcare. Already facing
declining ridership levels in several major cities since the mid-2010s in the United States
(U.S.) [1,2], public transport experienced the greatest direct impact of all modes of transport
during the COVID-19 pandemic [3]. This decline in use, particularly during COVID-19, has
not been homogenous across social groups. Studies have revealed that lower socioeconomic
status (SES) neighbourhoods and minority groups experienced fewer behavioural change
in ridership [2,4] due to a greater reliance on the mode of transport and due to the necessity
of trips made. Journeys made on public transport during the pandemic were largely driven
by necessity and made by “essential workers”, who were required to work in-person and
less able to travel by private modes of transport due to reduced car ownership rates [5–8].

Disparities in transit ridership between social groups subsequently exacerbated exist-
ing health inequalities. Some of the most vulnerable groups who were originally deemed
“essential” were increasingly exposed to COVID-19 by being less able to adhere to non-
pharmaceutical interventions (NPIs) such as working from home (WFH) and performing
social distancing [9]. These privileges, according to Nanda [9], were reserved only for
the well-off. Whilst changes in public transport use across different social groups were
measured during the early stages of the pandemic, it is unclear whether, how, and if these
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changes will persist beyond the pandemic as changing travel and working behaviours
become more permanent features in the urban landscape [4].

This study applies a multi-level modelling approach to explore the underlying mecha-
nisms of changes in ridership behaviour across stations in Chicago, particularly following
the full reopening and mass vaccination rollout in 2021. A two-level multilevel modelling
approach is applied, given the nature of the data, where repeated measurements are struc-
tured into groups (transit stations), and changes in ridership are expected to vary between
groups. Multilevel modelling is applied, rather than GIS analysis, as this study hopes to
discover not only where disparities in ridership exist, but to explore and to measure the
variation in ridership caused by station-level characteristics, the extent to which disparities
in ridership changes occur between transit stations in Chicago, and how these change
over time.

The main contribution of this study is how it extends the work of Hu and Chen [2] and
Osorio et al. [8], who quantified the influence of sociodemographic and station characteris-
tics such as race and land-use, respectively, on public transport ridership in Chicago during
the early stage of COVID-19. This study extends the current research in two domains:
firstly, by adding to the understanding of influencing factors on ridership by including
additional variables such as access to private vehicles and vaccination data, which is now
possible due to data availability. Secondly, we extend the study period, examining the
persistence in differences in transit ridership between socio-economic groups beyond the
vaccination rollout and the reopening of Chicago.

This will help to examine the differences in transit ridership at different stages of
Chicago’s recovery and the extent to which stations’ transit ridership levels have returned
to pre-pandemic levels. The expected outcome of this period is unclear: on the one hand,
we expect ridership to recover in commercial and institutional areas as non-essential retail
and schools reopen. However, we also suspect that ridership in higher SES neighbourhoods
may fail to recover as this population becomes more adapted to remote and hybrid working
and more able to access private modes of transport. A better understanding of the changes
in public transit across socio-economic groups is key to ensure appropriate transit provision
and functioning of the urban transport network.

This study measures the influences of race, land-use, and other contextual factors
including the ability to work from home and vaccination status on changes in Chicago’s
elevated railway, coined “L” train, ridership levels at 139 stations between February and
December 2021. We focus on “L” train ridership behaviour, as it is the fourth-largest
rapid-transit system in the U.S. and spans across many of Chicago’s different types of
neighbourhoods [2,10]. As the service frequencies and routes did not change during
COVID-19, this study can effectively measure the impact of “L” stations’ socioeconomic
and land-use characteristics on changes in ridership behaviour.

The rest of the paper is structured as follows: Section 2 will review the literature on
the influence of urban inequalities and COVID-19 on mobility behaviour, and the history of
residential segregation and “L” train use in Chicago. Section 3 will introduce, explain, and
justify the modelling approach, covariates, and data used in this study. Sections 4 and 5 will
then describe, interpret, and conclude the results and relate the findings to the literature.

2. Literature Review
2.1. Urban Inequalities, COVID-19, and Mobility Behaviour

Urban inequalities, manifested in residential segregation, are the unequal access
to resources and capabilities [11,12]. It determines certain social groups’ power over
space and time [13], and ability and ambition to expand and travel for work, healthcare,
education, and recreational purposes [14]. Following a new economy of information
products rather than manufactured goods in the 1990s, urban inequalities have increased,
and urban centres have become increasingly exclusionary as this new economy is suited
more towards the highly educated, high-paid white collar worker [12]. Consequently, lower
SES neighbourhoods are spatially suppressed and maintain or increase the concentration



Sustainability 2023, 15, 8821 3 of 18

of poverty, unemployment, and poor healthcare. Residential segregation also creates an
imbalance in the power and ability of individuals to travel over space and time which
closely follows social and racial lines [12,13,15].

Lower SES, inner-city neighbourhoods have been disadvantaged in their ability to
travel over space and time since the 1950s and the introduction of the federal subsidies for
highway construction [14]. The construction of highways and cheap suburban housing
subsequently encouraged car-dependent cities in the U.S., which predominately favoured
White, suburban neighbourhoods and connected them to downtown city areas [10,13].
The historical favouring of certain groups continues following 2010 and COVID-19, as
the use of private vehicles has increased [1,13,16]. The increasing use of private vehicles
typically benefits more affluent neighbourhoods, as lower SES neighbourhoods have far
fewer car ownership levels [14]. As discussed in Credit et al. [17], private vehicle ownership
is found to be correlated with job and economic opportunities, and is one of the biggest
non-financial barriers to healthcare. Consequently, lower SES neighbourhoods rely more
on public transport, which is described as the mode of transport for the urban poor [15].
This increased reliance on shared modes of transport is a key influencing factor in health
inequalities during the COVID-19 pandemic.

In the early stages of the pandemic, COVID-19 was seen to be a ‘great equalizer’
and its transmission and impact would not discriminate [18,19]. However, it is now
clear and widely reported in the literature that COVID-19 would exacerbate inequalities
and economic and health disparities. Racial and ethnic minorities were disproportionally
impacted by COVID-19, with much a higher risk of infection and mortality [18]. Importantly,
COVID-19 did not create new health and economic disparities; rather, it accentuated
existing underlying weaknesses [6].

In early attempts to suppress the spread of the virus in 2020, two NPIs, social distancing
and WFH, uncovered groups of different SES’ abilities to adhere and to limit the spread
of COVID-19. Lower SES neighbourhoods were more likely to work in-person and have
lower rates of car ownership [7,8,14]. Therefore, despite an initial modal shift towards
private modes of transport and active travel, lower SES neighbourhoods were less able
to do so [3,20,21]. Consequently, trips made on public transport during the pandemic
were largely driven by necessity and the use of public transport in the early stages of the
pandemic resulted in significantly longer travel time and increased risk of exposure to the
virus [7,15,18].

The literature on COVID-19 grew faster than any previous epidemic or pandemic,
and there is an abundance of studies on the impact on mobility behaviour, where re-
searchers originally attempted to use mobility data to monitor and predict the spread
of the virus and the public’s compliance to the introduction of NPIs such as travel and
social restrictions [22–24]. Early research would focus on measuring the overall decrease in
travel with relatively fewer studies specifically researching decreases in travel with regards
to socioeconomic factors and urban inequalities [25]. Soon after, it was realised that the
decrease in mobility was not homogeneous between social groups and that unpacking
differences in changes in mobility behaviour is important as it uncovers the inaccuracy of
the initial “great leveller” rhetoric and how urban inequalities determined various groups’
vulnerability and exposure to the virus [26].

By now, studies have explored the underlying mechanisms of disparities in public
transport use in cities, particularly during the early stage of the pandemic [2,4,6–8,25,27,28].
Studies consistently report that the smallest changes in public transport ridership are in
lower SES neighbourhoods and for minority groups, and that the greatest change during the
early stages is in areas with a higher proportion of commercial land-use, and higher-income,
White individuals [2].

Largely due to data availability, fewer studies have explored the disparities in ridership
during the early stages of recovery from COVID-19 and whether these disparities continued
beyond the reopening of urban centres and vaccination schemes. It is important to explore
how Chicagoans travel to work, to school, and to shop beyond the first year of the pandemic
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to substantiate the expectation that transit ridership would largely return once the city
was fully reopened [8]. This study will contribute to this body of literature, particularly
to the two studies in Chicago who use Bayesian structural time series models to infer the
impact of COVID-19 on ridership [2,8]. Our study extends the timeline of the research on
the subject and investigates if the reopening of Chicago and the vaccination rollout enticed
a return to public transport use in more commercial, affluent, White neighbourhoods.

A better understanding of the underlying mechanisms of how the pandemic and
post-pandemic impacts certain population groups’ mobility behaviour [26] is particularly
important, as it would help to improve future disaster preparedness plans and targeted
public transport service times and routes to ensure that the most vulnerable are protected
from becoming isolated and immobile [8,26]. Historically, due to a lack of evidence, cuts
to public transport services, before and during COVID-19, were made arbitrarily [1,2];
therefore, a better understanding of the spatio-temporal use of public transport systems
would allow transport policymakers to more adequately adjust services to reduce the
impact on lower SES neighbourhoods.

2.2. Residential Segregation and Chicago’s L-Train

Residential segregation is the spatial separation of social groups [29]. The partition-
ing of social groups into defined neighbourhoods exacerbates spatial inequalities where
economic, racial, and social inequalities are spatially suppressed [10]. In the 1960s in the
U.S., segregation and discrimination were supposedly abolished following the Civil Rights
Movement. However, the influence of social and racial segregation on public transport
remains today [10,13].

Residential segregation influences the spatial and temporal use of public transport,
where certain racial and ethnic groups’ public transport use is defined by the day of the
week, time of day, and the place of the train [10]. This is particularly apparent in Chicago
as it is recognised as one of, if not the most, segregated city in the U.S. [10,30]. The high
degree of residential segregation in Chicago makes it possible for this study to explore
the differences in changes in public transport use across neighbourhood boundaries and
social groups.

With highly racially segregated communities in Chicago, “L” stations distinctly repre-
sent neighbourhoods’ race and class [10]. The most prominent segregation in Chicago’s
metro area and along the “L” train service route is the Black–White segregation along
the north–south red line, the busiest line in the city. Along this line, Black or African
Americans are heavily concentrated in the south and more affluent, White neighbourhoods
are concentrated in the north (Figures A1 and A2) [10,31]. Historically, segregation between
Hispanic or Latinos and White people is less; however, residential segregation is still promi-
nent, where Latino families reside in the southwest and northwest of Chicago [31]. Social
groups seldom interact or encounter another due to the high degree of segregation along
the “L” train service route [10]. The functionality of each station, particularly passengers’
time and day of travel, purpose of travel, and reliance on the mode of travel is strongly
determined by the neighbourhood characteristics and will determine how and when public
transport was used during the pandemic. This study hopes to evaluate the influences of
these station service area characteristics, residential segregation, and the subsequent in-
equalities on mobility behaviour, which has generally received less attention in the research
literature [17].

3. Materials and Methods
3.1. Modelling Approach and Unit Structure

This study adopts a two-level multilevel modelling (MLM) approach to determine
the extent of change in “L” train ridership across 139 stations over an 11-month study
period between February and December 2021. The motivations for implementing MLM
consist of causal inference, the study of variation, and for future predictions [32]. In this
study, we propose a two-level MLM to explore, quantify, and explain the variation in
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ridership between stations. Using MLM, we can explore the differences in station-level
ridership levels during the COVID-19 pandemic and how each station’s rate of change
over time varies. MLM is used when data are structured into groups and the coefficients
vary by group: the existing literature justifies the use of MLM, as it outlines heterogeneous
ridership loss during the pandemic, which is highly influenced by socio-demographic
characteristics [8].

The data for the longitudinal study consist of repeated measurements: monthly
percentage changes in ridership at each “L” station over an 11-month period. A two-
level MLM is applied, where the Level-1 units (individual monthly station observations)
are represented by i and are nested within Level-2 units (i.e., “L” stations), which are
represented by j (Figure 1).
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3.2. Model Development

Seven models, incrementally increasing in complexity, were implemented before
deciding on the Final Model. The significance of the improvement of each model was tested
using a Likelihood Ratio (LR) test (a drop in deviance greater than the critical value at the
5% level of 3.84) and only statistically significant covariates were retained in subsequent
models. The seven models comprise a mixture of models including unconditional linear
regression and variance-component models (null models), random-intercept models, and
random-coefficient models (Table 1). Model development and the covariates introduced
are discussed in more detail in Sections 3.2 and 3.3, respectively.

Table 1. Summary of models and model covariates.

Model Covariates Model

Model 1 None Unconditional Linear Regression
Model 2 None Variance-Component Model
Model 3 Time Trend Random-Intercept
Model 4 Time Trend Random-Coefficient
Model 5 Time Trend; Race and Ethnicity Random-Coefficient
Model 6 Time Trend; Race and Ethnicity; Land-Use Random-Coefficient

Model 7 Time Trend; Race and Ethnicity; Land-Use;
Housing, Health, and Economic Characteristics Random-Coefficient

Final
Model

Time Trend; Race and Ethnicity; Land-Use;
Housing, Health, and Economic Characteristics Random-Coefficient

3.2.1. Null Models

The first two models implemented, unconditional linear regression (Equation (1)) and
variance-component model (Equation (2)), include no covariates and are the simplest forms
of regression (Table 1). The intercept, the global mean of the response variable across all
stations over the entire study period, is represented by β0, and eij and uj represent the
Level-1 and Level-2 residuals, respectively. Model 2 (Equation (2)) is the simplest form of
random-intercept model and the individual station-level residuals (uj), which represent
the difference between the global mean and each station’s mean, can be extracted. These
two “null” models are implemented to decompose the total residuals and account for the
dependency in the data, which is how the percentage change in ridership is dependent
on station-level factors (uj). The extent of the dependency or clustering in the response
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variable can be measured using a variance partition coefficient (VPC). VPC measures the
proportion of the total variance that is explained by station-level factors, where a higher
VPC indicates a greater degree of clustering in the response variable and justifies the use
of MLM.

Percentage Change Ridershipij = β0 + eij (1)

Percentage Change Ridershipij = β0 + uj + eij (2)

VPCu =
∂2

u
∂2

u + ∂2
e

(3)

3.2.2. Time Trend Models

The first covariate to be introduced in Model 3 (Equation (4)) and 4 (Equation (5))
is a time trend, a sequential variable which starts at 0 and increases monotonically to
measure the effect of an additional unit of time on the response variable (Table 1). The
intercept in both models, β0, now represents the average percentage change in ridership
across all stations where the time trend equals to 0, which is the first month of the study,
February 2021. In Model 3, the time trend is introduced as a fixed effect which assumes
that the rate of change in ridership is uniform across all stations over the 11-month period.
Subsequently, Model 4 introduces the time trend as a random coefficient, where the rate of
change in ridership between stations varies.

Percentage Change Ridershipij = β0 + β1n_monthij︸ ︷︷ ︸
Fixed

+ uj + eij︸ ︷︷ ︸
Random

(4)

Percentage Change Ridershipij = β0 + β1n_monthij︸ ︷︷ ︸
Fixed

+ u0j + u1jn_monthij + eij︸ ︷︷ ︸
Random

(5)

3.2.3. Random-Coefficient Model with Covariates Models

The remaining three models are extensions of Model 4 (Equation (5)), incrementally
adding Level-2 covariates represented by X in Equation (6): Model 5 controls for race,
Model 6 controls for land-use, and Model 7 controls for all remaining explanatory variables
including the percentage of individuals that have received at least one dose of the vaccina-
tion, percentage with access to two private vehicles, percentage WFH and with access to
facilities such as desktops or laptops, and the percentage of unemployment (Table 1).

Following Model 7, a Final Model is selected by retaining all statistically significant co-
variates introduced in all previous models. The Final Model does not introduce any further
covariates and represents the statistically significant influences on spatial and temporal
changes in ridership across L stations in Chicago between February and December 2021.

Covariates such as race and land-use are included, as they have been proven to be
an influencing factor on changes in ridership in recent studies in Chicago [2,8]. The other
contextual factors are introduced to represent the different forms of urban inequalities: the
unequal access to resources, access, and capabilities [11]. Access to private vehicles reflects
social groups’ uneven access to different modes of transport, percentage WFH and access
to desktops or laptops reflects the disparities in those able to work from home, vaccination
data represents the unequal opportunity and access to health facilities, and unemployment
data reflects the unequal access to economic opportunities.

These covariates are also introduced based on recommendations from the literature:
vaccination status data are now available and will be able to explain whether the rollout
encouraged the public to return to shared modes of transport [8,16], and data on access to
private vehicles, which are not available in some case studies [25], will measure the impact
of car ownership and access to better modal choices on transit ridership. The introduction
of these covariates, along with information on those with the facilities to WFH is important
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to attempt answering the open question on whether the significant ridership drop will
continue beyond COVID-19 [8].

Percentage Change Ridershipij = β0 + β1n_monthij + βnXj︸ ︷︷ ︸
Fixed

+ u0j + u1jn_monthij + eij︸ ︷︷ ︸
Random

(6)

3.3. Data, Study Location, and Study Period
3.3.1. Response Variable

The response variable in this study is calculated using data obtained from the Chicago
Data Portal. The data consist of monthly “L” station entries for over 140 “L” stations across
Chicago, beginning in 2001 [33]. In this study, 139 stations were used and the percentage
change in ridership for a given month is calculated from a five-year, pre-COVID-19 baseline
for that respective month. The percentage change in train ridership is studied over an
11-month period from February to December 2021. This period encompasses key events in
Chicago’s recovery programme which are expected to influence public transport ridership,
such as the vaccination rollout which started in April 2021 and the full reopening of the
city on 11 June [34,35].

Chicago was selected for the study as the data which were made openly available
traverse many of Chicago’s neighbourhoods and normal service coverage and frequency
were maintained throughout the pandemic, ensuring that changes in ridership were not
influenced by service changes [8]. We highlight that our study focuses on train ridership;
therefore, it does not capture changes in other modes of transport [15].

3.3.2. Supplementary Data and Station Service Areas

The covariates used to capture “L” station characteristics are all openly available and
obtained from the American Community Survey (ACS), the Chicago Metropolitan Agency
for Planning (CMAP), and the Illinois Department of Public Health (IDPH). These provide
information on contextual factors such as race and ethnicity, land-use, and vaccination
status in Chicago, respectively.

Demographic, economic, and housing characteristics from the ACS’ 2020 5-year es-
timates are used to explain changes in train ridership and were obtained, determined by
availability, at the census tract level or the zip-code level. At the census tract level, this
study uses datasets B03002 and S2801 to measure demographic and housing characteristics
with estimates of race and access to computers and internet subscriptions [36,37]. These
datasets are used to calculate the proportion of each race or ethnicity and the proportion
with access to desktops or laptops in each station service area. At the zip-code level, dataset
DP03 is used to capture economic characteristics, including the percentage of those WFH
and those unemployed [38].

Chicago’s land-use data are obtained from CMAP’s 2015 land-use inventory, which
is openly available [39]. At the time of the study, this inventory was the most up to date
information on parcel-level, land-use data, categorizing parcels into nearly 60 categories.
In this study, the individual categories were aggregated, according to CMAP metadata,
into nine main domains: residential, commercial, institutional, industrial, transportation,
agriculture, open-space, vacant, and ‘other’ (Figure A3).

Vaccination status data published by IDPH are updated weekly and report the per-
centage who have received one dose for each zip code in Illinois. This study was unable
to obtain historical vaccination status data for the study period; therefore, the data used
in this study include the vaccination status for each zip code in Illinois, updated as of
19 October 2022 [40].

For each “L” station, the average value for each factor within an 800 m walking-
distance service area was used as a covariate in our models. The service area is created
from a road-network buffer, rather than a circular buffer which is used in most existing
studies (Figure A3). The road-network buffer more accurately captures each stations’
service area [41] and is defined as 800 m, as it is typically used as the upper limit of where
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most users will travel to access rail stations by foot [42]. Due to the simplicity of buffers,
they do induce bias where the influence of neighbourhoods beyond the 800 m buffer is
not considered [41]. This could influence the interpretation of the results, particularly
with the segregated nature of Chicago’s neighbourhoods, as mainly African American
neighbourhoods live near rail stations [10].

4. Results
4.1. Null Models and Time Trend

Models 1 and 2 are the simplest forms of regression models, modelling the percentage
change in ridership throughout the study period across all 139 stations, without covariates
(Table 2). Both models show that the average percentage change in “L” train ridership
over the study period across all stations, relative to a five-year baseline, was 64% below
pre-pandemic levels.

Table 2. Model results for both ‘null’ and time trend models.

Model 1 Model 2 Model 3 Model 4

Est. SE Est. SE Est. SE Est. SE
Fixed Effects:

Intercept −64.12 *** 0.28 −64.12 *** 0.61 −75.49 *** 0.63 −75.49 *** 0.72
n_month - - - - 2.27 *** 0.03 2.27 *** 0.07

Est. Est. Est. Est.
Random Effects:

Station Level:
Between-Station Variance - 44.59 49.76 68.97

Intercept-Slope Covariance - - - −3.30
N-month Variance - - - 0.57

Observational Level:
Residual Variance 119.37 74.70 17.85 11.53

Deviance 11,650 11,216 9226 8878

Notes: Statistical significance: *** = p < 0.001. Est. refers to the estimate and SE indicates the standard error of
the estimate.

The intercept does not change between Models 1 and 2; however, the standard error for
the intercept in Model 2 does increase slightly. This is because the linear regression model
(Model 1) assumes that all observations are independent, resulting in over-confidence
and potentially leading to incorrect conclusions, whereas the variance component model
(Model 2) accounts for the dependency in the data: repeated measurements are nested
within stations. Table 2 indicates that 37% of the total variance is explained by station-level
differences (VPC = 0.37) and indicates a notable degree of clustering and dependency in
the data. The presence of clustering in the data and a significantly positive LR test justify
the use of MLM.

As 37% of the total variance is explained by between-station variation in Model 2,
the remaining 63% of the total variance is explained by within-station differences. As
a longitudinal study, this within-variation is mostly assumed to be differences between
monthly values of percentage change in ridership across the study period. To account for
this, Model 3 incorporates the time trend variable, n_month, representing each month in
the study as a unit of time, increasing sequentially from 0 to 10. With the introduction of
the time trend covariate, the intercept now represents the average value for the percentage
change in ridership across all stations in February 2021.

Model 3 shows a notable decrease in the intercept relative to Models 1 and 2, suggesting
an average percentage change in ridership of −75.5% in February 2021, relative to pre-
pandemic levels (Table 2). Throughout the study period, ridership increases 2.27% for each
passing month (Table 2). However, in Model 3, the introduction of the time trend as a
fixed effect assumes that the slope, the rate of change in ridership over time, is uniform
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across all stations. The evidence in the literature provided in Section 2 clearly indicates
diverse changes in public transport ridership behaviour between social groups; therefore,
assuming a uniform increase in ridership across stations would be naïve.

Consequently, Model 4 introduces n_month as a random coefficient which allows
each station’s slope, the rate of change in ridership over time, to vary between stations
(Table 2). Table 2 shows a heterogeneous change in public transport ridership use over the
study period, between stations, in Chicago. A negative intercept-slope covariance implies
a ‘fanning-in’ pattern in the data, where stations with a higher intercept value typically
observe a lower slope value, and vice versa. Therefore, stations which experienced the
biggest change in ridership at the beginning of the study period experienced a steeper rate
of increase in ridership over time.

The random intercept and random slope values in Model 4 represent the difference
between each station’s percentage change in ridership in February 2021 and the rate of
change over time, respectively. To explore the spatial relationship between train ridership
and the rate of change over time, these values can be extracted and mapped using a bivariate
CMAP (Figure 2). To increase the interpretability of Figure 2, the intercept (β0 = −75.49%)
is added to all random intercept values, and the random coefficient values are added to the
mean rate of change over time (β1 = 2.27). The bivariate CMAP is annotated to indicate the
number of stations assigned to each cell (Figure 2).
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In Figure 2, the spatial distribution of Model 4’s random effects uncovers a broadly
defined north–south divide in Chicago. “L” stations in the south and southwest of Chicago,
predominately orange or green, suggest average or higher than average ridership in the
beginning of the study and experience a less than average increase in ridership over the
study period. Conversely, several “L” stations in Chicago’s central Loop and northern
stations, coloured in pink or light blue, indicate stations with higher-than-average changes
in ridership at the beginning of the study and average or above average rate of increase in
ridership over the study period. The spatial clustering of the random effects, intercepts,
and slopes in Chicago suggests that changes in public transport ridership behaviour during
the pandemic and throughout recovery programmes are spatially and socially dependent.
The introduction of contextual covariates, population, and land-use characteristics are in-
troduced in the next section to explain and measure the extent of these possible influencing
factors on disparities in ridership behaviour.

4.2. Random-Coefficient Models with Covariates

The first contextual factors to be controlled for in this study, in Model 5, are race and
ethnicity, where each covariate represents a race or ethnicity’s percentage of the station
service area’s total population. The covariates included in Model 5 include all races and
ethnicities, other than the percentage of White people which is used as a reference category
(Table 3). The intercept for Model 5 represents the response variable, where all covariates are
equal to zero. Therefore, the intercept represents the average percentage change in ridership
across all stations at the beginning of the study in predominately White neighbourhoods,
which is −81.3%, nearly 6% less than in Model 4 (Tables 2 and 3). Supported by findings
in the literature, this decrease suggests that race has a notable influence on changes to
ridership [2,8]. This can also be measured by the drop of just over 39 points in between-
station variance relative to Model 4, which shows that race accounts for approximately 57%
of the variance between stations at the beginning of the study period (Tables 2 and 3).

Of the five race and ethnicity groups introduced as covariates, only the effects of three
were found to be significant: percentage of Black or African American, Hispanic or Latino,
and American Indian or Alaskan Native (Native American). The coefficients for Black
or African American and Hispanic or Latino indicate a significant, positive association
with ridership and suggest that a 10% increase in each race or ethnicity would see a 1.3%
and 1.8% increase in ridership, respectively. Despite a significant coefficient for Native
Americans, the standard error is noticeably higher than for the other covariates and both
the percentage of Native Americans and Hawaiians have an exceptionally large negative
association with the response variable. This may be caused by the smaller sample size,
as the maximum percentage of Native Americans in any “L” station buffer is less than
2%. Due to higher standard errors and non-significant coefficients, only the covariates
on the percentage of Black or African American and Hispanic or Latino are retained in
subsequent models.

In Model 6, station service areas’ land-use is controlled for where each covariate
represents the proportion of station service areas covered by that particular land-use.
Each land-use consists of two types of covariates: a centred covariate where a value of
0 represents the mean percentage cover for that land-use across all stations and a covariate
which is an interaction term with the time trend variable. The interaction term measures
the extent of how the effect of the coverage of that particular land-use on the response
variable changes for each additional month.

Table 3 shows that, from the centred land-use covariates introduced in Model 6, only
the proportion of commercial land-use had a negative association with ridership relative to
the intercept at the beginning of the study in February 2021. Although non-significant, the
model suggests that a station service area with 10% above average commercial land would
experience more than a 1% decline in ridership. Conversely, the proportion of industrial
and open-space land-use illustrates a strong, significant, positive association with ridership
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at the beginning of the study, where a 10% above average coverage of these land-uses in a
station service area would induce increases of 2.8% and 2%, respectively (Table 3).

Table 3. Model results when incorporating contextual covariates.

Model 5 Model 6 Model 7 Final Model

Est. SE Est. SE Est. SE Est. SE
Fixed Effects:

Intercept −81.29 *** 1.53 −82.28 *** 0.98 −79.54 *** 2.09 −79.84 *** 2.10
n_month 2.27 *** 0.07 2.27 *** 0.06 2.27 *** 0.05 2.27 *** 0.05

Black or African American 0.13 *** 0.02 0.15 *** 0.06 0.09 + 0.05 0.10 + 0.05
Asian 0.01 0.90 - - - - - -

Hispanic or Latino 0.18 *** 0.03 0.16 *** 0.02 0.10 * 0.04 0.10 * 0.04
Native American −6.90 ** 2.31 - - - - - -

Hawaiian −7.81 8.92 - - - - - -

Commercial (Centred) - - −0.11 0.08 - - - -
Commercial (Interaction) - - 0.05 *** 0.01 −0.01 0.01 - -

Industrial (Centred) - - 0.28 ** 0.11 0.22 * 0.09 0.24 ** 0.08
Industrial (Interaction) - - 0.03 * 0.01 0.02 0.01 - -
Institutional (Centred) - - 0.02 0.07 - - - -

Institutional (Interaction) - - 0.04 *** 0.01 0.03 *** 0.01 0.03 *** 0.01
Open Space (Centred) - - 0.20 * 0.09 0.20 * 0.08 0.20 ** 0.07

Open Space (Interaction) - - 0.01 0.01 - - - -
Residential (Centred) - - 0.06 0.05 - - - -

Residential (Interaction) - - 0.02 *** 0.01 0.00 0.01 - -

Desktop or Laptop (Centred) - - - - −0.29 * 0.11 −0.30 ** 0.10
Desktop or Laptop (Interaction) - - - - 0.03 *** 0.01 0.05 *** 0.01

Two Vehicles (Centred) - - - - 0.01 0.07 - -
Two Vehicles (Interaction) - - - - −0.02 ** 0.01 −0.02 ** 0.01

One Dose (Centred) - - - - −0.20 + 0.10 −0.17 * 0.08
One Dose (Interaction) - - - - 0.01 0.01 - -
Unemployed (Centred) - - - - −1.28 ** 0.43 −1.46 *** 0.41

Unemployed (Interaction) - - - - −0.06 0.04 - -
WFH (Centred) - - - - 0.05 0.27 - -

WFH (Interaction) - - - - −0.06 * 0.03 −0.07 ** 0.02

Est. Est. Est. Est.
Random Effects:

Station Level:
Between-Station Variance 29.88 26.95 23.34 23.25

Intercept-Slope Covariance −1.07 −0.75 −0.34 −0.29
n_month Variance 0.57 0.41 0.24 0.26

Observational Level:
Residual Variance 11.53 11.53 11.53 11.53

Deviance 8803 8754 8683 8691

Notes: Statistical Significance: *** = p < 0.001, ** = p < 0.01, * = p < 0.05, and + = p < 0.10. Est. refers to the estimate
and SE indicates the standard error of the estimate.

All land-uses’ interaction terms are positive, which indicates that the effect on ridership
becomes increasingly positive for each additional month of the study. Despite a negative
association with ridership in February 2021, the commercial interaction term, along with
institutional land-use, has the strongest, significant, and increasing effect on ridership as the
study period progresses. Industrial and residential interaction terms also show significant,
positive associations; however, these relationships with the response variable are weaker.
The only interaction term in Model 6 to not show a significant increasing association with
the response variable over time is the percentage of open space.

In the final models, contextual covariates are introduced to explain the disparities
in changes in ridership behaviour which were influenced: the percentage with access
to desktops or laptops, access to two vehicles, received the first dose of the vaccination,
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unemployed, and WFH (Table 3). Again, each covariate is represented by a centred
covariate and an interaction term with the time trend. The Final Model represents the
ultimate model where all non-significant covariates are omitted.

In February 2021, three of the five centred covariates have a significant, negative
association with the response variable. According to the Final Model, a 10% increase in a
station service area’s access to desktops and laptops, percentage of people that received at
least one dose of the vaccination, and percentage unemployed would result in a decrease
of 3%, 1.7%, and 14.6% in ridership at the beginning of the study, respectively. Despite a
substantial impact on the response variable in February 2021, the influence of the percentage
of unemployment on ridership behaviour does not significantly change over time. Table 3
shows that, for each additional month, there is an increasingly negative association between
the response variable and the percentage with access to two private vehicles. Interestingly,
the interaction term for access to desktops and laptops is significantly positive. Therefore,
despite an initial negative association, for each additional month, this negative coefficient
increases by 0.05, which means that, following the seventh month, there would be a positive
association between access to desktops and laptops, and ridership. The interpretation of
these findings is discussed in the next section.

5. Discussion and Conclusions

Towards the end of the pandemic’s first year in February 2021, Osorio et al. [8] detailed
how the perception of risk was accountable for approximately 1% of rail ridership loss
due to “caution fatigue” in Chicago. This suggests that the influences on changes in
ridership extend beyond the perception of risk alone. Due to data availability, we can now
uncover, in this section, the influences on transit ridership behaviour beyond the first year
of the pandemic. Encompassing the reopening of non-essential retail and the vaccination
rollout, this section will discuss the results in Section 4 and interpret the spatial distribution
and impact of “L” station service area socioeconomic and land-use characteristics on the
return to or avoidance of public transport. Our study recognizes that not all of the factors
influencing public transport use can be accounted for and that those included in this study
are based on suggestions from the literature. Future studies may extend our research by
incorporating additional parameters, such as the impact of changing COVID-19 policy
stringency on public transport use.

5.1. Race and Ethnicity

The findings of this study extend those in the literature, illustrating that, between
February and December 2021, more than a year after the implementation of NPIs and
the beginning of recovery programmes, the average ridership across all stations during
this study period continued to be substantially lower, 75.5% below pre-COVID-19 levels.
Similar to Osorio et al. [8], Brough et al. [4], and Hu and Chen [2], this study finds that
this decrease in public transport use is spatially unequal. In this paper, we extend this
information and have extracted and mapped each individual station’s change in public
transport use and its rate of change over time (Figure 2).

Figure 2 illustrates a defined north–south divide, where lower SES neighbourhoods
in the south and southwest with higher percentages of Black and Hispanic population
(Figure A1) experience a smaller change in ridership behaviour in comparison to the more
commercial and affluent “L” stations in Chicago’s Loop and northern stations, respectively.
Figure 2 also captures the disparities in rate of changes in station entries over time be-
tween stations in Chicago. The negative intercept-slope covariance in Table 2 and Figure 2
indicates a ‘fanning-in’ pattern, where northern and central stations in higher SES neigh-
bourhoods and major commercial areas with lower initial ridership generally experienced
an above average rate of increase in ridership over the study period.

The north–south divide illustrated in Figure 2 revealed how disparities in ridership
behaviour during the pandemic may have disproportionally impacted minority groups’
infection and mortality rates during the pandemic in Chicago. Smaller changes in initial
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ridership in the south and southwest (Table 3) showed predominately Hispanic or Latinos
and Black or African American neighbourhoods’ lessened ability to practice social distanc-
ing and increased occupation of jobs that cannot be performed from home [2,5,6,9,19,43,44].
Smaller changes in ridership levels at these stations at the beginning of the study in
February 2021, during higher stringency and potential infection periods suggest that a
large proportion of “L” train journeys in these lower SES neighbourhoods is driven by
necessity, perhaps to workplace zones [7].

5.2. Land-Use

A positive association between train ridership and the share of industrial land-use con-
firms a smaller behavioural change in ridership behaviour at workplaces in February 2021
(Table 3). This positive association may reflect the trips largely driven by necessity, as
“essential” work at manufacturing and industrial centres mostly required staff to work
in-person [8]. The continuation of station entries at industrial zones accentuates the dis-
parities in certain social groups’ ability to work from home and perform social distancing.
Subsequently, minority groups’ reliance on public transport exacerbates existing health
disparities in lower SES neighbourhoods, as public transport use increases the exposure to
COVID-19 and risk of infection [18,20,26,43].

Despite trips being largely driven by necessity, the Final Model (Table 2) also showed
that the proportion of open greenspaces was also associated with limited change in train
ridership, pointing to the perceived safety of the use of public transport for recreational
visits to parks and open greenspace during the pandemic [45–47]. Consistent with find-
ings in the early stages of the pandemic, the use of public transport for leisure trips to
open greenspace differs from those to commercial areas, where, for trips to commercial
centres, a larger decline in ridership behaviour was recorded [2]. Although non-significant,
Model 6 showed that trips to commercial zones such as the Loop in Chicago were still far
below pre-COVID levels in February 2021, nearly a year after the implementation of NPIs,
as the reopening of all non-essential retail would not occur until June 2021 [33].

Surprisingly, our model estimates showed an insignificant association between com-
mercial land-use’s interaction term and train ridership. This result may contradict findings
in other cities and countries where leisure and social trips, including shopping, returned to
more “normal”, pre-pandemic levels [48]. This finding may also reflect a modal shift, with
people choosing other modes of transport, particularly private vehicles, and active travel
such as walking or cycling, to move within Chicago.

5.3. Urban Inequalities

We now focus on the extent to which urban inequalities influenced changes in ridership
behaviour across stations at the beginning of the study, and how this influence changes
throughout the study period, following the mass rollout of the vaccination and reopening
of Chicago. Overall, the results indicate a global increase in ridership across all stations;
however, it is evident that the rate of increase across all stations is not homogenous.

During the early stages of the pandemic, research speculated whether ridership would
return to “normal” levels following the introduction of the vaccination programme [8].
With vaccination data now available, this study finds a non-significant association between
changes in rail ridership over the study period and vaccination rates (Table 3). Although
they were speculated as a catalyst for the return to public transport, these results suggest an
unchanging, potentially “new normal” of lessened public transport use in neighbourhoods
with greater vaccination rates. Similarly, over the study period, higher access to private
vehicles and WFH also showed a relative decrease in the use of public transport.

In the Final Model (Table 3), the negative association between private vehicle owner-
ship and train ridership suggests that the modal shift to private modes of transport in the
early stages of the pandemic may have become a more permanent feature of local mobility
behaviour [4]. Two stations in Figure 2 exemplify this trend where ridership may not return
to “normal” pre-COVID-19 ridership levels due to high ownership of private vehicles at
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two “L” stations depicted in turquoise in eastern Chicago. Cumberland and Austin (Forest
Park), the former in a predominately White, commercial neighbourhood and the latter
in a mixed, residential neighbourhood, have some of the highest proportions of vehicle
ownership of all stations. These stations illustrate where ridership was greatly impacted
during the earlier stages of the pandemic and have failed to adhere with the general trend
of convergence, where the stations which were the most impacted generally observed a
stronger return to public transport use over the study period. This finding is important
as it identifies where disparities in ridership have persisted and, unlike during other past
pandemics and epidemics, such as during Middle East Respiratory System (MERS) where
ridership levels returned to normal after six months [8], current ridership levels may not
return to pre-COVID-19 levels, as the pandemic has permanently changed travelling and
working behaviours.

Not all covariates indicate permanent changes to mobility and working behaviours.
The interaction term for the access to desktops or laptops suggests a relative increase in
public transport use, becoming positive in October 2021, despite the original negative
association (Table 3). This suggests that not all work remained remote or hybrid and that,
despite these households having the facilities and capability to WFH, household occupants
do not inherently WFH and their occupation or other factors may not allow them to do so.
This positive interaction term may capture a glimpse of the beginning of the long-awaited
return to public transport services. Only future work will be able to explore and confirm
the extent of changing mobility and working behaviours and their influence on public
transport use.

5.4. Conclusions

Our results indicate an overall increase in “L” train ridership in Chicago for every
month between February and December 2021. Yet, our findings show that rail ridership
has remained far below pre-pandemic levels and reveal persisting disparities in ridership
between stations following the inauguration of Chicago’s vaccination programme and full
reopening. Over a year after the beginning of the pandemic, the recovery programme is yet
to see a significant increase in train ridership at some higher-vaccinated, predominately
White neighborhoods with greater access to private vehicles and ability to WFH. These
findings reflect the persistence of inequalities in public transport use, different social groups’
changing mobility behaviours and new working practices, and the challenge to revert the
trend of declining public transport use in the U.S. in recent decades.

These results highlight the need for continued efforts and innovative solutions to sup-
port the recovery of public transport in the post-pandemic era: helping transport planners
to encourage trips at stations where the biggest change in ridership has persisted, whilst
protecting the most vulnerable groups’ potential mobility and reducing the disparities in
access to health, economic, and education services. During previous pandemics, incentive
programmes have been introduced to revert the modal shift towards private modes of
transport. Incentive programmes, such as discount programmes, promotional activities,
and improved service quality and frequencies [8] have been introduced to encourage
ridership which, as a result, help to mitigate climate change and contribute towards decar-
bonization [20]. However, incentive programmes following COVID-19 must be carefully
considered, as increasing service frequencies may no longer entice those working from
home and introducing discount programmes in some of the more affluent neighbourhoods,
particularly during a cost-of-living crisis, may seem unfitting. We focused on studying rid-
ership use along Chicago’s “L” train lines. These lines do not extend to all neighbourhoods,
most importantly, Chicago’s lower SES neighbourhoods in the far southern or southwestern
city limits [10]. Future work should consider the effects of the pandemic and recovery
programmes on these neighbourhoods and those omitted from the study by examining the
change in mobility behaviour across more or all modes of transport, including populations
residing beyond this study’s “L” station service areas. Such analysis would enable a more
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comprehensive understanding of overall changes in mobility behaviour and modal shifts
after Chicago’s recovery programme across all SES groups and neighbourhoods.
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