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Abstract: The accelerated development of antibiotic resistance genes (ARGs) and antimicrobial
resistance (AMR) in aquaculture environments due to the overuse of antibiotics is a global concern. To
systematically understand the research trends in and key concepts of ARGs and AMR in aquaculture
systems, this study employed the bibliometrix R-package to conduct a bibliometric analysis of the
publication characteristics of ARGs and AMR in aquaculture systems from the Web of Science,
published from 2000 to 2021. The results revealed that China has produced the most papers. China
and the northern hemisphere countries work closely together. Collaboration and multidisciplinary
research helped to better understand the impact of AMR in aquaculture on food security and human
health. Antibiotic-resistant bacteria and ARGs in aquaculture, as well as the relationship between
water environmental variables, antibiotic residuals, and ARGs, are the current research focus. One of
the future directions is to establish a conclusive link among water environmental variables, antibiotics,
and ARGs. Another future direction is the development of new economical and environmentally
friendly technologies to treat AMR in aquaculture wastewater. Collectively, our findings investigate
the development directions of AMR research in global aquaculture systems and provide future
perspectives.

Keywords: bacteria; antibiotic resistance gene; bibliometric analysis; microbial resistance; intestine

1. Introduction

Aquatic production plays a vital role in the global food [1,2]. The administration of
antibiotics is a common means of controlling diseases in aquatic products in high-density
aquaculture environments [3,4]. Aside from therapeutic use, in Africa, many countries have
used low concentrations of antibiotics in animal feed to affect their growth performance.
Studies have shown that administering chloramphenicol, oxytetracycline, and florfenicol as
growth promoters for cultured Oreochromis niloticus increased their final weight and growth
rate [5–7]. However, recent research has found that this practice has negative effects on
nutrient digestibility, digestive enzymes, and the feed conversion ratio [8,9]. Furthermore,
studies conducted on zebrafish have shown that oral antibiotics can promote weight gain
but damage their immune function [10]. Thus, it is crucial to use antibiotics in animal
production judiciously and according to veterinary guidelines. However, antibiotics are
often used frequently and in higher doses to ensure their effectiveness is not impacted
by exposure methods and time [11]. Due to the unique chemical structures of antibiotics,
they are difficult to degrade and decompose in the natural environment and can easily
circulate through the food chain before accumulating in the human body [3]. One of the
major problems associated with wild antibiotic usage is the rapid increase in the number
of antibiotic resistance genes (ARGs) found in the aquaculture environment and intestine
of aquatic fauna [2,12–14]. Moreover, antibiotic-resistant pathogens will reduce antibiotic
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effectiveness in treating bacterial infections and spread ARGs [13]. Thus, aquaculture
systems are increasingly recognized as sources of drug-resistant-bacterial reservoirs of
ARGs and antimicrobial resistance (AMR).

Antibiotics play an important role in the rapid emergence of ARGs in aquaculture [15].
When stressed by residual antibiotics, bacteria can pass mobile genetic elements (MGEs),
mainly transposons, integrons, plasmids, and insertion sequences [16–18], through hori-
zontal gene transfer to acquire exogenous resistance genes and eventually integrate them
into their own genomes to acquire resistance [19–21]. Previous studies have shown that
many antibiotics, bacteria, and ARGs in aquaculture provide ideal environments for hori-
zontal gene transfer [2,22]. In addition, antibiotics can accumulate in the environment, and
antibiotic resistance genes can be transferred to food webs [23]. The prevalence of ARGs
can result in reduced antibiotic efficacy and increased pathogen drug resistance. There is a
high risk of food chain transmission, which affects human health. Fifty-two shared ARGs
in the intestine of freshwater shrimp and shrimp farms and 32 shared ARGs in the intestine
of freshwater shrimp and shrimp farm sediments have been reported [22]. Additionally,
some results from a study on zebrafish found that exogenous antibiotic-resistant bacteria
(ARBs) could influence the intestinal bacterial community and change its composition,
and plasmid-mediated gene transfer can be observed in the intestine of zebrafish [24]. In
southeastern Brazil, Escherichia coli isolated from surface water suitable for primary contact
recreation showed multidrug resistance because of plasmid-mediated gene transfer [25].
Based on this gene transfer mechanism, bacterial strains can acquire resistance to antibiotics
even with a small antibiotic content [26]. Therefore, aquaculture systems are predicted
to have the potential to store and accumulate AMR, posing a high risk to human health.
Aquatic products are recognized as high-protein animal foods, of which 156 million tons of
fish were utilized for human food in 2018 [1]. Accordingly, comprehensive studies on AMR
in global aquaculture environments are required.

Bibliometric analysis is regarded as an important and effective method for evaluating
and assessing qualitative data and quantitative information on research activities [27]. Bib-
liometric analysis is different from systematic and scoping reviews. It searches databases
and uses statistical methods and mapping techniques to perform quantitative and qual-
itative analyses of specific bibliometric indicators [28]. By extracting information from
paper titles, abstracts, affiliations, keywords, collaborative networks, and trend features,
quantitative trends are constructed and identified [29,30]. This is an important reference for
the layout and analysis of research in related fields. In recent years, scholars have effectively
analyzed research hotspots and trends in their respective fields using common bibliometric
tools and information, such as authorship, the institution, the country, co-citation anal-
ysis, and co-authorship analysis [31,32]. Therefore, we chose this method for our study
to analyze big data and future research directions related to AMR aquaculture systems
worldwide.

Currently, some studies have been published on various aspects of AMR, such as
antibiotic resistance in natural water [33], ARGs in soil [34], ARGs in water removed by
metalorganic frameworks [35], AMR from pathogens in the livestock intestine [36], and
several others [37]. However, comprehensive reviews focusing on AMR in aquaculture
systems are limited. Therefore, this study was based on the global research activity on
AMR in aquaculture systems to assess and analyze the following questions: (1) identify the
structures in the field of AMR research in aquaculture systems, (2) reveal the development
trend in AMR research in aquaculture systems, and (3) discuss future strategic directions
for research in this area.

2. Materials and Methods
2.1. Data Collection

The data in this study were collected from the Web of Science (WOS) database, and
a combination of WOS field identifiers and Boolean operators were chosen to form the
search formula for collecting the literature. The WOS database was chosen because it is
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considered the world’s leading database for scientific research assessment, covering the
most important and influential research results worldwide [38]. As shown in Figure 1, the
search was conducted on 18 January 2022, queried using TS = “antimicrobial resistance
gene in aquaculture” OR “antibiotic resistance gene in aquaculture” as the topic, and
search terms were “water”, “sediment”, “organism”, and “intestinal microbiota”. Then,
the timespan was changed to publications from 2000 to 2021, 508 papers were obtained in
total, and duplicate papers were deleted. We exported information about the title, author,
abstract, and institution and citation information of these papers from the WOS database in
bib file format for bibliometric analysis.
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2.2. Methodology

The analysis results of academic documents were visualized using Bibliometrix. Bib-
liometrix is an important R-tool designed in the bibliometrix R-package for comprehensive
bibliometric analysis. Bibliometrix could meet the requirements of bibliometric analysis
with a process of data import, data transformation, data analysis, and scientific visualiza-
tion [39]. The target field’s literature information was comprehensively and systematically
analyzed using citation analysis, graph theory, statistics, network algorithms, factorial
analysis, and a thematic map to create various types of knowledge maps that revealed
developing research. Bubble diagrams were constructed using the ggplot2 package in R
4.0.3. In addition, 30 recently published papers in 2021 were picked out and used to analyze
current research hotspots and future trends.

3. Results and Discussion
3.1. Annual Growth of Publications

The search query implemented in the WOS database retrieved the earliest journal
articles published in 1997. However, few studies were conducted in the following two years.
Therefore, this study focuses on papers from 2000 to 2021. These papers were categorized
into four types by analyzing the statistical data. Those retrieved included journal articles
(448, 88.12%), reviews (55, 10.83%), conference papers (4, 0.79%), and editorial materials (1,
0.20%).

Figure 2 shows the annual growth of papers on AMR research on global aquaculture
systems. The number of publications has increased exponentially over the last 21 years,
and as the United Nations’ concern about antimicrobial consumption in food animals and
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humans began in 2016 [40], more and more scholars have focused on this field. Despite
some fluctuations during the period, we found that the cumulative number of papers
grew in a quadratic fashion (R2 = 0.9499). And nearly 200 papers were published in
every year after 2020. The calculated annual growth rate was 24.3%. This indicates a
significant increase in AMR research on aquaculture over the past 21 years, demonstrating
the ecological importance of AMR.
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3.2. Regional Analysis of Publications

Scientific cooperation has developed as a result of the growth of contemporary civi-
lization and the expansion of globalization. AMR research on global aquaculture systems
was conducted in 61 countries (regions) around the world. Table 1 lists the top 10 countries
in terms of output. China had the highest number of published papers (206). The USA and
India were ranked as the second and third productive countries, respectively. Interestingly,
Spain has only 11 papers in total, and the Average Article Citations values of these articles
is extremely high, reaching 114 times, while China and India presented contrary results. A
large number of papers could be attributed to antibiotic consumption and fish production
in China, which has the world’s largest share [1]. Spain tops the average article citations,
which is attributable to the paper published by Martinez [41] receiving up 1023 citations.

To better illustrate collaborations between researchers in different countries (regions),
co-occurrence networks were constructed (Figure 3). AMR research has been carried out
in the northern hemisphere countries (regions) (Figure 3A). The co-occurrence network of
countries exhibited 30 nodes and 4 clusters, while the co-occurrence network of institutions
showed 19 nodes and 6 clusters (Figure 3B,C). This finding indicates that many researchers
from various countries value and collaborate on AMR research on aquaculture systems,
which is conducive to the field’s rapid development. China had the largest node listed
in the largest cluster (red), and it significantly collaborated with most of the countries.
Moreover, countries of this cluster were members of the Joint Programming Initiative on
Antimicrobial Resistance, which attempts to understand the transmission of AMR and its
evolution as priority targets for research [42]. The countries that led in this research field
belong to northern hemisphere regions. In addition, 19 institutions in the co-occurrence
network are also distributed in the mariculture. Correspondingly, the centralities of nodes



Sustainability 2023, 15, 9012 5 of 14

in these countries are greater than zero, indicating that they are critical nodes in the
network (Figure 3D). The South China Sea Fisheries Research Institute and the Institute of
Cellular and Organismic Biology ranked as the largest in circle size, but their betweenness
centralities were low, ranging from 2 to 3. The University of Chinese Academy of Sciences
and Institute of Urban Environment were also leading Chinese institutions in this frontier.
The University of Copenhagen (Denmark) and University of Helsinki (Finland) were also
top research institutions in this field. This finding indicates that, while Chinese scholars
published more, the quality of some articles was not exceptional.

Table 1. Top 10 countries represented by the papers on AMR research of global aquaculture systems
in 2000–2021.

Country Papers Average Article Citations

China 206 23
India 35 12
USA 28 95
UK 21 82

Republic of Korea 17 19
Japan 16 34
Brazil 11 11
Egypt 11 7
Spain 11 114

Portugal 10 32

3.3. Analysis of Journals and Highly Cited Publications

The top 10 journals that published the most papers are listed in Table 2. This study
used the Hirsch index (h-index), which indicates whether a large number of readers are
interested in the subject. Considering the h-index value, the papers published in Fish &
Shellfish Immunology have had the greatest influence on AMR research in global aquaculture
systems from 2003 to 2021, reaching 16. These papers have received 1271 citations. This
demonstrates the high impact of papers published in this journal. Science of the Total
Environment also had an h-index of 16 and it received 1018 citations. Therefore, this finding
suggests that AMR research in global aquaculture systems is a research priority. In addition,
other fields, such as agriculture, bioengineering, microbiology, and veterinary medicine,
appeared in the categories of journals. By combining the advantages of various disciplines
and developing various studies and technologies, multiple economic and environmental
benefits can finally be realized.

Table 2. Top journals based on AMR research of global aquaculture systems in 2000–2021.

Journal h-Index TC PY-Start IF2020

Fish & Shellfish Immunology 16 1271 2003 4.581
Science of the Total Environment 16 1018 2011 7.963

PLoS ONE 12 760 2007 3.24
Environmental Pollution 11 1682 2009 8.071

Aquaculture 9 382 2007 4.242
Environmental Science and Pollution Research 9 296 2015 4.223

Frontiers in Microbiology 9 691 2012 5.64
Chemosphere 8 351 2014 7.086

Water Research 8 675 2012 11.236
Ecotoxicology and Environmental Safety 7 218 2014 6.291

Note: TC: total citations; PY-start: published years start; IF2020: impact factor of the journal in 2020.
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in 2000–2021. (A) The cooperation map among countries. The red line indicates collaborations
between countries. The thicker the line, the greater the collaboration. (B,C) The cooperation network
of countries and institutions, respectively. Continents for the circle color in Figure 2B are listed in
Table S1. (D) Bubble chart of the publication characteristics for the research institutions (betweenness
centrality > 0). The color of the circles represents the continent of each country. The larger the circle,
the higher the betweenness centrality of the institution. Abbreviations: inst cellular and organism boil,
Institute of Cellular and Organismic Biology; natl pingtung univ sci and technol, National Pingtung
University of Science and Technology; natl taiwan ocean univ, National Taiwan Ocean University; natl
taiwan univ, National Taiwan University; ehime univ, Ehime University; univ Helsinki, University of
Helsinki; univ copenhagen, University of Copenhagen; univ Gothenburg, University of Gothenburg;
ocean univ china, Ocean University of China; auburn univ, Auburn University; univ Aveiro, Aveiro
University; univ Coimbra, University of Coimbra; univ chinese acad sci, University of Chinese
Academy of Sciences; inst urban environm, Institute of urban environment; chinese acad sci, Chinese
Academy of Sciences; shanghai ocean univ, Shanghai Ocean University; south china sea fisheries
res inst, South China Sea Fisheries Research Institute; chinese acad fishery sci, Chinese Academy of
Fishery Sciences; nanjing agr univ, Nanjing Agricultural University.
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Citations are used to indicate research hotspots in a certain field. Although citations
are not the only way to assess the quality of a paper, they are regarded as an important
indicator. A paper can be found, read, and cited by others regardless of whether the opinion
about the paper was positive or negative, indicating that the cited paper has reached a
level at which it can be referenced or commented on by others. The analysis of the most
cited papers should be supplemented by the number of total citations per year to reduce a
bias regarding publication time. The top ten cited papers are listed in Table S2. The top ten
cited papers were published between 2006 and 2013. These publications mainly focused on
AMR research and its influence on human health. Half of these papers are review papers
that could effectively summarize previous findings to produce high-quality studies. For
example, the top two review papers mainly focused on the abuse and risks of antibiotics in
fish aquaculture and the impact of clinical, animal husbandry, and agricultural antibiotic
abuse on the antibiotic resistance of microorganisms in the environment.

3.4. Development of Antimicrobial Resistance in Global Aquaculture

We performed a timeline view analysis of paper topics from 2000 to 2021, and the
trend topics for AMR research on global aquaculture systems are shown in Figure 4. The
minimum number of occurrences for each topic was set to 15, leading to the selection of
20 topics for further analysis. However, the number of topics revealed a serious imbalance.
Papers in this period were mainly focused on the distribution of and risk of antibiotics to
human health [41,43,44]. The research point was then transferred to antibiotic resistance
of bacteria based on the development of qualitative PCR. Moreover, “vulnerability” was
the longest-running topic from 2012 to 2020. Opportunistic pathogens, such as Bacillus
cereus, Bacillus subtilis, Bacillus megaterium, and Acinetobacter lwofii [45], were separated.
Meanwhile, strategies for manipulating microorganisms or microbial metabolites against
pathogenic bacteria were being developed. These measures included third antimicrobial
peptides [46] and recombinant proteins [47]. In the following studies, “aquaculture” began
to be a hot topic. The fish intestinal immune system was studied [48]. Water, unlike food,
can be directly touched by humans. As a result, studies on antibiotics and ARGs in water
were constantly evolving. A large number of bacteria carrying ARGs were discovered
in water [49–51]. Concerns have been raised about the interactions of new pollutants
and antibiotic-resistance genes in water [52]. Furthermore, researchers were interested in
the relationship between water environmental variables (chemical oxygen demand, total
organic carbon, dissolved organic carbon, suspended solids, and total phosphorus) and
ARGs [53], as well as the promotion of bacterial resistance by wastewater discharge from
aquaculture systems [54,55].

3.5. Current Research Directions of Antimicrobial Resistance in Global Aquaculture

As shown in Figure 5A, factorial analysis divided the keywords into two categories.
The red cluster includes traditional antimicrobial resistance research, such as disease, in-
testinal microbiota, growth, fish, oxytetracycline, sulfonamide, prevalence, etc. Because this
area of research is well-established (Table S3), most papers combine these keywords. These
studies primarily focused on antibiotics and ARGs in shrimp and fish farm samples (water,
sediment [56], feed [57], and intestine samples [58]). One of the antibiotic residual sources
was antibiotics in fish feed for disease prevention and treatment in aquaculture [15,59].
Some studies have proved that antibiotics can lead to high ARG abundance [32,60], and the
antibiotic concentration has a positive correlation with ARG diversity [49]. Aquaculture
activities influence the diversity and abundance of antibiotic resistance genes. While some
studies found no correlation between antibiotics and ARG water abundance and diversity,
such as in the coastal areas of central Thailand, there was no evidence that ARGs and
MGEs in aquaculture were the main drivers of the resistance potential of environmen-
tally resistant microorganisms in central Thailand. In contrast, higher levels of ARGs
and MGEs were found in the water at the Hua Krabue canal [61]. Although there is no
conclusive evidence linking antibiotics and ARGs, ARGs are widely detected in various
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farm or pond regions, such as China, Peru, India, and Chile, etc. [62,63]. As a result, current
research has focused on the identification and resistance mechanisms of ARGs. ARGs have
been detected in a significant portion of the microbial samples in aquaculture [64]. Many
antibiotic-resistant bacteria, for example, were isolated from 12 different shrimp culture
ponds in Andhra Pradesh, India [65]. ARGs were found on microbial chromosomes as
well [49]. Whole-genome sequencing demonstrated that ARGs confer microbial resistance
mechanisms involving antibiotic efflux, antibiotic target alteration, antibiotic inactivation,
antibiotic target replacement, and antibiotic target protection [51]. The horizontal gene
transfer (HGT) of ARGs can be mediated by mobile genetic elements (MGEs) of microbial
communities [16,17,50]. ARGs and MGEs were found to co-occur in marine water from
the Gulf of Thailand [62]. However, due to the influence of MGEs, ARGs may not be
associated with a specific bacterial class [66]. ARG propagation under selection pressure in
aquaculture systems may occur primarily through antibiotic bacterial enrichment and the
HGT of ARGs between different bacterial taxa. Chryseobacterium aquaticum [50], Aeromonas
hydrophila [67], Vagococcus salmoninarum [68], Vibrio harveyi, and Vibrio parahaemolyticus [49]
were detected ARG fragments. Most of them were cataloged as Gram-negative bacteria [65].
Often these resistant bacteria carry a variety of resistance genes, and 46 ARGs carried
by C. aquaticum, four ARGs carried by A. hydrophila and resistance to erythromycin and
eolistin, 13 ARGs carried by V. salmoninarum, and nine ARGs carried by V. harveyi and
V. parahaemolyticus were the same but their resistance type of ARG was different. Notably,
many antibiotic-resistant bacteria were considered to exhibit genetic relatedness.
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Figure 5. Factorial analysis and thematic map of AMR research on global aquaculture systems.
(A) Factorial analysis plotted based on dimensionality reduction, with a maximum of 50 keywords
plus used for plotting. The closer two keywords are, the more papers there are that place them
together; the farther they are, the fewer papers there are that place them together. Research on red
clusters is mainstream. There are fewer keywords in the blue cluster, indicating that there is still
space for further improvement. Moreover, factorial analysis was generated by keywords plus of the
WOS database, which is why the word “china” appears. (B) Thematic map that converts keyword
co-occurrence into centrality and density. The x-axis represents the importance of the topic in the
research field, as indicated by centrality, while the y-axis represents the development of the topic
itself, as indicated by density.
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3.6. Futrure Directions

The keywords in the blue cluster are not strongly linked to traditional antimicrobial
resistance research, implying that this section could be improved further (Figure 5A). More-
over, the thematic trend of AMR research in global aquaculture systems is studied using the
thematic map, which is determined by the degree of relevance of each keyword within the
topic (Figure 5B). Thematic map results are highly consistent with those in Figure 5A. Tra-
ditional antimicrobial research topics are located in the first, second, and fourth quadrants.
The third quadrant is the emerging or declining themes, represented by the blue cluster in
Figure 5. According to the temporal evolution of topics in Section 3.4, it is clear that these
topics emerged recently (Figure 4). As a result, these directions will be researched in the
future. One of the future directions is to investigate the relationship among antibiotics,
ARG, and environmental variables. Many studies have shown that antibiotics [69,70], as
well as environmental variables in water, such as chemical oxygen demand (COD) [58],
heavy metals (Zn, Pb, Cd, Cr6+, and As), and other environmental parameters (perman-
ganate index, pH, and DO), could exert pressure on the spread of ARGs [60]. However,
environmental variables affecting ARG are highly variable and lack clear patterns due to
the geographical location, culture patterns, timing of collection, and aquaculture organism
differences. With more research, the relationship among ARGs, antibiotics, and environ-
mental variables in water might be identified in the future. ARG removal from aquaculture
systems is another future direction (Table S3). Antibiotic-resistant bacteria and ARGs [70]
can be inactivated by chlorine oxidation [63] and Fe (VI) oxidation [71]. Treatments with
ozone nanobubbles can reduce the abundance of A. hydrophila [72]. Constructed wetlands
with horizontal submerged flow effectively decrease the pathogenic bacteria represented
by Vibrio [73]. Improved encapsulate fishery drugs based on algal metabolites [74] and the
use of probiotics, such as Phaeobacter inhibens [75], can all help to reduce the abundance
of ARBs and ARGs in the water environment. In addition, Streptomyces sp. NHF165 from
Streptomyces sp. [76], Bacillus amyloliquefaciens A23 from Procambarus clarkii [77], Bacillus
safenesis NPUST1 from Oreochromis niloticus [78], and mannan oligosaccharide derived from
Saccharomyces cerevisiae [79] can be used against pathogens of fish intestines as substitutes
to antibiotics. The majority of the current experiments are small, expensive, and inefficient.
Based on these measures, the applicability of current results to real aquaculture systems
and the development of more effective and environmentally friendly removal techniques
should be investigated further.

4. Conclusions

AMR research in global aquaculture systems is a field of great concern with the
number of publications increasing year after year since 2016. The papers from the northern
hemisphere mariculture region, particularly in China, have a significant academic influence
in the field. AMR research in global aquaculture systems is important for food security
and human health, and collaborative research is conducive to achieving multiple economic
and environmental benefits. Based on the development of qualitative PCR, the relationship
among water environmental variables, antibiotic residuals, and ARGs in aquaculture is
constantly evolving, according to the research trend analysis. There is no conclusive
evidence linking water environmental variables, antibiotics, and ARGs, which requires
further research to resolve. Many antibiotic-resistant bacteria and ARGs were discovered
in aquaculture, and removal methods were thoroughly investigated, while these methods
are not well applied in practice. Thus, in future research, we should aim to investigate and
develop economical and environmentally friendly technologies for the treatment of AMR
in aquaculture wastewater.

The analysis in this study is based on the WOS core database, and some Chinese
papers were not collected, which may generate bias against other languages. The lack of
coverage should be supplemented by searching other databases. The literature in this field
provides a good reference for elucidating the evolution of AMR research on aquaculture
systems and intestinal ARGs in aquatic organisms worldwide.
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