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Abstract: The pore structure of low-rank coal reservoirs was highly complex. It was the basis for
predicting the gas occurrence and outburst disasters. Different scale pores have different effects
on adsorption–desorption, diffusion, and seepage in coalbed methane. To study the pore structure
distribution characteristics, which are in different scales of low-rank coal with different metamor-
phism grade, the pore structure parameters of low-rank coal were obtained by using the mercury
injection, N2 adsorption, and CO2 adsorption. These three methods were used to test the pore
volume and specific surface area of low-rank coal in their test ranges. Then, the fractal dimension
method was used to calculate the fractal characteristics of the pore structure of full aperture section
to quantify the complexity of the pore structure. The experimental results showed that the pore
volume and specific surface area of low-rank coal were mainly controlled by microporous. The pore
fractal characteristics were obvious. With the influence of coalification process, as the degree of coal
metamorphism increases, fluctuations in the comprehensive fractal dimension, specific surface area,
and pore volume of the pore size range occur within the range of Rmax = 0.50% to 0.65%.

Keywords: low-rank coal; pore structure; comprehensive fractal dimension; fractal law

1. Introduction

Coal bed methane (CBM), as clean energy, will promote the sustainable development
of global energy supplying [1]. The reserves of CBM will depend on the safety and
reliability of national energy. Low-rank coal is of complex pore structure, especially rich in
microporous, which control the adsorption capacity of CBM, This is the basis for evaluating
coal mine disasters [2–4]. Therefore, it is of great significance to identify the distribution of
the pores about low-rank coal.

The pore structure plays a crucial role in various fields such as coal mining, gas extrac-
tion, and hazard prediction [5–7]. The size and connectivity of pores directly impact the
permeability and extraction rate of gas [8]. Larger pores and improved connectivity facili-
tate enhanced gas permeability and extraction efficiency while reducing gas pressure [9].
Simultaneously, larger pore surfaces provide more adsorption sites for gas adsorption. This
increases the chances of gas molecules coming into contact with the pore walls, thereby
enhancing gas adsorption capacity [10]. The pore structure also influences the flotation
kinetics of coal. It affects the diffusion rate and adsorption rate of the flotation reagents,
as well as the stability of the foam, thereby impacting the flotation speed and recovery
rate of coal [11]. By conducting ventilation borehole monitoring of gas content within coal
seams, it becomes possible to assess the gas composition and concentration and predict
potential hazards associated with the pore structure [12] because pores can be used as gas
storage and migration channels. When a large amount of gas accumulates in the coal seam,
larger pores and better connectivity help to improve gas permeability [13]. However, at
the same time, it will increase the speed and scale of gas accumulation, thus increasing
the risk of gas explosion [14]. Secondly, the mining disturbance will make the coal dust
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suspended in the air, and the fire source may cause the coal dust explosion. The pore size
and distribution characteristics directly affect the suspension capacity of coal dust and the
risk of coal dust explosion. Smaller pores may be more likely to suspend coal dust and
form explosive dust clouds, increasing the aerodynamic risk during mining [15]. Therefore,
the study of pore structure plays an irreplaceable role throughout the entire process of coal
mining and utilization.

There are many experimental methods for testing the pore structure, including gas
adsorption, visualization, and capillary pressure methods [16]. The pore structure char-
acteristics of coal are mainly tested using scanning electron microscopy [17], gas adsorp-
tion [18,19], mercury injection (MIP) [20], nuclear magnetic resonance (NMR) [21,22], X-ray
diffraction (XRD) [23], CT imaging (X-CT) [24], and small angle scattering (SAXS) [25].
The pore structure has been studied by many scholars using the above means. Using
scanning electron microscopy, XRD, etc., the pore morphology and connectivity of coal rock
bodies can be obtained visually [26–29]. However, the pore characteristic data observed
by these methods are mainly used for qualitative characterization, and it is difficult to
analyze quantitatively.

To obtain a quantitative characterization of the pore structure, mercury injection, gas
adsorption, and small-angle scattering methods were introduced. Obtaining pore size
parameters through fluid intrusion into the pore of coal bodies is widely recognized be-
cause of their wide measurement range and high measurement accuracy [30–32]. The
low-temperature N2 adsorption method and low-pressure CO2 adsorption method were
employed to measure the characteristics of mesopores and micropores, respectively [33].
After obtaining the pore structure parameters, the introduction of fractal dimension calcu-
lation provides a quantitative characterization of the complexity of the pore network [34].

Due to the limitations of the type of pore structure testing method, different experi-
ments could only characterize the pore distribution at a certain scale but cannot fully reflect
the pore structure characteristics. In recent years, scholars have successively attempted
to combine multiple testing methods to jointly characterize the pore structure features
and pore distribution of coal [35–38]. However, some scholars have only tested meso-
pores and macropores [39], while others have not quantified the complexity of the pore
structure [40,41].

This study is to complete a more comprehensive joint characterization of a full aperture
about the pore structure in low-rank coal and to quantify the pore structure complexity.
Eight low-rank coal samples from the northern Shaanxi coalfield were used to investigate
the pore joint characterization. Pore structure characteristics are evaluated using mercury
injection, low-temperature N2 adsorption, and CO2 adsorption, to study the causes of pore
structure complexity in low-rank coal. The study had significant implications for CBM
reservoir and transport patterns.

2. Materials and Methods
2.1. Sample Preparation

Primary coal from eight different mines in the northern Shaanxi coalfield were selected
for the experiments, from Bailiang 5# coal seam (BL), Liangshuijing 4-3 coal seam (LSJ),
Daljuta (DLT), Ningtiaota 3-1 coal seam (NTT), Jianxin 4-2 coal seam (JX), Ruineng 401 coal
seam (RN), Xiaozhuang 4# coal seam (XZ) and Huangling 2# coal (HL). The distribution of
coal mines was shown in Figure 1.

The samples were collected at the newly exposed coal wall, sealed, and brought
back to the laboratory. The coal samples were crushed by grinding, and 2.4–4 mm coal
samples were screened for mercury injection. In addition, 0.18–0.25 mm coal samples
were screened for low-temperature N2 adsorption and carbon dioxide adsorption exper-
iments. An amount of 10 g of each sample was weighed to set aside. The experimental
coal samples were analyzed according to ISO 11722:2013 [42] (Solid mineral fuels—Hard
coal—Determination of moisture in the general analyzed test sample by drying in nitrogen) and
ISO 1171:2010 [43] (Solid mineral fuels-Determination of ash), and the maximum reflectance of
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the specular group was determined according to the national standard GBT6948-2008 [44]
(Method of determining microscopically the reflectance of vitrinite in coal). The test results were
shown in Table 1.
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Table 1. Results of coal quality analysis.

Sample ID
Proximate Analysis (%)

Rmax/%
Mad Aad Vdaf FCad

BL 0.81 27.36 12.72 59.43 0.33
LSJ 4.55 4.69 30.73 61.64 0.47
DLT 6.89 6.95 31.49 57.32 0.49
NTT 5.26 4.14 32.76 59.78 0.53

JX 2.94 9.05 36.66 52.70 0.55
RN 2.46 13.7 30.86 54.08 0.60
XZ 3.90 5.74 33.08 58.79 0.66
HL 2.1 4.86 31.03 62.76 0.68

Mad is Moisture, Vdaf is Volatile fraction, Aad is Ash, FCad is Fixed carbon, and Rmax is Maximum
vitrinite reflectance.

The low-rank coal samples with volatile matter were ranging from 12.72% to 36.66%
(10% to 40% volatile matter for low-rank coal) [45]. The specular group emissivity character-
ized the degree of deterioration of the coal samples (maximum specular group reflectance
Rmax < 0.68% for low-rank coal), the lower degree of coal deterioration with the lower
the Rmax.

2.2. High-Pressure Mercury Injection Experiments

The pore structure of the experimental coal samples was analyzed using an AutoProe
IV 9510 fully automatic mercury injection [46,47]. The test system diagram is shown in
Figure 2a.

Coal samples were prepared by weighing about 3 g, and it was dried at 70 ◦C for 8 h
and vacuumed in the dilatometer. The experimental temperature was 298 K, the maximum
working pressure was 414 MPa, and testable pore size ranges from 3 nm to 1000 µm.
During high-pressure mercury injection experiments, the native pore structure of the coal
sample was damaged as the mercury solution was pressed in. The experiment had a greater
advantage for mesoporous and macropore tests but a greater deviation for microporous
and mesoporous tests. The specific test conditions were as follows: in/out mercury contact
angle 130◦, surface tension 0.48 N/m, and expansion gauge volume 0.5 cc. The relationship
between inlet pressure and pore size can be obtained using the Washburn equation [48].
The pore surface area parameter can be determined using the theoretical model proposed
by Rootare [49].
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temperature N2 adsorption and carbon dioxide adsorption experiments.

2.3. Low Temperature N2 Adsorption Experiments and Low Pressure CO2 Adsorption Experiments

The pore structure of experimental coal samples was analyzed by ASAP 2460 specific
surface area and porosity tester [50]. The test system diagram is shown in Figure 2b. The
maximum working pressure is 133 MPa, and pore size test ranges from 0.35 nm to 500 nm.
The prepared coal samples were weighed to approximately 200 mg and dried at 70 ◦C for
8 h before the experiments were carried out.

Low-temperature nitrogen adsorption experiments are carried out at liquid nitrogen
temperature (77 K). The amount of nitrogen adsorbed on the solid surface depends on
the relative pressure of the nitrogen (P/P0). P is partial pressure, and P0 is saturation
steam pressure. When P/P0 is between 0.05 and 0.35, the relationship between adsorption
and relative pressure is in accordance with the BET equation, and it is the basis for the
determination of the specific surface area of powder materials by low-temperature nitrogen
adsorption. When P/P0 ≥ 0.40, nitrogen agglomerates in microporous. The parameters
such as pore volume, pore size distribution, and specific surface area can be determined
according to BJH or DFT theoretical models.

Low-pressure CO2 adsorption experiments were carried out at saturation temperature
(273 K). Testable pore sizes in the range of less than 2 nm. The principle of carbon diox-
ide adsorption experiments was similar to low-temperature N2 adsorption experiments.
However, carbon dioxide molecules are smaller and diffuse at a faster rate, it had a greater
saturation pressure at saturation temperature and can be tested on micropore.

In order to ensure the accuracy of the experimental data, each group of experiments
were tested three times. The final data used were the average of the three groups of
experiments. The relative error of each group is less than 5%.

3. Results and Discussion
3.1. Adsorption Curves and Pore Distribution Characteristics

The article used the IUPAC pore classification method. Pore was classified as microp-
ore (<2 nm), mesopore (2 nm to 50 nm), and macropore (>50 nm).

The mercury injection experiments focused on the pore characteristics of the meso-
porous and macropore. The mercury intrusion and exit curves are drawn based on the
experimental parameters of coal samples (Figure 3).

The opening degree of pore in coal samples could be reflected by different curves
with mercury entry and exit. All eight low-rank coal samples showed significant mercury
injection hysteresis loops, indicating that the open-pore spaces are more developed and
the inter-pore connectivity is better. The efficiency of mercury exit was calculated to be
30.85–48.34%. The mercury exit efficiency is medium, indicating that there are both open
pore and semi-open pore in coal samples, and the pore connectivity is good. Mercury exit
efficiency of low-rank coal is less than 40% with Rmax = 0.60% and Rmax < 0.50%. And there
were in the range of 40–50% with Rmax = 0.50–0.60% and Rmax > 0.60%. The calculations
show that the pore connectivity and openness of the more highly metamorphosed low-rank
coal are better than less metamorphosed low-rank coal.
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Figure 3. Mercury entry and withdrawal curves of the mercury intrusion experiments.

When the pressure is greater than 10 MPa, the compression effect of the coal matrix is
obvious [51,52]. Affected by this effect, the reflection of the real pore structure is biased.
With the increase of pressure, the deformation is more obvious, and the deformation of pore
under this pressure must be considered [53,54]. It is necessary to modify the experimental
data of mercury injection with pressure above 10 MPa, and the corresponding pore size is
about 135 nm. 

VxPi = VcPi − ZVm(Pi)Pi

Vm(Pi) = Vm − dVcPi
dPi

Pi

Z = 1
Vm

(
K − ∆VP

∆P

) (1)

where Pi is the mercury inlet pressure corresponding to the pore volume to be modi-
fied (>10 MPa), MPa; VPi is the hole volume test value corresponding to attack pressure
Pi, cm3/g; VXPi is the corrected pore volume corresponding to the inlet mercury pressure
Pi, cm3/g; Vm(Pi) is the coal matrix volume after the change of mercury injection pressure,
cm3/g; Vm is the volume of coal matrix, cm3/g; Z is compression coefficient of coal matrix;
∆VP is the cumulative pore volume value of mercury entry section to be corrected, cm3/g;
∆P is the difference between the maximum value and the minimum value of the mercury
injection pressure to be corrected, MPa; K is the slope of the high-pressure stage (>10 MPa).

The curves were obtained by fitting a linear regression to the mercury feed curve
(Figure 4).

The pore volume and specific surface area data were corrected for the high-pressure
section of the mercury injection experiment (Table 2).

Table 2. Correction results for mercury injection experimental data.

Simple ID K V/cm3·g−1 VX/cm3·g−1 S/cm3·g−1 SX/cm3·g−1

BL 1.300 × 10−4 0.0024 0.0015 0.1750 0.2828
LSJ 7.694 × 10−4 0.0153 0.0045 1.0897 3.6836
DLT 8.477 × 10−4 0.0154 0.0036 1.1764 4.9916
NTT 5.225 × 10−4 0.0095 0.0029 0.5989 1.9913

JX 3.903 × 10−4 0.0069 0.0013 0.4157 2.2026
RN 6.259 × 10−4 0.0010 0.0001 0.0642 0.0647
XZ 5.782 × 10−4 0.0100 0.0036 0.5840 1.6372
HL 2.952 × 10−4 0.0053 0.0020 0.3212 0.8500

K is the experimental result for pore volume of pore > 50 nm in diameter, VX is the corrected pore volume for
pore > 50 nm in diameter, S is the experimental result of the specific surface area of pore with a pore size > 50 nm,
SX is the specific surface area after correction for pore size > 50 nm pore.
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Low-temperature nitrogen adsorption experiments are better for mesopore [55]. The
adsorption isotherms were plotted from the low-temperature N2 adsorption experimental
data for each coal sample (Figure 5). LSJ, DLT, and NTT coal samples at the start of the
low-pressure section with the curve were biased towards the Y axis. These three coal
samples had a strong interaction with liquid nitrogen, with more microporous present
in this category and a strong adsorption potential within the microporous. The starting
segment was type I according to the IUPAC isotherm classification. The starting adsorption
curve of BL, JX, RN, XZ, and HL coal samples was type III, which had a weak interaction
force with liquid nitrogen.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 20 
 

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

20

22

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

Type Ⅲ adsorption isotherm

Q
u

an
ti

ty
 A

d
so

rb
ed

 (
cm

3
·g

−
1
)

Relative Pressure (P/P0)

   BL sample

   LSJ sample

   DLT sample

   NTT sample

   JX sample

   RN sample

   XZ sample

   HL sample

Type I adsorption isotherm

 

Figure 5. Low-temperature nitrogen adsorption isotherms. 

CO2 adsorption experiments are more capable of testing microporous. In the mi-

croporous stage, CO2 was presented as a monolayer adsorption or microporous filling on 

the coal surface. Therefore, the adsorption and desorption curves overlap (Figure 6). The 

shape of the isothermal sorption curve for low-rank coal samples was fitted by the Lang-

muir equation. The adsorption volume increased rapidly, and the adsorption curve is 

clearly raised upwards in the low relative pressure region. It tends to be straight in the 

high-pressure region. The adsorption capacity shows a general trend of decreasing with 

increasing coal deterioration, except for the BL, XZ, and HL coal samples. 

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

5

10

15

20

25

Q
u

an
ti

ty
 A

d
so

rb
ed

 (
cm

3
·g

−
1
)

Relative Pressure (P/P0)

 BL sample

 LSJ sample

 DLT sample

 NTT sample

 JX sample

 RN sample

 XZ sample

 HL sample

 

Figure 6. CO2 adsorption isotherms. 

The pore structure parameters tested by mercury pressure, low-temperature N2 ad-

sorption, and CO2 adsorption experiments are shown in Table 3. 

  

Figure 5. Low-temperature nitrogen adsorption isotherms.

CO2 adsorption experiments are more capable of testing microporous. In the mi-
croporous stage, CO2 was presented as a monolayer adsorption or microporous filling
on the coal surface. Therefore, the adsorption and desorption curves overlap (Figure 6).
The shape of the isothermal sorption curve for low-rank coal samples was fitted by the
Langmuir equation. The adsorption volume increased rapidly, and the adsorption curve
is clearly raised upwards in the low relative pressure region. It tends to be straight in the
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high-pressure region. The adsorption capacity shows a general trend of decreasing with
increasing coal deterioration, except for the BL, XZ, and HL coal samples.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 20 
 

0.0 0.2 0.4 0.6 0.8 1.0
0
2
4
6
8

10
12
14
16
18
20
22

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12
Type Ⅲ adsorption isotherm

Q
ua

nt
ity

 A
ds

or
be

d 
(c

m
3 ·g

−1
)

Relative Pressure (P/P0)

   BL sample
   LSJ sample
   DLT sample
   NTT sample

   JX sample
   RN sample
   XZ sample
   HL sample

Type I adsorption isotherm

 
Figure 5. Low-temperature nitrogen adsorption isotherms. 

CO2 adsorption experiments are more capable of testing microporous. In the mi-
croporous stage, CO2 was presented as a monolayer adsorption or microporous filling on 
the coal surface. Therefore, the adsorption and desorption curves overlap (Figure 6). The 
shape of the isothermal sorption curve for low-rank coal samples was fitted by the Lang-
muir equation. The adsorption volume increased rapidly, and the adsorption curve is 
clearly raised upwards in the low relative pressure region. It tends to be straight in the 
high-pressure region. The adsorption capacity shows a general trend of decreasing with 
increasing coal deterioration, except for the BL, XZ, and HL coal samples. 

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

5

10

15

20

25

Q
ua

nt
ity

 A
ds

or
be

d 
(c

m
3 ·g

−1
)

Relative Pressure (P/P0)

 BL sample
 LSJ sample
 DLT sample
 NTT sample
 JX sample
 RN sample
 XZ sample
 HL sample

 
Figure 6. CO2 adsorption isotherms. 

The pore structure parameters tested by mercury pressure, low-temperature N2 ad-
sorption, and CO2 adsorption experiments are shown in Table 3. 

  

Figure 6. CO2 adsorption isotherms.

The pore structure parameters tested by mercury pressure, low-temperature N2 ad-
sorption, and CO2 adsorption experiments are shown in Table 3.

Table 3. Test parameters for mercury injection, low-temperature N2 adsorption, and low-pressure
CO2 adsorption experiments.

Sample ID BL LSJ DLT NTT JX RN XZ HL

Mercury injection
experiment

Porosity/% 8.39 15.81 16.31 13.37 9.33 6.62 11.28 8.47
Average pore size/nm 19.90 14.10 16.80 12.90 12.90 16.70 13.40 12.80
Pore volume/cm3·g−1 0.0710 0.1515 0.1588 0.1257 0.0835 0.0434 0.1038 0.0772
Pore specific surface

area/m2·g−1 14.2830 42.9030 37.8090 39.0020 25.8020 10.3630 31.069 24.1220

Low pressure
nitrogen

adsorption
experiment

Average pore size/nm 11.08 4.85 4.56 6.43 7.80 6.64 10.57 10.21
BJH pore volume/cm3·g−1 0.0059 0.0223 0.0239 0.0172 0.0063 0.0153 0.0160 0.0092
BET pore specific surface

area/m2·g−1 2.5756 25.8364 31.9735 12.8436 3.1947 16.6833 6.6900 3.9026

Carbon dioxide
adsorption
experiment

Pore volume/cm3·g−1 0.0206 0.0271 0.0281 0.0244 0.0133 0.0128 0.0213 0.0133
Pore specific surface

area/m2·g−1 132.856 168.463 153.955 141.948 94.137 85.012 115.587 102.615

The mercury injection experiments test data showed that the porosity of the eight
low-rank coal samples ranged from 6.62% to 16.31%. The DLT coal sample had the largest
porosity, and the RN coal sample was the smallest, with a porosity difference of 9.69%. The
selected coal samples have a wide range of pore coverage. The average pore size ranged
from 12.8 nm to 19.9 nm. The difference between BL coal sample with the largest average
pore size, and HL coal sample with the smallest was 1.55 times. The difference between
DLT coal sample with the maximum pore volume, and RN coal sample with the minimum
value is 3.66 times. The difference between LSJ coal sample with the maximum specific
surface area and RN coal sample with the minimum is 4.14 times.

The low-temperature N2 adsorption experiments test data showed that the average
pore size of the eight low-rank coal samples ranged from 4.56 nm to 11.08 nm. The average
is small overall compared to the mercury injection experiment. The BL sample had the
largest pore size, consistent with the results of the mercury injection test, and differed
by a factor of 2.43 from DLT sample, which had the smallest average pore size. The
specific surface area measured by BET method is smaller than that obtained by the mercury
injection test, and the overall variation is greater. The difference between DLT sample with
the largest specific surface area and the smallest BL coal sample was 12.39 times. The pore
volumes measured by BJH method are also smaller than those obtained by the mercury



Sustainability 2023, 15, 9599 8 of 19

injection test. The difference between DLT sample with the largest pore volume and the
smallest BL sample was 4.05 times.

The low-pressure CO2 adsorption experiments test data showed that pore volume
and specific surface optimum of low-rank coal microporous were calculated based on DFT
model analysis. The distribution is consistent with the results of the mercury injection
experimental tests. The DLT sample had the largest pore volume and RN sample had
the smallest pore volume, with a difference of 2.20 times. The LSJ coal sample has the
maximum specific surface area, and RN coal sample has the least specific surface area, with
a difference of 1.98 times. The variation in pore volume and specific surface area of the
micropore section varies less.

3.2. Joint Characterization of the Pore Structure of Full Aperture of Low-Rank Coal

Due to the different test principles and ranges of the three pore structure tests, it
may have some errors in the test results for the same pore size. Using the experimental
data above, the least difference or overlap in test results for the same pore size range was
selected to connect and characterize the pore structure of the full aperture of the low-rank
coal. The position of the pore joint should be within the test range of the corresponding test
method. The three experimental data were bridged at 1.46~1.66 nm and 45.47~46.06 nm to
plot the distribution of pore volume and pore specific surface area (Figures 7 and 8).
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From Figure 7, the pore space developed in the low-rank coal is mainly concentrated in
the microporous stage. In the microporous section, the increase in pore volume was greater
between 0.5 and 0.7 nm, and it reached a maximum around 0.55 nm. After 0.55 nm, the pore
volume gradually decreases and shows a multi-peaked distribution. Small fluctuations
in pore volume variation in the mesoporous section, with a tendency for the pore volume
to increase as the pore size increases. The low-rank coal in the large pore section shows a
trend of increasing and then decreasing between pore sizes of 100 and 1000 nm, with pore
volumes decreasing gradually and fluctuating less after greater than 1000 nm.

From Figure 8, The specific surface area development of low-rank coal is mainly con-
centrated in the microporous stage. It had a large difference compared with the mesoporous
and macropore stages. The peak of the microporous phase occurs around 0.55 nm, after
which the specific surface area gradually decreases and shows a multi-peak distribution.
The specific surface area of the mesoporous and macropore stages tends to decrease more
steadily with the increase in pore size.

The pore structure characteristics are shown in Table 4. The specific surface area of the
eight coal samples is mainly controlled by micropores. This can also be seen from Figure 8.
The proportion of micropores reached 79.73–96.56%. The change rule of pore volume ratio
is more complicated. The largest proportion of micropores is JX coal sample, accounting for
53.10%. The largest proportion of mesopores is RN coal sample, accounting for 46.81%. The
largest proportion of macropores is DLT coal sample, accounting for 51.81%. As the degree
of metamorphism increases, the coal is subjected to different stages of coalification. The
evolution of pore space in different pore sizes appears to be significantly different due to the
influence. Pore volume is more significantly influenced by coalification. The pore-specific
surface area also has the same evolutionary characteristics as the pore volume. As the
trends in specific surface area in the full aperture are mainly controlled by the microporous,
the magnitude of change in the mesopore and macropore sections of the data is its slightest.
The change rule is obvious. The change in pore volume with the increase in pore size
is more complicated. Thus, this discussion focuses on the trends in the pore volume of
low-rank coal.

Table 4. Pore structure characteristics of full aperture section.

Sample ID Pore
Volume/cm3·g−1

Proportion of Pore Volume/% Specific Surface
Area/m2·g−1

Proportion of Specific Surface Area/%

Vmic Vmes Vmac Smic Smes Smac

BL 0.0391 52.36 10.26 37.39 63.6561 96.56 2.99 0.46
LSJ 0.0839 32.00 22.08 46.80 100.6521 81.02 15.29 3.69
DLT 0.0963 28.70 19.48 51.81 106.0858 79.73 15.22 5.04
NTT 0.0522 44.93 26.96 28.11 85.8990 86.26 11.26 2.49

JX 0.0257 53.10 19.31 27.59 42.9067 94.68 0.01 5.31
RN 0.0274 47.56 46.81 5.64 45.8984 82.71 17.13 0.17
XZ 0.0478 41.94 23.99 34.07 70.9783 90.25 7.33 2.42
HL 0.0252 41.85 27.13 31.02 35.7180 89.05 8.56 2.39

Vmic is volume of micropore, Vmes is volume of mesopore, Vmac is volume of macropore. Smicis the specific
surface area of micropores, Smes is the specific surface area of mesopores, and Smac is the specific surface area
of macropore.

The microporous in low-rank coal were smaller pore formed by the stacking of macro-
molecular structures in the coal. In addition, there would exist some interlayer pore. The
process of microporous evolution has similar characteristics to mesopore. The fracture
of functional groups, branched chains, etc., in the macromolecular structure of the coal
produces gas and forms some of the microporous. During this process, the increase in
aromatic ring sheet layers of the microporous pore caused the aromatic sheet layers to stack
up against each other as interlayer pore increases and thus the volume of the microporous
pore increases.
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The evolution of the mesopore is mainly controlled by the stacking of macromolecules
such as coal molecular chains and aromatic ring lamellae. As the coalification process
proceeds, the aromatization of the coal gradually increases and the condensation of the
aromatic thick ring system further increases. At higher levels of metamorphism, some
branched chains in coal are synthesized into aromatic rings and reduced. The macro-
molecular structure is more compact, and the molecular spacing is reduced, resulting in a
reduction in mesopore pore volume. The pore volume of low-rank coal mesopore evolves
in a similar trend to that of large pore with coalification but changes more smoothly during
the coalification jump stage.

The change in macropore has the most significant effect on the change with pore
volume in the full aperture. Excluding the effect of coalification jump stage on pore volume,
the pore volume tends to increase and then decrease as the degree of metamorphism in-
creases. The turning point of the change occurs at Rmax = 0.50%, when the first coalification
jump begins. With the end of the coalification jump and the onset of the cracking reaction
in the coal body, the volume of macropore pore space begins to decline.

3.3. Fractal Dimension Calculation of Coal Pore

Low-rank coal has strong heterogeneity and complex pore structure. Fractal geometric
characteristics could be used to study the irregularity of pore structure and surface and to
characterize the adsorption capacity of low-rank coal. The pore fractal dimension obtained
by mercury intrusion experimental data was calculated by thermodynamic model [56].
The Frenkel–Halsey–Hill (FHH) model was used to calculate the pore fractal dimension
obtained from the experimental data of low-temperature N2 adsorption [57]. Combined
with the data obtained by fitting the two models, the comprehensive fractal dimension is
calculated to characterize the complexity of the pore structure of low-rank coal.

3.3.1. Fractal Dimension Based on a Thermodynamic Model

During the mercury injection process, the amount of incoming mercury gradually
increases as the pressure increases, resulting in constant increase in the surface energy of
the pore [58]. The increase in the surface energy of mercury entering the pore is equal to the
work exerted on the mercury by the external environment. The incremental pore surface
energy in the whole system is consistent with the work done by the surroundings, thus
giving the following Equation (2)

dWn = σ cos αdS (2)

where Wn is the surface energy (J), σ is the mercury surface tension (0.48 N/m), α is the
contact angle between the mercury and the solid surface (130◦), and S is the specific surface
area of the pore (m2).

After the correction of Equation (2), the following equation was obtained:

ln
Wn

r2
n

= D f ln
V1/3

n
rn

+ ln C (3)

where rn is the pore diameter (nm), Vn is the pore volume (m3), and Df is the fractal
dimension of the pore surface area.

According to Equation (3), the fractal dimension was calculated for low-rank coal
samples with pore size greater than 50 nm, and a fitting model of thermodynamic fractal
was obtained (Figure 9).

The fitting results are shown in Table 5.
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Table 5. Fractal dimension that is based on the thermodynamic model.

Sample Fitting Equations R1
2 D1

BL y = 2.8737x + 7.7737 0.9925 2.8737
LSJ y = 2.9219x + 7.9515 0.9953 2.9219
DLT y = 2.9397x + 8.1395 0.9953 2.9397
NTT y = 2.7982x + 6.9738 0.9926 2.7982

JX y = 2.7646x + 6.6578 0.9919 2.7646
RN y = 2.8261x + 7.4171 0.9894 2.8261
XZ y = 2.7474x + 6.4992 0.9918 2.7474
HL y = 2.7631x + 6.6941 0.9907 2.7631

3.3.2. Fractal Dimension Based on FHH Model

The FHH model, first proposed by Frenkel, Halsey and Hill, describes the theory
of multilayer adsorption of gas molecules in porous media and is relatively simple to
calculate [59]. On a fractal surface in a capillary condensation region and non-homogeneous
porous solids, Avnir established the FHH equation of gas adsorption theory by studying
the adsorption of gas molecules [60].

ln V = C + (Dh − 3) ln[ln(
P0

P
)] (4)

where V is the amount of gas adsorbed at relative air pressure (cm3/g). P0/P is the relative
pressure, C is a constant, and Dh is the value of the fractal dimension of the porous material.

According to Equation (4), the fractal dimension of low-rank coal samples with meso-
porous was fitted by the FHH model, shown in Figure 10. Fitting equation and fractal
dimension as shown in Table 6. At ln[ln(P0/P)],the value of lnV changed significantly, so
piecewise fitting fractal dimension values are presented here. The fitting degrees were high,
which above 0.93. The fractal dimension ranged from 2.4794 to 2.8123, with an average of
2.6656. The fractal characteristics were obvious, and the pore structure of this section was
highly complex.

The fractal dimension of low-rank coal samples with microporous was also fitted by
the FHH model, as shown in Figure 11.
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LSJ y = −0.2642x + 0.0942 0.9862 2.7358 y = −0.7645x−0.3073 0.9526 2.2355 2.5326
DLT y = −0.2589x + 0.6009 0.9615 2.7411 y = −0.6817x + 0.1944 0.9688 2.3183 2.5694
NTT y = −0.2082x + 0.4790 0.9326 2.7918 y = −0.9773x−0.1844 0.9474 2.0227 2.4794

JX y = −0.1339x + 1.8445 0.9673 2.8661 y = −0.4811x + 1.4708 0.9941 2.5189 2.7251
RN y = −0.0779x + 2.4487 0.9686 2.9221 y = −0.3852x + 2.1473 0.9854 2.6148 2.7973
XZ y = −0.0833x + 2.5326 0.9872 2.9167 y = −0.3402x + 2.3229 0.9713 2.6598 2.8123
HL y = −0.2632x + 1.1156 0.9772 2.7368 y = −0.5951x + 0.7743 0.9836 2.4049 2.6020
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Figure 11. FHH model fitting curve of the microporous.

Fitting equation and fractal dimension are shown in Table 7. The fitting degrees of
micropore section were high, which was above 0.98. The fractal dimension is 1.0084 to
1.8414, and the average value is 1.4107.
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Table 7. Fractal dimension of the microporous based on FHH model.

Sample Fitting Equations R3
2 D3

BL y = −2.7544x + 6.3004 0.9894 1.2456
LSJ y = −2.4086x + 6.1353 0.9911 1.5914
DLT y = −2.3040x + 5.9513 0.9889 1.6960
NTT y = −2.3447x + 5.8928 0.9872 1.6554

JX y = −2.8999x + 6.1255 0.9893 1.1001
RN y = −2.9962x + 6.2010 0.9951 1.0084
XZ y = −2.1586x + 5.4703 0.9889 1.8414
HL y = −2.8524x + 6.2028 0.9942 1.1476

3.4. Relationship between the Fractal Dimension of Low-Rank Coal and the Degree of
Coal Metamorphism

The calculated fractal dimensions were concentrated between 2.4 and 3.0, and the
correlation degree is 86.09–98.30%, with high correlation and good fractal characteristics.
The fractal dimension of RN sample joint pore greater than 50 nm pore size segment was
greater than 3. It had been suggested that there may be compressive damage to the fractures
and pore in the coal as a result of high-pressure mercury injection. It is also possible that the
coal seam is highly metamorphosed or highly fractured and deformed. The high-pressure
stage (>10 MPa) and pore sizes greater than 50 nm have been corrected for compression. It
was unlikely that the first cause of the fractal dimension was greater than 3. In conjunction
with the above experimental analysis, possible due to a high degree of fracture deformation
in RN coal sample.

As a porous, non-homogeneous solid, coal has different fractal characteristics at
different pore-size sections. In order to better characterize quantitatively the complexity of
the experimental coal samples and their rough surface, the comprehensive fractal dimension
was calculated. The comprehensive fractal dimension was obtained by weighing the pore
volume ratios of different pore size sections as weights and summing the fractal dimensions
of different pore size sections.

Dt =∑ Di Ti (5)

where Dt is the integrated fractal dimension of the coal, Di is the fractal dimension corre-
sponding to the i pore size section, Ti s the pore volume ratio corresponding to the i pore
size section (%), and i is the i Pore Size Section and is a positive integer.

The pore volume share of microporous, mesopore and macropore was calculated.
Based on the range of applications of the fractal model discussed above, the integrated
fractal dimension is calculated for the full aperture section. The integrated fractal dimension
of the full aperture section of the coal sample is calculated from Equation (5). The results
are shown in Table 8.

Table 8. Comprehensive fractal dimensions of full aperture.

Sample
Microporous Stage Mesopore Stage Macropore Stage Synthesis of Fractal

DimensionsR1
2 D1 V1/% R2

2 D2 V2/% R3
2 D3 V3/%

BL 0.9894 1.2456 52 0.9569 2.8066 10 0.9925 2.8737 38 1.9916
LSJ 0.9911 1.5914 32 0.9726 2.5326 21 0.9953 2.9219 47 2.4397
DLT 0.9889 1.6960 29 0.9645 2.5694 19 0.9953 2.9397 52 2.5087
NTT 0.9872 1.6554 45 0.9386 2.4794 27 0.9926 2.7982 28 2.1979

JX 0.9893 1.1001 53 0.9782 2.7251 19 0.9919 2.7646 28 1.8749
RN 0.9951 1.0084 48 0.9754 2.7973 46 0.9894 2.8261 6 1.9404
XZ 0.9889 1.8414 42 0.9807 2.8123 24 0.9918 2.7474 34 2.3825
HL 0.9942 1.1476 42 0.9798 2.6020 27 0.9907 2.7631 31 2.0411

During coal formation, coalification does not evolve linearly but undergoes several
jumps. Low-rank coal pore is subject to more complex changes by coalification [61,62]. The
aliphatic, alicyclic functional groups, and side chains are shed from the aromatic layer to
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form methane-based volatiles when the coalification was at a Rmax of 0.50% to 0.60% [63].
The asphaltene caused by asphalting shows that the first jump begins.

During the first coalification jump, the pore structure is controlled by the dissociation
and polymerisation of functional groups and aromatic structure, and the trend of change
fluctuates considerably. The phenomenon is most evident in the microporous stage. Here,
it is shown that, from Rmax = 0.50%, a substantial reduction in pore volume and specific
surface area occurs, and the comprehensive fractal characteristics of the full aperture
diminish sharply (Figure 12).
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Figure 12. Trends in integrated fractal dimensionality with coal evolution.

As the coalification of low-rank coal increases, the evolution of the pore structure of
low-rank coal can be broadly divided into two stages, excluding the coalification jump
stage. The first stage is before the start of the first coalification jump (Rmax < 0.30%), The
chemical reactions in coal are dominated by the formation of hydrocarbons, the destruction
of coal molecular chains and aromatic ring lamellae, the gradual increase in pore volume,
and the increase in specific surface area of coal. After the end of the first coalification jump,
the coalification reaction gradually changed to a predominantly cracking reaction. At this
stage, moisture, volatile matter, hydrogen, and oxygen content gradually decrease. The
organic molecules are gradually arranged in a regular manner. Furthermore, as the degree
of polymerisation increases, the carbon content gradually increases. The side chains of the
coal molecules decrease, and the layer space decreases, resulting in a gradual decrease in
the pore volume and specific surface area of the coal.

In order to study the development and complexity of the pore volume and specific
surface area of low-rank coal, the pore volume and specific surface area variation graphs
were obtained, as shown in Figures 13 and 14.
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From Figure 13, the trends in pore volume and specific surface area with coal evolution
are similar to those in integrated fractal dimensionality with coal evolution. The trend in
specific surface area coincides well with the trend in integrated fractal dimension with an
increasing degree of metamorphism. As the specific surface area is mainly controlled by
the microporous, the complexity of the pore structure depends more on the microporous.

From Figure 14, there is an overall trend of increasing pore volume and specific surface
area as the number of integrated fractal dimensions increases. The larger the pore volume
or specific surface area, the more complex the pore structure is. The pore volume and
specific surface area before the completion of the coalification jump are larger than those
after the completion of the coalification jump. In these two stages, the pore volume and
specific surface area increase with the increase of pore structure complexity.

The study shows that the change in specific surface area with Rmax is most consistent with
the change in total fractal dimension with Rmax. To verify the accuracy of the experimental
law, some experimental data in the literature are cited, and the results are basically consistent
with the law obtained in this paper (Figure 15). The law of pore structure variation with
coalification mentioned in this paper can be confirmed by subsequent research.
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4. Conclusions

In mercury injection experiments, the pore volume and specific surface area of low-
rank coal depend mainly on the mesopore. Coal samples with Rmax between 0.40% and
0.55% also have a large number of developed pores in the large pore section. In low-
temperature N2 adsorption experiments, it shows that pore volume and specific surface area
were more developed in 2 nm to 50 nm mesopore section. In CO2 adsorption experiments,
pore volume and specific surface area of low-rank coal depend on the microporous and
show an “increasing–decreasing–increasing” trend at 0.4 nm–0.55 nm–0.7 nm–0.9 nm.

The pore structure characteristics of full aperture were characterized using low-
pressure CO2 adsorption to characterize the microporous, low-temperature N2 adsorption,
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and mercury compression. It is bridging at 1.46–1.66 nm and 45.47–46.06 nm, respectively.
The pore-specific surface area of the full aperture was mainly controlled by micropores.
The specific surface area of micropores accounts for 79.73–96.56% of the full aperture. The
change in pore volume is more complicated due to the influence of coalification jump. The
change rule needs specific analysis.

The pore volume of the full aperture of low-rank coal is mainly controlled by the
macropore via the segmental union pore. The specific surface area is mainly controlled
by micropores, which are more effectively controlled. The pore fractal characteristics of
full aperture in low-rank coal vary between the different degrees of metamorphism, with
the fractal dimension ranging from 1.8749 to 2.5087. The macropore fractal features are
most pronounced, with fractal dimensions ranging from 2.7474 to 2.9397. Mesopores are
next in line, with fractal dimensions ranging from 2.4794 to 2.8123. The micropores are
most affected by coalification and have the weakest fractal characteristics, with fractal
dimensions of 1.0084 to 1.8414.

The fractal characteristics of low-order coal fluctuate in Rmax = 0.50–0.60% stage as the
degree of metamorphism increases by the coalification jump. In Rmax =0.30–0.50% stage,
the pore structure complexity of low-rank coal increases with the vitrinite reflectivity. After
the first coalification jump, the complexity of the pore structure in low-rank coal decreases
with the vitrinite reflectivity.
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