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Abstract: The impact of Partial Shading Conditions (PSCs) significantly influences the output of
Photovoltaic Systems (PVSs). Under PSCs, the Power-Voltage (P-V) characteristic of the PVS unveils
numerous power peaks, inclusive of local maxima and a global maximum. The latter represents the
optimum power point. Traditional Maximum Power Point Tracking (MPPT) algorithms struggle
to track the Global Maximum Power Point (GMPP). To address this, our study emphasizes the
creation of a novel algorithm capable of identifying the GMPP. This approach combines the Cuckoo
Search (CS) MPPT algorithm with an Integral Super-Twisting Sliding Mode Controller (STSMC)
using their benefits to enhance the PVS performance under PSCs in terms of high efficiency, low
power losses, and high-speed convergence towards the GMPP. The STSMC is a second-order Sliding
Mode Control strategy that employs a continuous control action that attenuates the “chattering”
phenomenon, caused when the first-order SMC technique is employed. Indeed, the proposed CS-
STSMC-MPPT algorithm consists of two parts. The first one is based on the CS algorithm used for
scanning the power-voltage curve to identify the GMPP, and subsequently generating the associated
optimal voltage reference. The second part aims to track the voltage reference by manipulating
the duty cycle of the boost converter. The proposed CS-STSMC-MPPT algorithm is featured by its
strength against uncertainties and modeling errors. The obtained simulation results underline a high
convergence speed and an excellent precision of the proposed method in identifying and tracking
the GMPP with high efficiency under varying shading scenarios. For comparative purposes, this
method is set against the hybrid CS-Proportional Integral Derivative, the conventional CS, the Particle
Swarm Optimization, and the Perturb and Observe algorithms under different PSCs, including zero,
weak, and severe shading. Simulation conducted in the Matlab/Simulink environment confirms the
superior performance of the proposed CS-STSMC-MPPT algorithm in terms of precision, convergence
speed, efficiency, and resilience.

Keywords: photovoltaic system; partial shading conditions; maximum power point tracking; cuckoo
search algorithm; second-order super-twisting sliding mode control

1. Introduction

The increasing energy demand worldwide has given rise to a viable solution which
is solar energy thanks to its purity, limitlessness, and eco-friendliness [1,2]. Nevertheless,

Sustainability 2023, 15, 9753. https://doi.org/10.3390/su15129753 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15129753
https://doi.org/10.3390/su15129753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0006-9366-7534
https://orcid.org/0000-0001-5600-0825
https://orcid.org/0000-0001-6819-3695
https://orcid.org/0000-0002-1542-5939
https://orcid.org/0000-0001-8221-2610
https://doi.org/10.3390/su15129753
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15129753?type=check_update&version=1


Sustainability 2023, 15, 9753 2 of 38

seasonal variations and weather conditions have an impact on the electricity supplied by
Photovoltaic Systems (PVSs), especially solar radiation and environmental temperature
variation. These conditions along with the nonlinear relationship of the PVS output current
and voltage can reduce the energy conversion efficiency of the Photovoltaic (PV) panels
and can result in the non-similarity of the Maximum Power Point (MPP) and the PV panel
operating point. Therefore, MPP Tracking (MPPT) is necessary to find and extract the MPP
at its ideal value [3,4].

Usually, the curve of the P-V characteristic has one peak due to the nonlinearity of the
PV output characteristics, under even irradiation [5]. However, the PVS may still come into
contact with a variety of environmental elements, including clouds, dust, leaves, buildings,
bird droppings, electric poles, and others. These can readily throw uneven shadows on the
surface of the PV array, which can cause multiple peaks on the P-V output [6,7] where the
maximum amount of power produced is defined as a Global MPP (GMPP) [8] presented by
the biggest peak, and the others represent the Local MPP (LMPP). Then, reliable GMPP
Tracking (GMPPT) is necessary under Partial Shading Conditions (PSCs).

The efficacy of these MPPT controllers lies in their ability to provide accuracy, robust-
ness, and high tracking speed. To this end, various MPPT techniques have been proposed,
all designed to enhance the PVS performance. These techniques can be classified into
several categories, and each class has its strengths and weaknesses. The most known is
the conventional algorithm thanks to its simplicity and satisfactory performance, under
particular conditions, such as Perturb and Observe (P&O) [9,10] and Incremental Conduc-
tance (INC) [11]. Simplicity, low implementation costs, and satisfactory performance are
the benefits of conventional techniques. However, they have several limitations, including
the steady-state accuracy of the PV output power around the MPP [12], the slow tracking
speed under a rapid variation in solar irradiance and the inefficiency of GMPPT under
PSCs [13]. They often fail to distinguish the GMPP from LMPPs, typically resulting in these
methods being trapped at the LMPP. Consequently, this leads to a substantial loss in the
overall power output of the PVS. These flaws can drastically reduce the PVS performance.

These shortcomings underline the need for advanced MPPT techniques, capable of
identifying the GMPP even under PSCs. Hence, to distinguish the real GMPP from other
LMPPs, a variety of MPPT methodologies and alternate solutions have been employed in
the literature [14–16]. In Ref. [17], the authors discussed the challenges that PSCs posed to
the efficiency of PV power generation and the MPPT. To address these issues, the authors
suggested the use of an Artificial Neural Network (ANN) model to predict the MPP under
PSCs. The authors in [18] outlined an examination of 20 optimized GMPPT methods,
all tested under the same platform involving a PV boost feeding a battery. The shading
patterns and sampling time were standardized to maintain consistency across all tests.
The focus of the review [19] was centered on several crucial GMPPT strategies. These
strategies included the improved conventional methods which were recognized for their
significance in enhancing the efficiency of PVs under varying conditions. Further details
of these algorithms and their respective performance evaluations were provided to better
understand their applicability and potential. The authors in [20] offered a comprehensive
review of various MPPT techniques, focusing on their classifications as offline, online, and
hybrid techniques. These were assessed under both uniform and non-uniform irradiance
conditions. The authors in [19] highlighted that intelligent MPPT techniques outperformed
both offline and online methods in terms of tracking accuracy, efficiency, and minimized
steady-state oscillations. Furthermore, intelligent techniques tracked the GMPP under
PSCs and the effect of the PSC on MPPT remained a key issue for researchers to resolve.

Building on the comprehensive review in the aforementioned articles, it is clear that
intelligent methods such as Artificial Intelligence (AI) methodologies have demonstrated a
notable capability of handling the complexities and irregularities of such conditions, effec-
tively optimizing the PVS performance. AI-based techniques such as Fuzzy Logic Control
(FLC) [13] and ANN [21–26] have emerged as robust tools in addressing the challenges
presented by varying irradiance conditions, particularly under partial shading. These
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methods excel in dealing with non-linear and uncertain systems, often resulting in en-
hanced efficiency and reliability of power tracking in PVS under different conditions. These
algorithms can manage the multiple power peaks induced by PSCs, efficiently tracking the
GMPP. They have been demonstrated to improve the accuracy, efficiency, and reliability
of MPPT enhancing the overall performance of PVSs. However, it is worth noting that
these methods come also with challenges. They can be computationally intensive, requir-
ing significant processing power and often more complex hardware. The need for large
amounts of training data can be a limitation as well, especially in contexts where data may
be difficult to collect [21–26]. These challenges highlight the need for alternate strategies
that can address the shortcomings of AI, particularly in the context of PVSs and GMPPT.
Metaheuristic algorithms offer a compelling solution in this regard. These techniques, such
as Particle Swarm Optimization (PSO) [27,28], Genetic Algorithms (GAs) [29,30], Simulated
Annealing (SA) [31], and Ant Colony Optimization (ACO) [32], Grey wolf optimization
(GWO) [33], Crew Search Algorithm (CSA) [15], and Cuckoo Search (CS) algorithm [16],
and others, have shown to be highly effective in GMPPT under PSCs. These algorithms
offer flexibility and are capable of exploring a broad solution space to find near-optimal
solutions in a reasonable time frame. In light of the strengths of these techniques, and con-
sidering their suitability to handle the complex GMPPT optimization problem under PSCs,
our work is based on the application of metaheuristic algorithms. Given their potential
to improve the efficiency and reliability of PVSs under PSCs, this direction of research is
compelling and warrants further exploration [34]. Metaheuristics, with their demonstrated
advantages [35], appear well-suited to address the challenges posed by GPPT in PVSs
under PSCs. However, it is equally important to acknowledge that these methods come
with their own set of challenges, such as the potential for premature convergence and the
need for careful parameter tuning.

Among the most important meta-heuristic methods, the PSO-MPPT algorithm was
introduced by James Kennedy and Russel Ebhart in 1995 [36]. PSO-MPPT algorithm
is a swarm intelligence-based metaheuristic approach inspired by the intelligent social
movement of birds in flocks. This method is an efficient method in tracking the MPP even
under PSCs, but it takes a long time convergence [36,37]. PSO-MPPT is sensitive to the
parameters of the algorithm since it uses three parameters: ω, c1, and c2 corresponding
to the inertia weight, cognitive, and social coefficients, respectively. Bad selection of
these parameters can lead to blocking in the local optimum or a slow convergence [38].
Generally, the CS-MPPT algorithm is less sensitive to the parameters and can better avoid
the local optimum thanks to the levy random walk which makes it more robust in different
situations [16,38–44]. Therefore, our work is based on this algorithm.

The CS-MPPT algorithm is a highly popular metaheuristic method [40,44] renowned
for its fast convergence time and minimal steady-state error [45]. Researchers from diverse
fields have taken great interest in the CS algorithm and successfully applied it to solve a
range of problems [46]. Simplicity, few control parameters, and ease of implementation,
along with its quick convergence and low steady-state error, contribute to its widespread
adoption. However, a notable limitation of the conventional CS algorithm lies in its random
initialization of cuckoo populations within host nests. This limits its global exploration
ability, affects the convergence performance, and increases the probability of becoming
trapped in a local optimum in multi-optima systems [47].

Numerous solutions have been suggested to improve the effectiveness of the con-
ventional CS algorithm when applied to the GMPP under PSCs. In Ref. [48], the author
introduced an improved CS algorithm for MPPT in PV module arrays. The algorithm
enhanced tracking efficiency by adjusting the step factor based on the PV characteristic
curve slope and a number of iterations. The simulation results show that the improved
algorithm achieved faster and more precise MPPT, improving power generation efficiency
under various shading conditions. It demonstrated robustness and adaptability, applicable
to different connection configurations without any parameter modification. In Ref. [49], the
authors focused on enhancing the conventional CS algorithm through the introduction of a



Sustainability 2023, 15, 9753 4 of 38

novel approach known as Dynamic CS (DCS). In contrast to the conventional algorithm,
which employed a small set of randomly generated initial values, the DCS method adopted
a different strategy by generating a larger number of initial particles with incrementally
increasing values. Additionally, the study proposed an optimized algorithm that restricted
the search space based on the evolution of duty cycle values and the discrepancy between
the maximum and minimum values of PV output powers. This optimization technique
enabled efficient swapping of the entire particles’ search space, leading to a prompt and
seamless convergence towards the steady GMPP. The method that was developed demon-
strated exceptional precision and reliability in achieving MPPT in PV arrays. It exhibited
high tracking speed and effectively minimized output power fluctuations, enhancing the
overall performance of the PVS. In Ref. [43], an enhanced CS algorithm was presented. This
improved algorithm addressed the limitations of the conventional approach. By reducing
the exploration area after each iteration, the proposed algorithm improved the convergence
time, minimized the power oscillation, and reduced the system power losses. The simula-
tion and practical experiments showed that the suggested algorithm outperformed other
methods, demonstrating its effectiveness in optimizing the search process for MPPT. The
algorithm named in [16] as the Improved CS (ICS), enhances the tracking mechanism of
the Original CS (OCS) algorithm. The ICS algorithm employed a novel strategy where
the worst particle was attracted toward the global best. This was achieved by adjusting
the position of the worst cuckoo using the difference between the worst and best cuckoo
positions, multiplied by a random value. By iteratively replacing the worst cuckoo with a
particle closer to the best cuckoo, the algorithm achieved faster convergence and improved
steady-state performance. The article presented simulation and experimental results,
demonstrating the effectiveness of the ICS algorithm in reducing convergence time and
steady-state oscillations. These findings highlighted the superiority of the ICS algorithm
over the original CS strategy and other optimization techniques considered in the study.
Moreover, the authors recommended using four searching agents with the ICS algorithm
when dealing with P-V curves that have more than five peaks. However, if the number of
peaks exceeds five, they suggest using six agents for optimal performance. Increasing the
number of agents in an optimization algorithm could impact the complexity of the system.
As the number of agents increased, the computational and memory requirements of the
algorithm typically would rise, resulting in higher complexity. Similarly, the utilization of
three parameters in the ICS-MPPT algorithm contributed to its overall complexity.

In order to enhance the performance of the CS-MPPT algorithm, a Proportional-
Integral-Derivative (PID) controller was integrated with the CS, resulting in a hybrid CS-
PID approach, as shown in [42]. The integration of these two techniques aimed to mitigate
the challenges posed by PSCs in PVSs. This hybrid method aimed to effectively track GMPP
while simultaneously reducing the tracking time and eliminating the fluctuations around
the GMPP. The CS component of the hybrid approach was responsible for providing the
maximum voltage required for efficient power point tracking. The voltage supplied by the
CS was compared with the reference voltage. The difference between these voltages, known
as the error voltage (e), was then input into the PID controller. The PID controller processed
the error voltage and generated a control signal. This control signal was subsequently
used to trigger the switching device of the converter, ensuring that the converter produced
the desired output voltage. The PID controller parameters were Kp, Ki, and Kd, which
were the proportional, integral, and derivate coefficients, respectively. Any variations in
these coefficients or external disturbances could impact the robustness and performance
of the PVS. Proper tuning of the PID controller parameters is essential to ensure optimal
performance and stability in the presence of variations or disturbances [50–52]

To avoid the pitfalls of improperly tuning the PID controller and its impact on the
system performance, researchers have proposed numerous sophisticated non-linear control
strategies for MPPT [53,54]. These included adaptive control [27], predictive control [28],
backstepping-based control [55], and intelligent control methods rooted in ANNs and fuzzy
logic systems, as well as sliding mode control (SMC) [53,54,56,57].
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SMC stands out among nonlinear control techniques for its robustness, fast response,
and easy implementation. Notably, it effectively operates without exact system param-
eters. Due to these benefits, it has been widely used in various research and industrial
applications [58]. However, the limit of the First Order SMC (FOSMC) solution in the
existing literature is a chattering problem [59]. This phenomenon generates undesirable
fluctuations in the output power and reduces the efficiency of energy harvesting. In order
to mitigate this issue, many studies have been designed to improve SMC performance.
The enhancement involves introducing an integral term to the sliding surface, thereby
creating what is known as an integral SMC to eradicate the steady-state error and diminish
chattering [60]. In addition, chattering can be mitigated by implementing saturation or
sigmoid functions as an alternative to discontinuous control actions. This approach ensures
a continuous control action, thus reducing chattering. However, it is important to note that
this control law directs the system state trajectories not exactly to the sliding surface, but to
an area in its proximity. Consequently, this might impact the control robustness in handling
disturbances [60,61]. Additionally, AI techniques have emerged as potent solutions to
this issue. These methods essentially leverage human understanding of the controlled
system operations, hence achieving robust control with minimal errors [62]. In Ref. [63], the
authors suggested the use of a fuzzy logic system as a substitute for the saturation function
in the reaching control law. This proposed solution could potentially minimize chattering,
even in the face of significant disturbances.

Additionally, High-Order SMC (HOSMC) has been endorsed by numerous
researchers [64–66] as an optimal solution to circumvent the drawbacks of FOSMC, while
preserving its benefits. it has garnered significant attention from researchers [57] due to
several compelling characteristics. The SOSMC technique has proven to be successful due
to its multiple advantageous properties. Firstly, it effectively reduces chattering. Secondly,
it demonstrates robustness against parameter uncertainties and external disturbances, mak-
ing it highly reliable in a variety of challenging conditions. Finally, it is characterized by
high efficiency, ensuring optimal system performance. These attributes make it an excellent
solution to overcome the flaws of FOSMC. SOSMC requires information about the sliding
surface and its time derivative [67]. The only exception is that Integral Super-Twisting
(STSMC) can be chosen. The latter uses SOSMC and needs only the information about the
sliding surface [56]. This helps lessen chattering and makes the system work better thanks
to its continuous control action. Moreover, STSMC is known for its robustness and has
precise tracking with fewer errors. It also responds well to changes and is easy to design
and put into action [57,59,68].

Therefore, in our work, we combine CS-MPPT with STSMC to create a robust hybrid
controller that excels in tracking performance. Indeed, the proposed controller swiftly
and precisely tracks the GMPP, under PSCs. In fact, the CS-MPPT algorithm generates a
reference voltage corresponding to GMPP. We choose the SMC for its myriad advantages.
Furthermore, our hybrid controller outperforms traditional methods in terms of speed and
precision under PSCs. To demonstrate the efficiency and good performance of GMPPT
in terms of high efficiency, low convergence speed, and simplicity, the CS-STSMC-MPPT
algorithm is tested and compared to the CS-PID, CS, PSO, and P&O MPPT algorithms.

Therefore, the main novelty and contributions of this paper in both theory and simula-
tion studies are as follows:

(i) Introducing a new MPPT technique based on the combination of CS-MPPT with
STSMC while benefiting from the advantages of both methods to ensure good perfor-
mance in terms of high efficiency, high-speed convergence, and robustness.

(ii) Highlighting the good performance of the proposed CS-STSMC-MPPT algorithm in
terms of efficiency to extract the maximum power even under PSCs, convergence
time, and power losses by comparing it with the CS-PID, CS, P&O, and PSO-MPPT
methods. This is new in terms of using such algorithms.

(iii) Highlighting the efficacy of the proposed CS-STSMC-MPPT algorithm to overcome
the negative effect of partial shading by comparing its performance under different
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scenarios, which are zero, severe, and heavy shading conditions. The novelty here is
the combination of the CS, and the STSMC methods.

(iv) Highlighting the importance of the proposed CS-STSMC-MPPT algorithm through
qualitative and quantitative comparison with other methods. Again, our contribution
resides in combining both methods

The remainder of the paper is structured as follows: first, Section 2 presents a classifica-
tion of the different MPPTs with an analysis of their strengths and weaknesses. In Section 3,
the challenges that can affect the performance of MPPT are noted. The PVS and the boost
converter, which compose the power system, are mathematically modeled in Section 3.
Then, the simulated MPPT techniques in this work are presented in Section 4. Section 5
illustrates the global system. After that, a comparison between the proposed CS-STSMC,
CS-PID, CS, PSO, and P&O MPPT algorithms in terms of efficiency, convergence time, and
power losses is explained in Section 6. The conclusion is presented in Section 7.

2. Evaluation of MPPT Methods

In the literature, there has been some research on MPPT algorithms, which have been
classified into different categories based on the topics discussed. Each category examines
specific aspects of these algorithms. In Refs. [69–74], a lot of classifications were proposed
based on different criteria. In our research work, the MPPT algorithms are classified into
traditional [73], soft computing [75,76], and hybrid techniques [77]. Conventional methods
are direct and indirect. The metaheuristic method, AI, and the chaos theory are categories
for soft computing methods [30,31,78], whereas the hybrid MPPT approaches combine two
or more novel and/or conventional MPPT algorithms [79].

In general, conventional MPPT methods can be categorized into two main groups
based on their approach to tracking the MPP. These techniques are generally simpler and
easier to implement but they may be less accurate, especially under varying environmental
conditions, and they can fail in tracking the GMPP under PSCs. To overcome the drawbacks
of conventional MPPT techniques, researchers have turned towards soft-computing [40,76],
which has proved advantageous in tracking the PVS GMPP under PSCs. Soft-computing
MPPT methods are subcategorized into chaos theory, AI, and metaheuristics [15,16]. The
chaotic search method is a random algorithm that can be employed to locate the optimal
solution for dynamic problems. In the case of MPPT problems, the PV voltage is selected
as the variable to optimize, and the PV-generated power is the chosen fitness function. The
search process begins by defining search points and selecting two low points as the search
zone end points. With each iteration, the search zone progressively reduces in size until it
reaches the MPP. Due to the non-linear properties exhibited by solar PV modules, AI-based
methods are widely regarded as the most effective approach for tackling these types of
issues [80,81]. These methods are beneficial for addressing nonlinear problems that arise
in real-world scenarios. By eliminating the need for a complete mathematical model of
the system, AI methods can deliver effective solutions with only prior knowledge of the
system. Metaheuristic methods are widely used to tackle complex problems that were pre-
viously difficult to solve. These optimization algorithms, inspired by natural processes and
intelligence, offer distinct advantages [82]. They excel in exploring complex search spaces,
finding optimal solutions, and handling multimodal optimization problems. Particularly
under PSCs, metaheuristic methods prove to be suitable for MPPT by overcoming local
optima through global search strategies, demonstrating robustness in handling non-linear
and non-convex optimization problems, and adapting to dynamic changes in shading
conditions. The application of metaheuristic algorithms results in improved efficiency
and accuracy of MPPT, making them a valuable tool in optimizing PVS under PSCs. In
Ref. [24], metaheuristic algorithms gained significant popularity because of their benefits.
Metaheuristic MPPT methods were classified into swarm intelligence, mathematical, evo-
lutionary, and bio-inspired algorithms. However, the initialization of these algorithms is
a critical point. In addition, hybrid methods lie on combining between two algorithms
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advantageously. However, it is important to note that while hybrid methods offer improved
performance, they also introduce additional complexity to the MPPT process [83].

Table 1 summarizes all MPPT algorithm categories and presents the merits and de-
merits of each one. From Table 1, we note that MPPT is evaluated according to many
criteria such as efficiency [84], tracking speed [85], accuracy [86], implementation com-
plexity [87], and good performance in different atmospheric conditions especially shading
conditions [88]. Based on these criteria, it can be seen that conventional methods are the
simplest and most inefficient in PSCs [89], whereas, AI methods are efficient but their ability
to track the GMPP is not guaranteed. On the other hand, metaheuristic methods succeed
in extracting the GMPP under PSCs and are sensitive to initial conditions depending on
the tuning parameters. As each class of MPPT has its drawbacks and qualities, hybrid
methods improve the algorithm efficiency by combining the benefits of each one used.
These methods are powerful but complex. Based on this analysis, we have chosen to work
on metaheuristic methods, given their effectiveness in the case of PSCs and their simplicity.

Table 1. MPPT algorithms.

MPPT Classes Examples Advantages Disadvantages

C
on

ve
nt

io
an

l
m

et
ho

ds

Direct
• P&O [90],
• INC,
• Hill Climbing [91]

• Simplicity,
• Low implementation cost
• Satisfactory performance

• Steady-state accuracy of
PV output power around
MPP [12]

• Slow tracking speed
under rapid variation in
solar irradiance

• Inefficiency of GMPPT
under PSCs [13].

Indirect

• Fractional open circuit
voltage [92,93]

• Fractional short circuit
current [94]

• Look up table [95,96]

So
ft

-c
om

pu
ti

ng
m

et
ho

ds

Chaos
search
method

[21,96–99]

-

• Ability to track MPP
• Fast convergence time
• Robustness against

parameter variations
• High efficiency [100]

• Complexity
• Parameters must be

correctly tuned
• Noise sensitivity
• High oscillations around

MPP specially under PSCs
• Initialization dependence

AI MPPT
algorithms [80]

• ANN [101]
• FLC [102]

• Computationally efficient,
flexible, and rapid
response to MPPT
challenge [103]

• Strong performance even
in presence of changing
system parameters

• No need of exact input to
extract MPP

• Fast tracking speed in case
of fast change of
illumination

• Slight fluctuation

• Need of a massive
dataset [21–26]

• Not continual succeed
to track the GMPP
under PSCs

• Requiring a lot of
calculations and
costly realization.

Metaheuristic
MPPT [82]

• CS algorithms [16]
• GA [30]
• DE [104]
• PSO [27,28],
• Ant colony

optimization [32]
• Modified PSO [105],
• S-jaya [106]
• Simulated annealing [31]
• Teaching-learning-

based-optimization [107]
• Artificial Bee Colony [108]
• Firefly algorithm [109]
• Flower Pollination

(FPA) [110],
• GWA [33]

• GMPPT ability
• High efficiency

under different
weather conditions

• Robustness
• Flexibility
• Lack of gradient

requirements
• Ability to avoid

local optima

• Sensitivity to
initial conditions

• Sensitivity to
tuning parameters
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Table 1. Cont.

MPPT Classes Examples Advantages Disadvantages

H
yb

ri
d

m
et

ho
ds • P&O with ANN [33]

• GWA with P&O [111]
• Firework with P&O [112]
• PSO with P&O

(PSO-P&O) [113]
• Firefly with INC [114]
• Bat search with P&O [115].

• High speed convergence
• High efficiency

• Cost of hardware
implementation,

• Sensor requirement
• Design complexity level

3. Challenges of MPPT Algorithms

It is challenging to determine whether or not the MPPT algorithm is good because
there are numerous issues that can affect its performance. There is a risk that developers
fail to account for issues such as nonlinear PV characteristics, changing environmental
conditions, and unstable system operating conditions.

3.1. Nonlinearity of PV Characteristics

Nonlinear behavior is a primary PVS characteristic. Power, voltage, and current
are three operating source regions that form the current-voltage characteristic. Due to
nonlinearity, the voltage-to-current ratio of the PV module changes depending on the
voltage or current. The proportional change in voltage with respect to the change in current
is called dynamic resistance. Due to the PV module I-V curve linearity in the voltage
source region, the dynamic resistance stays constant while being relatively steady in the
power region. MPPT is difficult when its function in the current source range is caused by
a massive dynamic resistance divergence in the current source region due to significant
nonlinearity. The MPP should be operated in the power and voltage regions in order to
improve MPPT [116] to better track the maximum power. Based on this phenomenon, the
power region should be the region of the MPPT controller adaptation.

3.2. Ambient Condition Variation

The biggest issue with solar systems is that their power output is not continuous and
varies depending on the weather [88,117]. One of the biggest issues now is how to adapt
MPPT algorithms to rapidly changing environmental conditions. Due to the rapid changes
in ambient conditions, numerous MPPT methods are unable to respond to the MPP voltage,
which leads to a significant loss. The MPPT must be used to track the voltage at an MPP.
The variation in weather conditions has an impact on the PV performance:

• The amount of PV energy depends on the irradiation variation income for horizontal
PV arrays.

• The changes in the PV array surface temperature (solar PV cell temperature) affect the
amount of energy produced by the PV array.

• Shadowing conditions caused by cloudy weather conditions or a dusty PV array
surface can reduce PV power generation [95,96].

According to Figure 1, the higher the temperature of the PV array, the less PV power
amount production, where T1 (45 ◦C) is higher than T2 (25 ◦C) and T3 (15 ◦C), so the PV
power at T3 and T2 is better than the power at T1. In addition, PV power production is
proportional to the solar irradiance values. Indeed, at λ1 (1000 W/m2), it gives a higher
MPP than λ2 (500 W/m2) and λ3 (100 W/m2).

3.3. Condition of System Working

The majority of MPPT algorithms use the DC-DC converters as basic and direct
resistance transformers with constant efficiency across all levels of voltage. The DC-DC
converter, on the other hand, is essentially a non-ideal device that can cause numerous
losses. It is important to take this into account. The DC-DC converter efficiency changes
according to the duty cycle. The applied converter settling time is a significant determinant
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of the MPPT effectiveness. MPPT primarily uses current and voltage sampling to determine
the power at each step. This power is used to specify the GMPP in advanced methods
and to specify the tracking direction in methods such as the P&O method. For the MPPT
algorithm, the step size is smaller than the settling time of the boost converter, so the sensed
current and voltage values will be incorrect, which will result in wrong PV curve tracking.
The controller design needs to be properly considered to prevent instability because Vmpp
and Impp must be controlled by the controller duty cycle. Additionally, multiple LMPPs
may occur under rapid weather change, as shown in Figure 2 whereas there is only one
desired GMPP, with the required MPP indicating the best PV array performance [118].
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3.4. Partial Shading Effect on PV Characteristics

When the PV cells do not function under the same irradiation value as under PSCs,
causing significant energy losses and having severe effects on PV power generators, and
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when the electrical characteristics of the PV cells are different, mismatch losses of the PV
series connection will be generated.

Under PSCs, in a PV panel, several cells are connected in series to achieve a desired
output voltage. If one or more of these cells are shaded, the overall performance of the
panel can be significantly reduced. This is because a shaded PV cell produces less current,
and since the cells are in series, the current in the circuit is limited by the cell with the
lowest current. Thus, even minor shading can have a disproportionate effect on the power
output of the panel.

For PSCs, the lowest short-circuit current is observed in PV cells with the lowest
irradiance levels. If the shadowed cell current is less than the PV power generator current
then the shaded cell starts operating as a load rather than a source, consuming energy
instead of producing it. Accordingly, the energy generated by the other cells is lost as heat
in that module, resulting in power losses. After that, increasing the cell temperature causes
it to suffer irreversible damage. This is the hot spot phenomenon. Next, a bypass diode
anti-parallel connected across PV modules is used to overcome this issue. However, these
diodes prevent the PV array, under PSCs, from producing the maximum amount of power,
and they also make MPPT more complicated by causing multiple local maxima in the P-V
characteristic of the PV array. To mitigate the effects of shading, several techniques can be
used, such as the use of bypass diodes to avoid shaded cells, or employing optimization
techniques for the connection topology of PV cells. More advanced control techniques,
such as MPPT algorithms, can also be used to optimize the performance of panels in the
presence of shading.

In this study, four PV modules are connected in series and tested under three different
irradiation scenarios to evaluate the effect of PSCs on the generation of PV power. The
scenarios are as follows:

• Scenario (1): It represents the scenario of uniform irradiation; the four PV mod-
ules are exposed to constant irradiation values: 1000 W/m2. This scenario repre-
sents a baseline to evaluate the performance of the proposed method under optimal
irradiation conditions.

• Scenario (2): It is a weak shading case; the PV panels are exposed to two irradiance
levels: 1000 W/m2 and 500 W/m2. This scenario represents a partial shading situation
generating two distinct peaks in the power curve: a local peak and a global peak.
The main objective of this scenario is to test the MPPT algorithm’s ability to avoid
becoming stuck on the first local power peak and to correctly track the global power
peak (GMPP).

• Scenario (3): It corresponds to severe shading where 1000 W/m2, 800 W/m2,
500 W/m2, and 200 W/m2 are the four different irradiation levels applied on the
four PV modules. The aim of this scenario is to test the MPPT algorithm’s ability to
correctly identify and track the GMPP among several local peaks.

4. PVS Modeling

The PV array feeds the resistive load using a DC/DC boost converter regulated by
MPPT methods. This PVS is depicted in Figure 3. Temperature (T) and irradiance (G)
have an effect on the PV array’s ability to produce and transfer the most power to the load.
This objective is done thanks to MPPT controllers which drive the DC/DC converter by
controlling the duty cycle and the pulse generation to fire the DC/DC switch in order to
search the MPP.

During simulation, three different irradiation scenarios as inputs to the PV array and
three MPPT algorithms are used to control the systems which are P&O, PSO, and CS MPPT
controllers. The model used in this work is simulated using Matlab/Simulink.
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4.1. PV Cell Modeling

The basic PVS element is the PV cell, and its equivalent electrical circuit is presented
in Figure 4. This model is an electrical PV cell circuit with a single diode. The blue-
framed model is viewed as the ideal source of current for producing photocurrent (Iph).
It is proportional to the power of incident light. A diffusion current phenomenon (Id) is
produced in parallel by connecting a diode to the current source.

I = Iph − Id, (1)

I = Iph − Is

[
exp

(
V

αVT

)
− 1
]

. (2)
Sustainability 2023, 15, x FOR PEER REVIEW 12 of 41 
 

 
Figure 4. Equivalent electrical PV-cell circuit. 

I = Iph − Id, (1) 

𝐼 𝐼 − 𝐼 exp 𝑉𝛼𝑉 − 1 .   (2) 

The output current is defined by expression (1), and Equation (2) describes the diode 
current behavior. However, this expression does not accurately capture how a PV cell be-
haves. Intrinsic resistance is introduced to properly describe the PV behavior Rsh, Rs. A real 
model is framed in red. The metal contact and the silicon are separated with a contact 
resistor which is presented by the series resistance Rs. The power loss resulting from man-
ufacturing impacts is presented by a parallel connected resistor called the shunt resistance. 
Equation (3) presents the PV array model while considering the irradiance and tempera-
ture variation to describe the dynamic behavior of the PVS under various weather condi-
tions. 𝐼 𝐼 − 𝐼 exp − 1 −  . (3) 

where Is is the reverse saturation current of the diode, VT represents the thermal voltage 
of the diode, and is described in Equation (4) where the PV cells connected in series are 
represented as Ns, the Boltzmann constant k is (1.3806503 × 10−23 J/K), T presents the abso-
lute temperature, q is the electron charge (1.60217646 × 10−19 C), and α is the diode ideality 
factor. 𝑉 . .  . (4) 

Equation (5) presents the photoelectric current taking into account the variation in 
atmospheric conditions. 𝐼 𝐼 𝐾 𝑇 − 𝑇  . (5) 

where Isc is the current of the short circuit at a normal testing condition, the coefficient of 
the current of the short circuit is presented by Ki (A/K), T (K) defines the actual tempera-
ture, and the nominal one is defined by Tn (K). Moreover, the irradiance on the device 
surface is G (W/m2), and the nominal irradiance is Gn (W/m2). The variation in temperature 
affects the saturation current of the diode, as presented in (6), where Eg is the energy gab, 
and the nominal saturation current is Isn. The parameters of the PV panel module used in 
this research work are cited in Table 2. 𝐼 𝐼 exp − . (6) 

Table 2. PV module parameters. 

Parameters Values 
Pmp 150.075 W 
Vmp 34.5 V 
Imp 4.35 A 

Figure 4. Equivalent electrical PV-cell circuit.

The output current is defined by expression (1), and Equation (2) describes the diode
current behavior. However, this expression does not accurately capture how a PV cell
behaves. Intrinsic resistance is introduced to properly describe the PV behavior Rsh, Rs.
A real model is framed in red. The metal contact and the silicon are separated with a
contact resistor which is presented by the series resistance Rs. The power loss resulting
from manufacturing impacts is presented by a parallel connected resistor called the shunt
resistance. Equation (3) presents the PV array model while considering the irradiance
and temperature variation to describe the dynamic behavior of the PVS under various
weather conditions.

I = Iph − Is

[
exp

(
V + I × Rs

αVT

)
− 1
]
−
(

V + I × Rs

Rsh

)
. (3)

where Is is the reverse saturation current of the diode, VT represents the thermal voltage
of the diode, and is described in Equation (4) where the PV cells connected in series are
represented as Ns, the Boltzmann constant k is (1.3806503 × 10−23 J/K), T presents the
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absolute temperature, q is the electron charge (1.60217646 × 10−19 C), and α is the diode
ideality factor.

VT =
Ns·k·T

q
. (4)

Equation (5) presents the photoelectric current taking into account the variation in
atmospheric conditions.

Iph = [Isc + Ki(T − Tn)]
G
Gn

. (5)

where Isc is the current of the short circuit at a normal testing condition, the coefficient of the
current of the short circuit is presented by Ki (A/K), T (K) defines the actual temperature,
and the nominal one is defined by Tn (K). Moreover, the irradiance on the device surface is
G (W/m2), and the nominal irradiance is Gn (W/m2). The variation in temperature affects
the saturation current of the diode, as presented in (6), where Eg is the energy gab, and
the nominal saturation current is Isn. The parameters of the PV panel module used in this
research work are cited in Table 2.

Is = Isn

(
Tn

T

)3
exp

[
qEg

αK

](
1

Tn
− 1

T

)
. (6)

Table 2. PV module parameters.

Parameters Values

Pmp 150.075 W
Vmp 34.5 V
Imp 4.35 A
Vov 41.8 V
Isc 5.05 A

4.2. Boost Converter Sizing and Modeling

The DC/DC boost converter which is the adaptive interface between the PV model
and the load is driven by the MPPT controllers. The boost converter is well-known for
its improved maximum power transmission with lower energy losses [119]. To increase
power transfer, the MPPT algorithm controls the duty cycle of the Pulse Width Modulation
(PWM) signals. Accordingly, a DC-DC boost converter is used in this study for better
conversion efficiency. To lower the power losses at a higher frequency, the MOSFET, which
is categorized as a switching device, is controlled by the PWM.

Equations (7) and (8) describe the relations between the converter input and output
voltage and the converter input and output current, respectively.

Vo = Vpv
1

1− d
, (7)

Io = Ipv
1

1− d
. (8)

4.2.1. Capacitor Cin Design

Typically, the aim of capacitors is to satisfy the energy needs during transient periods
such as sudden load or irradiation changes. Equation (9) is used to create the DC-link
capacitor that is connected in parallel to the PV array.

Cin =
1
2

Cin

[
V2

PV −V2
min

]
= PPV × ∆t. (9)

where, the minimally allowable voltage of the PV is Vmin, the transient time is presented
by ∆t, and VPV is the PVS voltage. The system switching frequency (fs) is 50 kHz. The
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parameter Cin is equal to about 80 µF when VPV is set to the framework voltage of a
PV array at an MPP of (138 V), Vmin is set to half of that voltage (69 V), and ∆t is set to
three times the switching period.

4.2.2. Output Filter Capacitor Design Cout

The DC/DC boost converter output voltage Vout is controlled at a particular value.
This value is taken to be double the framework voltage for a PV array at an MPP for design
procedures. When there is a decrease in irradiance or there is significant partial shading,
the output filter capacitor supplies the load energy. Therefore, ∆t is assumed to have a time
of 1 ms. With Vmin at 69 V and PPV at 600 W, the same general equation from Equation (9)
yields a value for Cout of at least 20 µF [87].

4.2.3. Inductance Design of Boost Converter

Equation (10) defines the maximum duty cycle value and Equation (11) presents
its minimum value. These values have to be calculated to design the inductance of the
boost converter.

Dmax =
Vo −VPV,max

Vo
, (10)

Dmin =
Vo −VPV,min

Vo
. (11)

VPV,min and the minimum duty cycle are used to ensure the current of the PV array in
a continuous mode of conduction [31]. The inductance value is therefore given in (12).

L =
PPV × Dmin
∆IPV × fs

. (12)

4.2.4. Equivalent Design of Load Resistance

By neglecting the losses of the boost converter and the PV module, the output and
input power capacity (600 W) are equal, resulting in an equivalent load resistance according
to (13).

RL =
V2

o
PPV

. (13)

The dynamic state of the boost converter in terms of the duty cycle “D” can be depicted
using the averaging method [120]. The DC/DC boost converter parameters are summarized
in Table 3. 

dVpv

dt
=

ipv − iL

Cin
diL
dt

=
Vpv −Vo + D·Vo

L

. (14)

Table 3. Boost converter parameters.

Parameters Values

Inductance L 1.38 mH
Capacitor Cin 80 µF
Capacitor Cout 20 µF

Load resistance Rload 119 Ω

5. MPPT Algorithms

The incident energy consumed by the PV panel is between 35% and 45%, and it is then
transformed into electrical energy, according to various literature studies. The maximum
PV power is extracted using MPPT controllers by determining Impp and Vmpp at various
climatic conditions in order to improve the PVS power generation efficiency [121]. In this
work, in order to track the MPP, the P&O, PSO and CS, CS-PID, and CS-STSMC-based
MPPT algorithms are employed.
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5.1. P&O Algorithm

P&O is the most popular MPPT technique. The PV current and voltage are measured
periodically to calculate the PV power. By changing the duty cycle of the DC-DC converter,
it then offers the operating voltage perturbation steps based on the power change. To
evaluate the power change ∆P, the PV output power for each iteration is compared with
that of the step before. Depending on the sign of (∆P/∆V), the voltage perturbation sign is
defined and the duty cycle will either increase or decrease [122,123].

The perturbation step size selection is the key component of this algorithm. If it is
large, convergence occurs quickly, but it results in significant oscillations in the power of
the steady state. Inversely, it will result in unwanted losses of PV power. This technique
has undergone numerous modifications to speed up convergence and minimize oscillations
regarding the MPP. Using a variable step size is one of these modifications [124]. In
uniformly distributed irradiance, this technique performs well, but in PSCs, it may become
stuck at one of the LMPPs. Because of this, numerous initiatives to enhance the P&O
controller in the case of PSCs have been published in the literature [125]. One of these
methods involved forcing standard P&O to operate around the operating voltage value
with the highest power by scanning values. This method successfully captures the GMPP
location in PSCs within a reasonable limit, but it lengthens the convergence time.

5.2. PSO-MPPT Algorithm

Eberhard and Kennedy were the two researchers who created the intelligence opti-
mization theory known as PSO. They used this phenomenon to solve the issues with search
and optimization. The feeding habits of birds and schooling fish served as the inspiration
for this algorithm’s basic idea [126]. In fact, this method employs a number of cooperating
birds, also known as particles. Each particle has a unique fitness value that is defined by an
objective function, where velocity is utilized to establish the movement direction and range.
Each particle offers the knowledge it has learned via its own particular search process.
Figure 5 illustrates the particles movement.
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Each particle’s best location is saved by Pbest as the greatest individual position. By
comparing the particle swarm’s individual positions, Gbest, is found and saved as the
swarm’s best position, which has an impact on the movement of particles. This process is
used by the particle swarm to constantly adjust its direction and speed as it moves in the
direction of the ideal location. Each particle converges with high speed to a closely optimal
position in this way. The standard PSO method is defined by Equations (14) and (15).

Vi(k + 1) =ω V(k) + c1 r1(Pibest(k) − Pi(k)) + c2 r2(Gbest(k) − P(k)), (15)

Pi(k + 1) = Pi(k) + Vi(k + 1). (16)

where Vi defines the velocity of particle i, Pi presents the position of particle i, k is the
number of iterations;ω the inertia weight; r1 and r2 are random variables and their values
are between [0, 1], c1 is the cognitive coefficient, c2 defines the social coefficient, Pibest
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presents the individual particle is the best position, and Gbest defines the particle swarm’s
best position.

What follows is an explanation of this method’s fundamental operating concept as
depicted in Figure 6:

• Step 1: Initialization of PSO parameters: Each particle velocity and position are
initialized randomly in a uniform distribution over the search space for this MPPT
algorithm, where the fitness value evaluation function is the generated output power
and the particle position is the converter duty cycle;

• Step2: Fitness evaluation: Following the controller transmission of the command of
the duty cycle instruction, which denotes particle i, the fitness value is determined;

• Step3: Global and individual best data update: Using a comparison between the
recently computed fitness values with the previous ones, individual and global best
fitness values (Pibest and Gbest) and positions are updated. Moreover, Gbest and Pibest as
well as their appropriate positions are replaced as needed.

• Step4: Updating each particle’s velocity and position: The position and velocity of
each particle swarm are updated using Equations (15) and (16).

• Step5: Convergence evaluation: The convergence criteria are examined. If the latter is
satisfied, then the process can be finished; else, the number of iterations will go up by
1 and the next step will be taken;

• Step6: Re-Initialization: In the conventional PSO method, the convergent criteria are
either to find the best solution or to complete the iterations. The fitness value, however,
varies with the load and weather in PV systems, so it is not constant. As a result,
whenever the PV module output changes, PSO needs to be re-initialized and to search
for a new MPP.
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This method is an efficient method in tracking the MPP even under PSC, but it takes a
long time to track the GMPP. Besides, this method uses three tuning parameters that make
it more complex.

5.3. CS-MPPT Algorithm

Due to the captivating sounds and aggressive reproduction methods of cuckoo birds,
some varieties of them include the ani and the guira. The eggs of these species are laid
in collective nests and may take eggs from other nests to improve the chances that their
eggs will grow. Some cuckoo birds engage in brood parasitism. These intelligent birds,
known as Tapera, imitate their host shapes and colors, which may increase the likelihood
of successful reproduction. Observing the rhythm of Tapera’s egg-laying is awe-inspiring
and gorgeous.

In order to select the best nest, a host species group with similar nesting places and
egg traits is the primary choice of cuckoo females. Foreign eggs can be deceived into being
taken by host birds. However, if any are found, they are either thrown outside the nest
or the entire nest is destroyed. Then, the host bird moves on to build a new nest some-
where else. There exist three main brood parasitism types: intraspecific, cooperative, and
nest takeover.

5.3.1. Lévy Flight

Finding the best nest is where cuckoo birds begin, but this process is crucial to the
reproduction of cuckoo birds. The method of looking for food and looking for a nest is
the same. Lévy flight is a well-liked model, and it serves as the basis for the selection and
modeling of walks and routes. Fruit flies, or Drosophila melanogaster, employ a succession
of straight flight routes interspersed with sudden 900-degree twists to investigate their
environment, according to new research by Reynolds and Frey. This behavior is applied
when creating optimizations for various issues [127]. Levy flight defines a type of random
walk where the step lengths have a probability distribution Pa. For CS, in Equation (17),
the step length is calculated based on the power law of the Levy distribution [44].

Levy ~ u = t − λ where (1 < λ ≤ 3). (17)

Here, a random walk process with a heavy-tailed power-law step-length distribution
is based on these steps.

5.3.2. CS-MPPT Algorithm

The CS algorithm adheres to three key rules:

• Each cuckoo will only lay one egg during a single iteration, and it will be laid in a
randomly chosen nest.

• Only the next generation may make use of the surrogate bird nests that produce the
highest-quality eggs.

• The total surrogate nests’ cumulative values are preset, and only a cuckoo may lay
the considered egg and a specific probability will be assigned if the surrogate bird
is found.

It is possible for the host bird to eat the cuckoo eggs or to destroy its nests if it knows
that the cuckoos’ eggs are there. There is also a likelihood of Pa that a new nest will be
created. The final supposition may be approximated in its simplest form by the Pa fraction.
After that, the new nests replace the n nests with new random solutions. Each egg is a
potential approach, and a cuckoo egg is used to depict a novel solution, as explained in
the following representation. Foreign egg discovery will be to select a few bad nests that
contain unbeatable results. Consequently, the solutions which are discovered will be taken
into account for future results and calculations.
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Levy flight is carried out while creating a new solution X (t + 1) for cuckoo i.

Xi(t + 1) = Xi(t) + α⊕levy flight (λ). (18)

where α > 0 is the step size linked to the optimization problem scales. It is usually, consid-
ered that α = 1. In Equation (18), the current position is presented by the first term and the
transition probability is presented by the second component. Multiplication in the entry
order is indicated by product ⊕.

The search mechanism flowchart of the CS controller is illustrated in Figure 7. First,
the initial duty cycle number is chosen randomly, and then it is used on PV panels. Second,
to estimate PV power, the system voltage and current are determined. Such a strength
exemplifies the fitness value. After that, the current best nest is determined to be the duty
cycle for the optimal fitness function (dbest). Next, new nests are created using Levy flight,
based on Equation (17). Fourth, the PVS is used to evaluate the values of new finesses.
Then, with a chance of Pa, the worst nest is randomly demolished, simulating the host
bird’s behavior of finding and destroying the egg of the cuckoo. Afterward, the destroyed
nest is changed with the new one using a levy flight, followed by measurements of the PV
power and the selection of the best nest at the time. Finally, the CS controller stops once the
stopping criteria are satisfied and the CS algorithm succeeds in tracking the global point by
providing the best duty cycle.
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5.4. Hybrid CS-MPPT Algorithm

Referring to the literature review, the hybrid CS-MPPT method is based on the combi-
nation between the CS algorithm and a PID controller [42]. The aim of this combination
is to exploit the strengths of both techniques while avoiding their respective drawbacks.
Thus, CS is renowned for its efficiency and rapid convergence in extracting the GMPP. The
inputs of the CS algorithm are the voltage and current of the PVS, and its output is the
reference voltage ‘Vref’ which allows the panel to operate at its MPP. Then, the generated
‘Vref’ is subtracted from the PV voltage, and the difference is routed to the PID controller.
This technique reduces the percentage of error (e) generated by the conventional CS-MPPT
algorithm, and it increases the PV system efficiency by providing an accurate value of the
converter duty cycle. Next, a regulator output determines the amount of the duty cycle
to apply to the PWM to regulate the input voltage. The PID controller is advantageous
for its ability to minimize overshooting during transitions and to increase stability during
continuous operations. However, introducing the derivative term into the controller can
result in unwanted input noise, which can potentially disturb the output voltage. In this
work, the parameters of the PID controller are fine-tuned using a trial-and-error approach,
which is not a successful approach. The PID controller is an effective solution for im-
proving the performance of the CS-MPPT algorithm, provided that the coefficients are
correctly adjusted.

This problem is solved with the employment of SMC in combination with the CS-
MPPT algorithm. In this context, and in order to overcome this problem, the PID controller
is replaced by STSMC, which will be synthesized in the following subsection.

5.5. Proposed CS-STSMC-MPPT Algorithm

The SMC control technique is considered a variable-structure technique and is widely
used in various applications. It is recognized by its robustness in the face of uncertainties
and external disturbances, as well as for its ease of design and implementation [128]. The
SMC strategy consists of making the system trajectory move along a predefined switching
surface under the effect of a specific control law. The SMC principle forces the system
trajectory to slide along a switching surface under a determined control law. It is basically
composed of two phases: a reaching phase where the state trajectory is driven to the surface
S = 0 and reaches it in a finite time, followed by a sliding phase where it slides on the
switching surface to an equilibrium point.

The operating principle of SMC can be enveloped in the following tasks:

• Selection and design of a sliding surface,
• Formulation of a control law that compels the system state trajectory to converge to a

pre-specified surface within a finite timeframe,
• Sustainment in the vicinity of this surface by employing a suitable switching logic.

To achieve high-performance controlan requires accurate and high-speed tracking,
an integral and derivative sliding surface “s” can be chosen, where the derivative and the
integral terms were used to eliminate the overshoot and minimize the error in steady-state
conditions. The sliding surface “s” is expressed as follows:

s(t) = a
.
e(t) + e(t) + b

∫
e(t)dt (19)

where “e(t)” represents the voltage error calculated by subtracting Vpv from Vref, while “
∫

e”
is the integral term and ė(t) is the derivative term of the error. The parameter “a” and “b”
denote the sliding surface coefficient.

Usually, the SMC is composed of two components, the equivalent control law and the
discontinuous control action, as written in Equation (19):

u = ueq + udis (20)
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The sliding surface derivative is “
.
s”, to obtain ueq, the time derivative of Equation (15),

and set it to zero as follows:
.
s = a

..
e(t) +

.
e(t) + be(t) = 0

= a
..
vpv +

.
vpv + be(t) = 0

(21)

By substituting (14) in Equation (20), it is possible to yield Equation (21):

− a
Cin

( .
ipv −

.
iL

)
− 1

Cin
iCin + be(t) = 0 (22)

where iC1 =
.
ipv −

.
iL, by using Equation (14), Equation (21) can be rewritten as:

− a
Cin

(
.
ipv −

1
L
(
vpv − vo + voD

))
− 1

Cin
iCin + be(t) = 0 (23)

Consequently, the formulation of the equivalent control law ueq can be expressed
as follows:

ueq = Deq =
1
vo

(
vo − vpv +

L
a

icin + L
.
ipv −

bCin
a

Le(t)
)

(24)

The discontinuous component, denoted as udis is employed to compel the slid-
ing mode to adhere to the sliding surface, which is traditionally expressed in the
following manner:

udis = −K1·sign(s) (25)

where, K1 represents the proportional gain associated with the discontinuous control, and
sign(s) denotes the sign function. The discontinuous switching control, udis, is crucial for
accommodating external disruptions.

The HOSMC strategy maintains the efficacy of the FOSMC approach while eliminating
the chattering phenomenon [57]. However, it is based on higher-order derivatives of the
sliding surface. The STSMC belongs to the SOSMC category and operates only based on
the sliding surface “s”, without requiring the derivative of “s”. The discontinuous term
of the proposed super-twisting controller can be defined by the function UST, which is
constituted by two components as shown in Equation (26) [56,129]:

u = ued + uST (26)

where uST is defined with Equation (27):{ .
u1 = −K1sign(s)

uST = −K2|S|α·sign(s) + u1
(27)

The positive constants K1 and K2 are employed to formulate robust STSMC. Mean-
while, parameter α denotes the level of non-linearity, typically restricted within the range
“0 ≤ α ≤ 0.5.” In most scenarios, this parameter is set equal to 0.5 [130]. The necessary
conditions to ensure finite time convergence are as follows [57]:

K1 >
φ

Γm

K2 ≥
4φ

Γ2
m

ΓM·(K1 + φ)

Γm(K1 − φ)

(28)

where K1, K2, φ, and Γm are chosen as positive constants [57]. Finally, the Duty cycle “D”
generated by the proposed STSMC is given by Equation (29):

D = Deq + UST (29)
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6. Simulation Results and Discussion

In this work, a comparison between three MPPT controllers is done. The proposed CS-
STSMC-MPPT algorithm is compared to CS-PID, CS, PSO, and P&O MPPT methods under
three different partial shading cases which are simulated using the MATLAB environment,
in order to test the efficiency of the proposed CS-STSMC-MPPT algorithm in reducing the
negative impact of PSCs on the maximum power production in standalone PVSs, as shown
Figure 8.
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Figure 8. System overview.

This system is composed of four PV modules connected in series and a boost converter
driven by MPPT controllers to supply a resistive load. The parameters of the simulated
system are illustrated in Tables 2 and 3.

In this work, the used MPPT algorithms are CS-STSMC, CS-PID, PSO, CS, and P&O
MPPT algorithms. Parameters of PSO, P&O, and CS algorithms are summarized in Table 4.
Their performance is tested, under different weather conditions. The first scenario presents
uniform irradiance, and the second and third ones present partial shading, as provided
in Table 5. Figure 9 presents the response of the PV panel under PSCs. The first curve
describes the first case of irradiation conditions, and the second and third curves show the
second and third irradiation scenarios, respectively.

Table 4. MPPT controller’s parameters.

P&O Parameters PSO Parameters CS Parameters

Dinit = 0.7 Ω = 0.2 λ = 1.5
∆D = 0.0001 c1 = 0.8 α = 0.75

c2 = 1
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Table 5. Studied cases.

Case Study
Irradiance of Each Module

GMPP
PV1 PV2 PV3 PV4

Case 1 1000 1000 1000 1000 600.3
Case 2 1000 1000 500 500 326.1
Case 3 1000 600 500 300 244.83
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6.1. First Case (Case 1)

The four PV modules are subjected to uniform irradiation of 1000 W/m2. This means
that each module receives the same level of irradiation. There exists only one peak at
600.3 W on the P-V characteristic. The simulation results of P&O, PSO, CS, CS-PID and the
proposed CS-STSMC MPPT techniques are depicted in Figure 10a,b,c,d,e respectively.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 14 
 

and Impp must be controlled by the controller duty cycle. Additionally, multiple LMPPs 

may occur under rapid weather change, as shown in Figure 2 whereas there is only one 

desired GMPP, with the required MPP indicating the best PV array performance [118]. 

 

   

(a) (b) (c) 

Figure 9. P-V characteristic under (a) case 1, (b) case 2, and (c) case 3. 

Table 4. MPPT controller’s parameters. 

P&O Parameters PSO Parameters  CS Parameters 

Dinit = 0.7 Ω = 0.2 λ = 1.5 

∆D = 0.0001 c1 = 0.8 α = 0.75 

 c2 = 1  

 

  

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 10. PV power system responses using (a) P&O (b) PSO (c) CS (d) hybrid CS-PI a©(e) CS-

STSMC MPPT controllers under Case 1. 
Figure 10. PV power system responses using (a) P&O (b) PSO (c) CS (d) hybrid CS-PI, and (e)
CS-STSMC MPPT controllers under Case 1.

Figure 10a shows the time response of the power delivered by the PVS when P&O is
applied. This curve shows a rapid increase in power as the system approaches the MPP,
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reaching 600.1 W in 0.25 s. It is worth noting that the response has high fluctuations which
are between 600.1 W and 599.3 W, which indicates that this method is not perfectly stable
when operating near MPP when the steady state accuracy of the PVS is about 0.12%, which
is high. In fact, these oscillations are the characteristics of the P&O-MPPT method as it
continuously perturbs the system to maintain the MPP. Nevertheless, they can cause power
losses that can affect the efficiency of this method. The accuracy of the PSO, CS, CS-PID,
and proposed MPPT algorithms is high and the fluctuation is negligible, compared to P&O
as shown in Figure 10b,c, respectively. It can also be noticed that the CS and PSO MPPT
algorithms achieve the same value of the MPP which is 600.28 W. Figure 10d,e shows that
CS-PID and CS-STSMC-MPPT algorithms achieve 600.3 W, which is the GMPP with 100%
efficiency. In this context, the traditional P&O technique excels in quickly extracting the
GMPP. The hybrid CS-PID and CS-STSMC approaches, demonstrate improved speed when
compared to conventional CS and PSO-MPPT. Notably, the proposed CS-STSMC-MPPT
algorithm achieves the global maximum in 0.27 s, marking a significant improvement over
other methods.

Figure 11a shows the PV voltage response with the P&O-MPPT algorithm. The steady-
state voltage value is equal to 138 V with noticeable oscillations around this value that
varies between 139 V and 137 V. Figure 11d,e show that the PV voltage of the CS-PID and
the proposed CS-STSMC-MPPT algorithms accurately and rapidly pursue Vref. Through
Figure 11d, we remark voltage ripples that present the disturbance caused by the unwanted
input noise caused by the derivative term of the PID controller. The proposed algorithm
reduces the voltage ripples compared to the CS-PID MPPT algorithm. Additionally, accord-
ing to Figure 12a, the PV current of the P&O-MPPT algorithm is equal to 4.35 A after 0.25 s
with many oscillations around this value. Figure 11b,c show the time evolution of the PVS
voltage when the PSO and CS MPPT algorithms are applied. For the PSO-MPPT algorithm,
the voltage value corresponding to the MPP is 137.98 V and the CS-MPPT algorithm reaches
136.37 V with a slight fluctuation afterward. Figure 12b shows the PV current response
which stabilizes at 4.3505 A for the PSO-MPPT algorithm. For the CS-MPPT algorithm,
Figure 12c shows that the curve stabilizes at the value of 4.4018 A. Figure 12d,e presents
the PV current responses for the CS-PID and CS-STSMC MPPT algorithms.

6.2. Second Case (Case 2)

Case 2 is the scenario of weak shading. Each two PV panels are exposed to an irradiation
value. The first two panels are exposed to 1000 W/m2, and the other two panels are exposed
to 500 W/m2. As a result, two peaks are shown in the P-V curve, as depicted in Figure 9b.
The first peak is an LMPP equal to 294 W, and a GMPP at 326.1 W is the second peak.

Figure 13e shows the simulation of the proposed CS-STSMC-MPPT algorithm. This
algorithm reaches the GMPP after 0.43 s with high efficiency. The proposed algorithm
is faster than the CS-PID algorithm, which converges to a global point after a time of
0.56 s with an oscillation around the GMPP, as shown in Figure 13d. Figure 13c displays
the simulation of the CS-MPPT algorithm. It is observed that after a convergence time of
0.59 s, the MPP is reached, with negligible oscillations around it. On the other hand, the
PSO-MPPT algorithm reaches 326 W after 1.15 s, as depicted in Figure 13b. The steady-state
precision of the PSO-MPPT algorithm is too low. The CS-MPPT algorithm performs better
than the PSO-MPPT algorithm in terms of convergence speed and accuracy. Moreover, the
hybrid CS-PID algorithm and the proposed CS-STSMC-MPPT algorithm present superior
performance in terms of efficiency and rapidity compared to CS and PSO. We can notice
that the proposed CS-STSMC-MPPT algorithm improves the convergence time by 23.2%,
27.12%, and 62.6% compared to CS-PID, CS, and PSO.
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However, the P&O-MPPT method is unable to track the GMPP and becomes stuck
at the LMPP, exhibiting large oscillations around this value with 0.25% precision. This
precision is considered high compared to the PSO and CS MPPT algorithms.

Figure 14 shows the response of the PV voltage for the P&O-MPPT algorithm, which
stabilizes at a value of 67.59 V with significant oscillations. Figure 14b,c displays the PV
voltage responses when applying the CS and PSO MPPT algorithms, respectively, which
stabilize at values of 144.73 V and 144.7 V. In Figure 14d,e, the curve in blue presents the
PV voltage, which follows rapidly and accurately the curve in red which is the Vref curve.
Figure 14d,e show that the PV voltage of CS-PID and CS-STSMC-MPPT algorithms purse
accurately and rapidly the Vref. Through Figure 14d, we remark voltage ripples which
present the disturbance caused by the unwanted input noise caused by the derivative term
of the PID controller. The proposed algorithm reduces the voltage ripples compared to the
CS-PID MPPT algorithm. The evolution of the current is presented in Figure 15.

6.3. Third Case (Case 3)

Case 3 is weak shadowing, where the four PV modules are exposed to four differ-
ent irradiation values: 1000 W/m2, 600 W/m2, 500 W/m2, and 300 W/m2. Figure 9c
demonstrates that this case gives four peaks on the P-V curve: The third peak presents the
GMPP at 244.83 W. Figure 16 provides the simulation responses of each algorithm. The
CS-MPPT algorithm reaches 244.8 W after 0.65 s as illustrated in Figure 16b,c shows that
the PSO-MPPT algorithm takes a longer time to attain the GMPP. The proposed CS-STSMC-
MPPT algorithm is the fastest algorithm in tracking the GMPP, and it reaches 244.83 W in
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0.58 s with low oscillations around GMPP as illustrated in Figure 16e. Figure 16 presents
the efficiency of the CS-PID-MPPT algorithm in tracking the GMPP with a convergence
time of 0.62 s. However, P&O is fooled by the local maximum and displays significant
fluctuations close to it with 1.32% of accuracy which is considerable compared to the PSO
and CS-MPPT algorithms. We can interpret that the CS-STSMC-MPPT algorithm is faster
and more precise than the other algorithms for this case.

Figure 17a shows the response of the PV voltage for the P&O-MPPT algorithm, which
stabilizes at a value of 32.5 V with significant oscillations, and Figure 18a is the curve of
current response that stabilizes at 4.43 A. Furthermore, the PVS stabilizes at a voltage of
109.38 V and a current of 2.24 A when the CS-MPPT algorithm is applied, as it is depicted
in Figures 17c and 18c. Figure 17d,e shows the PV voltage for the CS-PID and the proposed
CS-STSMC-MPPT controllers. We remark that the CS-STSMC-MPPT algorithm reduces the
ripples in the PV voltage curve for the CS-PID MPPT algorithm. Therefore, the proposed
CS-STSMC-MPPT algorithm can reduce the problem caused by CS-PID. The PV current
responses for the proposed CS-STSMC-MPPT algorithm and CS-PID-MPPT algorithm as
shown in Figure 18d,e, respectively.
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6.4. Simulation Comparison

Oscillations, efficiency, power losses, and convergence time are factors used to compare
these techniques, which are the CS-STSMC, CS-PID, CS, P&O, and PSO MPPT algorithms
under shading cases based on the aforementioned numerical results, as illustrated in
Figure 19.
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in terms of (a) convergence time and (b) efficiency.

Table 6 resumes the simulation results of the comparison of CS-STSMC with the CS-
PID, CS, PSO, and P&O MPPT methods. We notice that the CS-STSMC-MPPT algorithm
takes 0.27 s to reach the GMPP in Case 1. Under shading conditions, it only needs 0.43 s in
Case 2 and 0.58 s in Case 3. It is noted that the CS-STSMC-MPPT algorithm converges to the
GMPP more quickly than the other controllers, while P&O leads to an LMPP under PSCs.
According to the performance criteria that are taken into consideration, Figure 19 gives
the results obtained and clearly shows that the CS-STSMC-MPPT algorithm is superior to
CS-PID, CS, PSO, and P&O.

Table 6. Comparison of the proposed CS-STSMC, CS-PID, CS, PSO, and P&O performance.

Cases Methods GMPP Power
Tracked

Power
Losses

Convergence
Time

Steady State
Error Efficiency

Case 1

Proposed CS-STSMC

600.3

600.3 Very low 0.27 s neglected 100%

CS-PID 600.3 high 0.34 s high 100%

CS 600.28 Very low 0.42 s neglected 99.99%

PSO 600.28 Very low 0.84 s neglected 99.99%

P&O 600.1 Medium 0.25 s high 99.96%

Case 2

Proposed CS-STSMC

326.1

326.1 Low 0.43 s neglected 100%

CS-PID 326 high 0.56 s high 100%

CS 326.025 low 0.59 s neglected 99.97%

PSO 326 low 1.15 s neglected 99.96%

P&O 294 9.84% 0.07 s high 90.15%

Case 3

Proposed CS-STSMC

244.83

244.83 Low 0.58 s neglected 100%

CS-PID 244.8 high 0.62 s high 99.98%

CS 244.8 low 0.65 s moderate 99.98%

PSO 244.8 low 0.88 s moderate 99.97%

P&O 140.8 42.5% 0.2 s (LMPP) high 82.54%
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Based on Table 6 and Figure 19, the following points can be mentioned:

• In all PSCs, the GMPP is reached via the CS approach with a very high degree of
efficiency. For all of the tested shading cases, 99.98%, 99.97%, and 82.54% are the
efficiency average of the CS, PSO, and P&O MPPT algorithms, respectively, as depicted
in Figure 19. On the other hand, CS-STSMC and CS-PID achieve 100% of efficiency for
different shading scenarios and for any position of the GMPP. Thus, the CS-STSMC
and CS-PID MPPT algorithms are more efficient than CS, PSO, and P&O MPPT for
any weather condition.

• In the first case, which is zero shading, the CS-STSMC-MPPT algorithm reduces
the convergence time by 35.7% and 67.8% compared to conventional CS and PSO,
respectively. Compared well to the PID-CS MPPT, CS-STSMC-MPPT minimizes the
time of convergence by 20.58% and reaches 21.24% and 6.46% in Case 2 and Case 3
which correspond to weak shading and severe shading, respectively. As a result, the
CS-STSMC-MPPT algorithm reduces the convergence time by 16.1% on average in
contrast to CS-PID.

• In every case of PSCs, the proposed CS-STSMC-MPPT algorithm always converges to
the GMPP. Nevertheless, P&O is tricked into one of the local peaks. For the proposed
CS-STSMC-MPPT algorithm, the ripples of the PV voltage decrease which leads to a
reduction in the power oscillations, and thus a decrease in the power losses.

• The proposed CS-STSMC-MPPT algorithm reduces the ripples of Vpv around the Vref
caused by the derivate parameter of PID so, power losses are reduced.

6.5. Qualitative Comparison

An analysis of the seven MPPT methods presented in Table 7 is done to qualitatively
compare their performance to that of the proposed CS-STSMC-MPPT algorithm technique
under PSCs. These techniques include traditional, soft computing, and hybrid methods.

Table 7. Qualitative comparison between the proposed CS-STSMC-MPPT algorithm and other
MPPT methods.

Algorithm Tracking Efficiency Oscillations at MPP Tracking Speed
Hardware

Implementation
Complexity

INC [131] Low High High Low

P&O-PSO [132] Low High High Medium

VSS-P&O [133] Low High Low Medium

FLC [134] Low High Medium Medium

GWO [135] High Medium High Medium

PSO [82] High Medium Low High

PSO-PI Medium high High Medium

CSA [15] High Low High High

Proposed CS-STSMC-
MPPT algorithm Very High Low High Medium

The following factors are used for comparison: the complexity of hardware implemen-
tation, oscillations around the MPP, speed of tracking the MPP under PSC, and efficiency
in tracking the MPP.

Based on Table 7, we can notice that P&O-PSO, INC, VSS-P&, and FLC are not able to
track the GMPP under any shadowing scenario. CSA, PSO, and GWO are metaheuristic
methods, and we notice that these algorithms have high tracking efficiency. The CSA MPPT
algorithms are fast in tracking the MPP, but the cited traditional methods cannot extract the
GMPP in PSCs. Traditional methods, improved P&O, FLC, and PSO-PI generate intense
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fluctuations close to the MPP in stable conditions, but for the metaheuristic techniques,
PSO and GWO oscillations are medium and no steady-state oscillation is seen for CSA and
our proposed method. Traditional methods, CSA and CS use few tuning parameters, but
the traditional methods and FLC are unable to track the GMPP.

Due to their extremely high efficiency, the metaheuristic methods significantly reduce
power losses. Nevertheless, PSO is lower than CSA and PSO-PI in extracting the GMPP.
Yet, the proposed CS-STSMC-MPPT algorithm is simpler in hardware implementation than
the CSA.

6.6. Quantitative Comparison

Table 8 presents a quantitative comprehensive comparison of nine MPPT algorithms
from different categories. We compare the proposed technique with ICS, CSA, VSS-INR, FPA,
dynamic group-based cooperation optimization, FLC, and P&O. Each algorithm is assessed
based on several key performance parameters. These parameters include the type/nature of
the algorithm, its efficiency, and its convergence time under various shading conditions.

Table 8. Quantitative comparison of different MPPT.

Algorithms MPPT Type Cases GMPPT
(W)

Efficiency
(%)

Convergence
Time (ms) Converter

Proposed
CS-STSMC Metaheuristic

Case1 600.3 100 270

BoostCase2 326.1 100 430

Case3 244.83 100 580

Improved CS [16] Metaheuristic - - 99.97 290 Buck boost

CSA [15] Metaheuristic

Case1 (one peak) 325.5 99.97 310

boostCase2 (two peaks) 281.2 99.64 490

Case3 (five peaks) 143.2 99.93 360

Variable step size
incremental
resistance

(VSS-INR) [136]

Metaheuristic

Case1 1339.6 97.82 350

BoostCase2 596.8 96.07 391

Case3 1407 96.01 501

PSO & P & O [132] Hybrid
Case1 239.6 98.41 210

BoostCase 2 115.86 98 220

Case3 76.57 97.71 298

Dynamic Group
Based Cooperation
Optimization [137]

Bio-inspired - - 99.88 383 Boost

FLC [136] AI

Case 1 399.1 99.9 263

BoostCase 2 183.0 72.8 255

Case 3 95.9 65.5 74

P & O [15] Conventional

Case 1 (one peak) 325.5 99.26 650

boostCase 2 (two peaks) 281.2 75.32 230

Case 3 (five peaks) 143.2 93.57 270

FPA [18] Soft computing
Case1 (no shading) 120 99.33 751

boostCase2 (weak shading) 55.81 98.98 756

Case3 (strong PSC) 42.16 99.74 752

From this table, we can remark that the metaheuristic methods are particularly effective
in PSC, especially the proposed CS-STSMC-MPPT algorithm in terms of efficiency and
speed in GMPPT.
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To confirm the strength of our algorithm, we cited an example of an improved CS.

7. Conclusions and Futures Works

The proposed CS-STSMC-MPPT algorithm is a combination of the CS-MPPT meta-
heuristic method and STSMC, which is described in the study as a solution to reduce the
negative effects of PSCs on PVS GMPP tracking.

The operation of our proposed CS-STSMC-MPPT algorithm involves two primary
parts. The initial part uses the CS-MPPT algorithm to sweep the power-voltage curve to
extract the GMPP. Following the identification of the GMPP, the algorithm then generates
the corresponding optimal voltage reference. The second part tracks this voltage reference
by adjusting the duty cycle of the boost converter. A key attribute of this technique is
its efficiency, rapidity in tracking the MPP, reduced power losses, and robustness against
variations in parameters.

• The simulation results of this research study have proven the strong capacity of the
proposed CS-STSMC-MPPT algorithm to effectively track the GMPP under different
shading scenarios, which are zero shading, weak, and severe. The average efficiency
of the three tested cases for the CS-STSMC-MPPT approach, which tracks the maxi-
mum power from the generator of the PVS, is 100%, compared to other algorithms.
Additionally, in PSCs, the total power losses are significantly reduced by the proposed
CS-STSMC-MPPT algorithm compared to the CS-PID-MPPT algorithm, because the
proposed method decreases the ripples of the PV voltage, which leads to a significant
reduction in power losses. In both weak and severe shading scenarios, P&O fails to
track the GMPP, and it misleads to an LMPP by an incorrect convergence. Thus, under
PSCs, the traditional P&O method fails to detect the GMPP. In contrast, the proposed
CS-STSMC-MPPT algorithm reduces the average convergence time in comparison to
other MPPT algorithms. CS-STSMC-MPPT reduces the convergence, time by 16.1% on
average in contrast to CS-PID with low steady state oscillations while extracting the
maximum amount of power hence decreasing power losses. Moreover, a qualitative
and quantitative comparison of the proposed CS-STSMC-MPPT algorithm to other
methods in the literature demonstrates the superiority of CS-STSMC-MPPT in terms
of efficiency, convergence time, and power losses.

• Future research work may be about extending our focus from standalone PVS to
grid-connected systems. This broadening of scope will allow us to evaluate our
proposed method performance across a wider range of PVS configurations, enhancing
its practical relevance Furthermore, the superiority of the proposed CS-STSMC-MPPT
algorithm can be validated in an experimental hardware platform.
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Nomenclature

PVS Photovoltaic system
MPP Maximum power point
MPPT Maximum power point tracking
GMPPT Global maximum power point tracking
LMPPT Local maximum power point tracking
PSC Partial shading condition
SMC Sliding Mode Control
STSMC Super-Twisting Sliding Mode Control
FOSMC First Order Sliding Mode Control
SOSMC Second Order Sliding Mode Control
PID Proportional Integral Derivative
P&O Perturb and observe
INC Incremental conductance
HC Hill climbing
CS Cuckoo Search
PSO Particle swarm optimization
AI Artificial intelligence
ANN Artificial neural network
FLC Fuzzy logic control
GA Genetic algorithm
FPA Flower pollination algorithm
GWA Grey wolf algorithm
CSA Crew search algorithm
PO&GS Perturb and observe and global scanning
STC Standard test condition
PWM Pulse width modulation
Pbest Best individual position
Gbesr Best swarm position
c1,c2 cognitive and social coefficient
ω weight inertia
α random step length
λ parameter that determine the shape of distribution
Vmpp Maximum power point voltage
Impp Maximum power point current
Vmp, Imp Maximum photovoltaic system voltage and current
Vo Open circuit voltage
Isc Short circuit current
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