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Abstract: Global climate change and rapid socio-economic development have increased the uncer-
tainty in water resource systems and the complexity of water risk issues. Analyzing water risk and
its spatial distribution is integral to the attainment of Sustainable Development Goal (SDG) 6, as this
contributes to effective water resource partition management. In this paper, a compiling method of
risk atlas with multiple layers is proposed, and the water risk system is divided into five sub-systems
including the risk of resource, management, engineering, quality, and disaster. The information
used for the risk atlas is calculated by a risk evaluation model based on a Pressure–State–Response
(PSR) framework, hierarchical cluster, and set pair analysis (SPA). Risks in the Qinling Mountains
of Shaanxi (as a case study) are evaluated and visualized. The results show that grades IV and V of
engineering, disaster, and resource risk exceed 40%, indicating that they require prior control. The
quality and management risks are not major, but there is still room for improvement. Overall, the
risk atlas can effectively and objectively reflect the spatial distribution of water risk and provide a
basis for the layout of water risk control measures.

Keywords: water risk; risk atlas; set pair analysis; Qinling Mountains

1. Introduction

Since the 21st century, the rapid growth of population and water consumption has
led to a prominent contradiction between water supply and demand [1,2]. The excessive
exploitation of water resources has brought pressure on the ecological environment and
caused its deterioration [3]. With economic development, accelerating urbanization, and
future changes to the hydrological cycle caused by climate change, the imbalance between
the supply and demand of water resources will continue to expand, which will lead to
an increase in the risk of future water resources [4–6]. The formulation of Sustainable
Development Goal (SDG) 6—Ensure availability and sustainable management of water and
sanitation for all—in the 2030 Agenda for Sustainable Development represents the emphasis
of the United Nations on sustainable water security issues [7]. How to analyze and curb
water risk in accordance with SDG 6 targets becomes an important measure of ensuring the
sustainable use and management of water resources [8].

The comprehensive analysis and assessment of risk is an essential part of the whole risk
management concept, with the purpose of establishing where risk is excessively high so that
early mitigation actions can be taken [9]. Hall and Borgomeo [10] pointed out that although
risk is forward-looking and often considered to be future-oriented, past sequences of events
and their impacts could provide some evidence about risks and monitoring variables
associated with risk would assist in risk assessment. Semi-quantitative evaluations based
on the construction of indicator systems have thus gained widespread attention [11–15],
with a focus on the selection of indicators and ranking methods [16,17]. To select the most
relevant indicators, researchers typically start by specifying a logical framework. Based on
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the Pressure–State–Response (PSR) or Driver–Pressure–State–Impact–Response (DPSIR)
framework, Hammond et al. [18], Deng et al. [19], and Gomez et al. [20] constructed the
evaluation model of flood risk, drought risk, and water environment risk, respectively.
Moreover, composite index methods, such as the weighted composite method [21–23]
and the fuzzy comprehensive evaluation method [15,24], were commonly used in risk
assessment practice. These methods belong to the category of linear weighted evaluation
methods, whereas the nature of the risk assessment process is nonlinear [25]. Therefore,
some nonlinear assessment approaches, such as set pair analysis (SPA) [14,26], machine
learning [27], and function models [28], have been used for risk evaluation to better cope
with that. Among them, the SPA method can analyze the fuzzy uncertainty relationship
between the sample, subsystem, index values, and criteria in three aspects—the identity,
the discrepancy, and the contradistinction—and is, therefore, more suitable for water risk
assessment problems with uncertainty and complexity [29,30].

Although many attempts have been made in extant studies to address water-related
issues, they have largely focused on one specific aspect of water risk. The study of re-
gional water risk, as a complex system engineering, encompasses diverse challenges for
water accessibility, water quality, water availability, and natural disasters [31,32]. Single-
perspective analysis severs the complex coupling within a water resource system and is
inadequate to deal with complex water risk issues. A more integrated and systematic
assessment approach to water risk is one requirement to address diverse water challenges
and ensure sustainable development. The five outcome-based targets of SDG 6 embody a
broad spectrum of water risk, including resource risk (target 6.1), quality risk (targets 6.3
and 6.6), management risk (targets 6.4 and 6.5), engineering risk (targets 6.1 and 6.4), and
disaster risk (target 6.6), which provides the direction for integrated water risk assessment.
Moreover, the diversity of impacting factors ensures water risk has significant regional
differences. Determining the spatial distribution of risk is the precondition for realizing
water resource partition management, and it also helps greatly during planning document
making [33]. Digital maps are important interactive tools to visualize and compare spa-
tial distributions. As a perceptible way of presenting risks, risk maps enable authorities,
citizens, and the media to be aware of the levels and spatial distribution of risks to which
their city is exposed intuitively. With the progress and development in science, risk maps
have been extensively developed, especially in the field of natural hazards such as drought,
flood, and landslide [34–36]. However, there are few reports on the study of maps that
integrate multiple types and multiple layers of water risk information.

Consequently, the aim of this study is to develop a framework for integrated water
risk assessment based on SDG 6 and its targets, as well as to propose a method for water
risk atlas compilation using geospatial technology, which helps us to clarify the spatial
distribution of water risk, to realize water resource partition management according to local
conditions, and to provide important scientific support for the layout of water risk control
measures, allowing for an integrated and systematic response to diverse water challenges.

2. Materials and Methods
2.1. Study Area

The Shaanxi section of the Qinling Mountains (32◦07′–34◦47′ N, 105◦29′–111◦02′ E) is
located in the southern part of Shaanxi Province, China. There are 39 counties, including
Baqiao, Lintong, Chang’an, Lantian, Zhouzhi, Huyi, Weibin, Chencang, Jintai, Qishan,
Meixian, Fengxian, Taibai, Linwei, Huazhou, Tongguan, Huayin, Hantai, Chenggu, Yangx-
ian, Xixiang, Mianxian, Ningqiang, Lueyang, Liuba, Foping, Hanbin, Hanyin, Shiquan,
Ningshan, Ziyang, Xunyang, Shangzhou, Zhashui, Luonan, Danfeng, Shanyang, Shangnan,
and Zhen’an, which belong to the 6 cities of Xi’an, Hanzhong, Ankang, Baoji, Weinan, and
Shangluo (Figure 1).
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Figure 1. Location of the study area.

As an important boundary between north and south China, the Qinling Mountains are
roughly in line with the 800 mm rainfall contours and 0 ◦C isothermal curve in January. As a
result of the influences of the special topography and climate, precipitation is characterized
by an asymmetry in temporal and spatial distribution. The Guanzhong region on the
northern slope of the Qinling Mountains is the political and economic center of Shaanxi
Province. However, the amount of water resources per capita is less than 400 m3, which is
1/4 of that in China and 1/15 of that in the world, and is still on a decreasing trend [37].
Moreover, along with the rapid development of population and industrial agglomeration,
water pollution and over-exploitation are becoming increasingly serious problems, which
hinder the sustainable development of the economy and society [38]. The Hanjiang Valley
on the southern slope has abundant water resources, but the effective regulation and storage
capacity only accounts for 11.9% of the average annual surface water resources, which is
1/3 of that in China. Most of the self-produced water flows out of the boundaries without
being used, resulting in a prominent contradiction between water supply and demand.
Although water efficiency has improved in recent years due to the implementation of the
“Three Red Lines” water policy, there is still room for improvement compared to other
Chinese regions [39]. In addition, the Shaanxi section of the Qinling Mountains is located in
the province with the most serious soil and water loss in China. The ecological environment
is fragile and disasters such as droughts and floods occur frequently, all of which threaten
the sustainable use of water resources and the coordinated development of the economy
and society.
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2.2. Data Source

The data used in this research include spatial data and statistical data. Spatial data
including administrative divisions, a digital elevation model (DEM), and a normalized
difference vegetation index (NDVI) are mainly derived from the Geospatial Data Cloud
(GDC, http://www.gscloud.cn, last access date: 25 April 2023) and the Resource and
Environment Science and Data Center (RESDC, http://www.resdc.cn, last access date:
25 April 2023). Statistical data including water-related data and socio-economic data
are mainly derived from the “Shaanxi Statistics Yearbook (2015–2019)” and the “Water
Resources Bulletin (2015–2019)”.

2.3. Conceptual Framework

The water risk atlas is a generic term of a series of figures that reflect the type and
magnitude of water risk distribution characteristics based on spatial data and statistics,
oriented by the SDGs and supported by risk theory and geographic information technol-
ogy. The principle is to evaluate risks and their regional differences based on the natural
environmental elements and socio-economic conditions of the study area.

According to different risk sources, the water risk atlas can be divided into five
layers: resource, management, engineering, quality, and disaster. The risk of resource (R)
arises from a quantitative shortage of water resources, i.e., water consumption exceeds
water availability, essentially a conflict between limited and spatially and temporally
unevenly distributed water resources and the water demands of a growing population.
High resource risk would lead to lower output and reduced food production, which
becomes a primary constraint on regional economic development and social stability [40].
The risk of management (M) describes the degree of water development and the efficiency
of water utilization, used to analyze whether a region is experiencing an avoidable increase
in water demand due to a lack of water saving. High management risks would induce
water scarcity and thus hinder sustainable economic and social development. The risk
of engineering (E) refers to the imbalance in the spatial–temporal deployment of water
resources and weak disaster-defense capacity due to the lag of hydraulic engineering
construction, which would not only cause a shortage of water supply but also pose a threat
to people’s lives and property [41]. The risk of quality (Q) describes the deterioration of
water quality brought on by the release of contaminants, which prevents water resources
from being able to meet production demands. The deterioration of the water environment
due to water quality risks would also increase the cost of consumption for water users,
which indirectly limits economic and social development [42]. The risk of disaster (D)
describes the possibility of disasters, such as soil erosion and flood, that would adversely
affect water quality, quantity, and human life and property. The framework shown in
Figure 2 illustrates the compiling process of the water risk atlas, consisting of the following
six main steps:

• Database construction: preparation of the datasets, which should include spatial and
statistical data;

• Indicator selection: with the risk conception as a reference, the three aspects of the PSR
model should be logically analyzed for each risk layer to select and formulate appro-
priate indicators, thereby constructing a multidimensional risk assessment indicator
system;

• Weight assignment: using the Criteria Importance Through Inter-criteria Correlation
(CRITIC) method, the objective weight of each indicator could be assigned by taking
into account both contrast intensity and conflicting character;

• Standard classification: based on the features of the study area, a clustering algorithm
could be used to determine the threshold for each indicator with reference to the
accepted criteria that exist;

• Risk rank judgement: according to the indicator system, weights, and standard estab-
lished, the risk evaluation value and grade could be calculated employing the SPA
method from three aspects—the identity, the discrepancy, and the contradistinction;

http://www.gscloud.cn
http://www.resdc.cn
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• Atlas compilation: based on the risk evaluation value and grade obtained, a sunburst,
a heatmap and a spatial distribution map could be produced for each risk layer to
generate a regional water risk atlas.
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2.4. Model Development

As shown in Figure 2, the evaluation model for water risk consists of four important
components: the selection of indicators, classification of standards, assigning of weights to
selected indicators, and ranking algorithm. This section presents the details on the selected
research methods in this work.

2.4.1. Indicator Selection and Standard Classification

The selection of the assessment indicators is the basis of water risk assessment. A ratio-
nal indicator system is expected to contain features of a dynamic bidirectional transmission
mechanism and feedback besides assuring the broad coverage of indicators [43]. As a
well-accepted method to assess resilience, the PSR framework [44] not only has obvious
advantages in reflecting dynamic assessment processes [45,46] but also has conceptual
coherence with the substance of risk—a product of the combination of a risk source and
a risk-bearing entity [25]. In integrated water risk assessments, the pressure indicators
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answer the question of “why such a change happened” from the viewpoint of the risk
source; the state and response indicators answer the questions of “what has changed” and
“what should be done” from the viewpoint of the risk-bearer [47].

Cluster analysis is a method often used for classifying samples or variables including
three types: k-means cluster, two-step cluster, and hierarchical cluster [11]. Applying
cluster analysis to the classification of standards can overcome the subjective uncertainty
of manually setting thresholds. Compared with the natural breaks method [48–52] and
the numerical equalization method [53], it is also more scientific and reasonable. Both the
k-means cluster and hierarchical cluster can be applied to numerical variables, and the
latter has been proven to have a potential advantage [54] and is therefore used in this study.
The principle of the hierarchical cluster is that the nearest samples are clustered into clusters
first, and then the distant samples are clustered into clusters. This process continues, and
each sample eventually can be gathered in the appropriate class [55]. Researchers can use
the Euclidean distance to calculate the sample distance to measure their similarity [56]. The
equation for calculating the binary Euclidean distance is as follows:

d(xi, xj) =

[
∑p

k=1

(
xik − xjk

)2
]1/2

(1)

Let dij = d
(

xi, xj
)
, D = (d ij

)
p×p

, form a distance matrix:


0 d12

d21 0
· · · d1n
. . . d2n

...
...

d1n d2n

...
...

. . . 0

 (2)

where dij and dji are the distance between variables i and j.
According to the nearest distance matrix, the two samples with the closest distance

are combined into one class, and clustering is performed using the Ward’s method. When
Gp and Gq are merged into Gr, the recursive equation for the distance to other Gk is

D2
rk =

nk + np

nr + nk
D2

pk +
nk + nq

nr + nk
D2

qk −
nk

nr + nk
D2

pq (3)

where nk, np, nr and nq are the number of samples of Gp, Gk, Gr and Gq, respectively.

2.4.2. Weight Assignment

The weight is the physical quantity that measures the contribution of each evaluation
indicator to the target [57], which holds an important place in an evaluation system. The
weight analysis method can be usually divided into subjective and objective weighting
methods. The subjective methods require the domain expert’s knowledge and vision.
These techniques are often biased and do not capture the essence of the data [58]. Criteria
Importance Through Inter-criteria Correlation (CRITIC), as a commonly used objective
weighting method proposed by Diakoulaki et al. [59], can determine weights by considering
both data volatility and correlations, unlike some methods that consider only one aspect [60].
The CRITIC method takes sample indicator values as input. The indicator value of each
sample, which should be normalized to a [0, 1] interval, computes the standard deviation σj
and the correlation coefficient to measure the contrast intensity and the conflicting character.
Then, the indicator (C), which integrates the contrast intensity and the conflicting character,
can be calculated using Equation (4):

Cj = σj

m

∑
i=1

(1− rij) (4)
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where Cj is the information given by the j-th indicator, and rij is the linear correlation
between indicators i and j. The weights are computed by Equation (5):

ωj =
Cj

∑n
j=1 Cj

(5)

where ωj is the weight of the j-th indicator using the CRITIC method.

2.4.3. Set Pair Analysis (SPA) Method for Risk Rank Judgement

The essence of risk events is uncertainty [61]. SPA is a method to analyze the internal
uncertainty of a given system from three aspects: the identity, the discrepancy, and the
contradistinction [62]. Assume sample indicator value xt as set At, where t = 1, 2, . . . , T, and
T is the number of assessment indicators. Further, assume the corresponding assessment
standard as set Bk, where k = 1, 2, . . . , K, and K is the number of assessment grades. Then,
the sets At and Bk can form a set pair W (At, Bk). For the set pair W (At, Bk), S is the number
of the identical terms of the characteristic, which means indicator value xt and its k-th
standard are in the same grade. F1, F2, and FK-2 are the number of the discrepant terms of
the characteristic, which means indicator value xt and its k-th standard are different by one,
two, and K − 2 grades. P is the number of contradictory terms of the characteristic, which
means indicator value xt and its k-th standard are different by K − 1 grades [63]. According
to the principle of SPA theory, the connection degree of W (At, Bk) can be described as

µk =
S
N

+
F1

N
i1 +

F2

N
i2 + . . . +

Fk−2
N

ik−2 +
P
N

j (6)

Here, a = S/N is called the identity degree, b = F/N the discrepancy degree, and
c = P/N the contradictory degree. Then, Equation (6) can be rewritten as

µk = a + b1i1 + b2i2 + . . . + bk−2ik−2 + cj (7)

Where i is the uncertainty coefficient of discrepancy, which has different values [−1, 1]
in different conditions, and j is the uncertainty coefficient of the contradictory, which has a
value of −1 [64].

For the indicator which is more superior when it is smaller, the connection degree µst
between the sample value xt and its grade standard can be defined as follows:

µst =



1 + 0i1 + 0i2 + . . . + 0ik−2 + 0j, xt ≤ S1
S2−xt
S2−S1

+ xt−S1
S2−S1

i1 + 0i2 + . . . + 0ik−2 + 0j, S1 ≤ xt ≤ S2

0 + S3−xt
S3−S2

i1 +
xt−S2
S3−S2

i2 + . . . + 0ik−2 + 0j, S2 ≤ xt ≤ S3

· · ·
0 + 0i1 + 0i2 + . . . + SK−xt

SK−SK−1
ik−2 +

xt−SK−1
SK−SK−1

j, SK−1 ≤ xt ≤ SK

0 + 0i1 + 0i2 + . . . + 0ik−2 + 1j, xt > SK

(8)

For the indicator which is more superior when it is bigger, the connection degree µst
between the sample value xt and its grade standard can be defined as follows:

µst =



1 + 0i1 + 0i2 + . . . + 0ik−2 + 0j, xt ≥ S1
xt−S2
S1−S2

+ S1−xt
S1−S2

i1 + 0i2 + . . . + 0ik−2 + 0j, S2 ≤ xt ≤ S1

0 + xt−S3
S2−S3

i1 +
S2−xt
S2−S3

i2 + . . . + 0ik−2 + 0j, S3 ≤ xt ≤ S2

· · ·
0 + 0i1 + 0i2 + . . . + xt−SK

SK−1−SK
ik−2 +

SK−1−xt
SK−1−SK

j, SK ≤ xt ≤ SK−1

0 + 0i1 + 0i2 + . . . + 0ik−2 + 1j, xt < SK

(9)
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where S1, S2, S3, . . . , SK-1, and SK are the threshold values of 1, 2, 3, . . . , K-1, and K grades,
respectively, xt is the sample indicator value of each sample, s is the s-th sample, and t is
the t-th indicator.

Combining the calculation result of the indicator weight based on the CRITIC method,
the K-element connection degree µ of set pair W (A, B) can be defined as

µ(A, B) =
T

∑
t=1

ωtµst =
T

∑
t=1

ωtat +
T

∑
t=1

ωtbt,1i1 + · · ·+
T

∑
t=1

ωtbt,K−2ik−2 +
T

∑
t=1

ωtct j (10)

where ωt is the weight of t-th indicator.

Let f1 =
T
∑

t=1
ωtat , f2 =

T
∑

t=1
ωtbt,1, · · · , fK−1 =

T
∑

t=1
ωtbt,K−2, fK =

T
∑

t=1
ωtct, the evalua-

tion value Gs of a given sample s can be defined as follows:

Gs = f1 × 1 + f2 × 2+ · · ·+ fK−1 × (K− 1) + fK × K (11)

The following confidence criterion is defined:

hk = ( f1 + f2 + · · ·+ fk) > λ, λ ∈ [0.5, 0.7] (12)

where λ is the confidence degree. When λ approaches 0.7, the assessment result tends to be
conservative and reliable. When λ is given, hk can be determined by Equation (11). The
assessment grade k can be also obtained from hk. Then, the ranking value of a given sample
can be judged as the k-th grade.

Using set pair analysis, the indicator set based on the PSR framework can be closely
combined with the standard set based on the hierarchical cluster. This combination reduces
the influence of the researcher’s subjective consciousness on the evaluation results, while
fully exploiting the hidden information in the data. The fuzzy uncertainty relationship
between evaluation samples, evaluation indicator values, and evaluation criteria is also well
characterized. According to the indicator system, weights, and standard established above,
the evaluation value and evaluation grade of each sample under different risk types can
be calculated, which lays the data foundation for the risk atlas. After that, the evaluation
results can be visualized as a spatial atlas with geographic information technology.

3. Results
3.1. Determination of Indicator and Standard

Based on the PSR framework and the features of water resources in the study area,
the assessment indicator system has been established by extracting 25 indicators of water
risk, as shown in Table 1. For indicator R1, M1, M2, M3, M4, M5, Q2, Q3, Q4, D2, and D3,
the efficiency of the indicator is superior when the indicator value is smaller. For indicator
R2, R3, R4, R5, Q1, Q5, D1, D4, D5, E1, E2, E3, E4, and E5, the efficiency of the indicator is
superior when the indicator value is bigger. The assessment standard grades of water risk
are divided into five classes, namely very low (grade I), low (grade II), medium (grade III),
high (grade IV), and very high (grade V). Table 1 also shows the weights of indicators
determined by the CRITIC method and the threshold of the indicators determined by the
hierarchical cluster based on the sample data of 39 counties in the Shaanxi section of the
Qinling Mountains from 2015 to 2019.
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Table 1. The assessment indicator system and grading standards of water risk.

Subsystem Indicator
Grade I Grade II Grade III Grade IV Grade V

Weight
Very Low Low Moderate High Very High

R

R1 Natural population growth rate (‰) <1.5 [1.5, 3.0) [3.0, 4.5) [4.5, 5.5] >5.5 0.055
R2 Annual precipitation (mm) >1100 [840, 1100] [670, 840) [570, 670) <570 0.033
R3 Water yield coefficient >0.55 [0.44, 0.55] [0.33, 0.44) [0.23, 0.33) <0.23 0.033
R4 Water yield modulus (104 m3/km2) >58 [42, 58] [27, 42) [18, 27) <18 0.028
R5 Water resources per capita (m3) >5000 [2000, 5000] [1000, 2000) [500, 1000) <500 0.051

M

M1 Surface water resource utilization ratio (%) <10 [10, 20) [20, 30) [30, 40] >40 0.035
M2 Water consumption per unit of GDP (m3/CNY 104) <20 [20, 50) [50, 80) [80, 120] >120 0.054

M3
Water consumption per mu of irrigated farmland

(m3/mu) <250 [250, 450) [450, 650) [650, 850] >850 0.042

M4 Daily domestic water consumption per capita (m3) <70 [70, 90) [90, 110) [110, 130] >130 0.037

M5
Water consumption per CNY 10,000 of industrial added

value (m3/CNY 104) <15 [15, 27) [27, 50) [50, 73] >73 0.031

Q

Q1 Compliance rate of section water quality (%) >90 [80, 90] [70, 80) [60, 70) <60 0.054
Q2 Wastewater emissions per unit of GDP (tons/CNY 104) <5 [5, 8) [8, 10) [10, 13] >13 0.031
Q3 Ratio of wastewater to runoff (%) <1 [1, 4) [4, 10) [10, 20] >20 0.024
Q4 Fertilizer use per unit area (tons/hm2) <0.2 [0.2, 0.4) [0.4, 0.6) [0.6, 0.8] >0.8 0.033
Q5 Ratio of treated sewage (%) >95 [90, 95] [85, 90) [80, 85) <80 0.057

D

D1 NDVI >0.80 [0.60, 0.80] [0.45, 0.60) [0.35, 0.45) <0.35 0.045
D2 Soil and water loss rate (%) <16 [16, 31) [31, 44) [44, 55] >55 0.034
D3 Frequency of rainfall > 25 mm (%) <1.36 [1.36, 1.57) [1.57, 1.99) [1.99, 2.36] >2.36 0.056
D4 Elevation (m) >1100 [900, 1100] [725, 900) [550, 725) <550 0.027
D5 Per capita GDP (CNY 104) >8.0 [6.5, 8.0] [4.8, 6.5) [3.7, 4.8) <3.7 0.039

E

E1 Storage coefficient (%) >50 [30, 50] [20, 30) [8, 20) <8 0.026
E2 Proportion of standard dikes (%) >90 [75, 90] [60, 75) [45, 60) <45 0.043
E3 Proportion of water investment (%) >2.0 [1.6, 2.0] [1.2, 1.6) [0.9, 1.2) <0.9 0.074
E4 Effective irrigation rate (%) >90 [70, 90] [50, 70) [35, 50) <35 0.035
E5 Per unit area storage capacity (104 m3/km2) >30 [20, 30] [15, 20) [10, 15) <10 0.023
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3.2. Evaluation Results of Water Risk Based on SPA

According to Equations (8) and (9) in Section 2.4.3, the connection degree between
every individual indicator value xt and the corresponding first standard can be calculated.
For indicator R1, M1, M2, M3, M4, M5, Q2, Q3, Q4, D2, and D3, µst can be calculated with
Equation (8). For indicator R2, R3, R4, R5, Q1, Q5, D1, D4, D5, E1, E2, E3, E4, and E5, µst
can be calculated with Equation (9). Then, the connection degree µ(A, B) of set pair W
(A, B), in which set A is sample indicator values and set B is the first assessment grade
standards, can be acquired by Equation (10). According to the connection degree µ(A, B)
of each sample and confidence criterion with λ = 0.6, the evaluation value and the risk
grade of all types and the corresponding integrated risk grade can be identified by using
Equations (11) and (12).

3.3. Spatial Atlas of Water Risk in the Shaanxi Section of the Qinling Mountains

Based on the results of the risk evaluation, a sunburst, a heatmap, and a spatial
distribution map could be produced for each subsystem to generate a regional water
risk atlas, thereby exploring the spatial characteristics and corresponding causes of water
resource risks in the study area. The sunburst shows the overall performance of the study
area in each category of risk by depicting the proportions of different risk grades and details
the composition of areas with very high risk through a hierarchical structure. The heatmap
displays the distribution of the grades of the indicators in the counties with very high risk,
assisting decision-makers in intuitively determining the course of action for risk mitigation
from a holistic perspective. The spatial distribution map illustrates the spatial distribution
of risks and provides a detailed and visual representation of the risk indicator grades for
each high-risk county, which can help with localization decisions. The water resource risk
atlas constructed by combining these three visualization techniques can help to understand
all aspects of risk data from multiple perspectives and explore the information behind
the data as fully as possible. The combination of the three achieves the stratification and
visualization of water risk perception.

As shown in Figure 3, the risk of resource shows a decreasing trend from the eastern
part of the northern slope to the western part of the southern slope of the Qinling Mountains.
The risk of grade V accounts for 21.7%, which is concentrated in Baqiao, Lintong, Chang’an,
Huyi, Lantian, Zhouzhi, Linwei, Huazhou, Tongguan, Huayin, Danfeng, and Shangnan,
belonging to Xi’an, Weinan, and Shangluo, respectively. The resource risk subsystem
describes the magnitude of the supporting forces underpinning the sustainable utilization
of regional water resources in terms of the supply and demand gap in water quantity. As
the dividing line between China’s warm-temperate and subtropical zones, the Qinling
Mountains are generally consistent with the 800 mm rain isolines. This climatic difference
makes the southern slope of the Qinling Mountains warmer and wetter, while the northern
slope is relatively dry, which explains the imbalance of water resources between the north
and the south of the Qinling Mountains to a certain extent. Figure 3b shows that 10/12
counties are at risk grade V for the water resources per capita indicator (R5). Combined
with Figure 3c, it can be seen that these 10 counties with small R5 are all located on the
northern slope, i.e., Guanzhong region. As the core area of the Belt and Road construction,
the Guanzhong region has an increasing population due to the economic development and
urban expansion, which is an important reason for the imbalance between water supply
and demand. In addition, the warm and humid air brought by the southwest monsoon
gradually weakens in the northeast when it reaches the southwest of the study area, due
to the blockage of the Qinling Mountains, and is prone to produce precipitation in the
southwestern part of the study area, i.e., Hanzhong and Baoji [65], which contributes to the
very high risk in the northeastern cities of Xi’an and Weinan and explains the decreasing
risk in the study area from the northeast to the southwest. Danfeng and Shangnan counties
on the southern slope both have water resources per capita shares of over 1000 m3, which
is a respectable amount. However, the water yield coefficients and moduli in these two
counties are relatively small, indicating a spatial scarcity of water resources and a weak
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capacity to convert precipitation into water resources. Thus, these two counties are also
considered to be at very high resource risk.
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The overall distribution of management risk shows that the risk of management in
the western part of the southern slope is higher than those in other regions, and the coun-
ties with risk grade of V are Baqiao, Foping, Hantai, and Mian County, accounting for
5.7% (Figure 4). The management risk subsystem describes the extent of water resource
development, effectiveness, and efficiency of utilization. Figure 4b shows that for the
counties with a very high risk of management, the performance of the indicators is rel-
atively balanced, with no particularly dangerous indicators, suggesting that the reasons
for presenting management risks are not quite the same across these counties. As shown
in Figure 4c, for Baqiao District on the northern slope, the risk mainly stems from the
high surface water utilization ratio (M1), high domestic water consumption (M4), and high
industrial water consumption (M5). As an old industrial base in Xi’an City, Baqiao District
is dominated by the textile industry. This industry has a poor rate of water recycling, low
product profitability, and high water consumption, all of which contribute to the high water
consumption per CNY 10,000 of industrial added value [66]. Moreover, as the main urban
area of Xi’an City, Baqiao District has an urbanization rate of over 95%. According to the
“Shaanxi Province Industry Water Consumption Quotas (DB61/T 943-2020)”, the water
consumption quota for urban residents in Xi’an is twice as high as that for rural residents.
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In this sense, the high domestic water consumption in Baqiao District is justifiable. The
three counties with very high risk on the southern slope are all located in Hanzhong City
and have an inefficient utilization of water for agriculture (M3) in common. Two reasons
for this situation: one is the lack of water-saving irrigation facilities in Hanzhong City;
the second is the weak awareness of farmers to save water [67]. Hantai District, similar
to Baqiao District, has a high degree of surface water utilization and low domestic water
utilization efficiency, which is inevitable in its role as the main urban area of the city. Mian
and Foping counties have low surface water utilization ratios, but both counties have much
room for improvement in water utilization effectiveness and efficiency in all industries.
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(M1—surface water resource utilization ratio, M2—water consumption per unit of GDP, M3—water
consumption per mu of irrigated farmland, M4—daily domestic water consumption per capita,
M5—water consumption per CNY 10,000 of industrial added value).

The risk of engineering is mainly concentrated in the Danjiang River Basin, Jialingjiang
River Basin, and the middle mountainous area. The risk of grade V accounts for 73.5%,
involving 25 counties in 5 cities including Xi’an, Baoji, Shangluo, Hanzhong, and Ankang
(Figure 5). The engineering risk subsystem describes the construction of water projects in
terms of flood control, water storage, and irrigation. Figure 5b shows that all 25 counties
with a very high risk of engineering have low storage capacity per unit area, and 18 of
them have low storage capacity coefficients, implying weak reservoir regulation capacity.
A comparison of Figures 1 and 5c shows that most of the counties with a very high risk
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of engineering are located in mountainous areas with high altitudes. According to the
principles of protection priority and ecological priority in the “Qinling Ecological Protection
Regulations of Shaanxi Province”, the development of areas with an elevation of more than
1500 m is restricted, which might be the reason for their lack of engineering construction.
Reservoir silting due to soil erosion also contributes to the low storage coefficient [68].
Furthermore, Shangluo City, as a typical mountainous agricultural city with many slopes
and few flats, is significantly short of irrigation projects due to objective conditions [69].
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The risk of water quality is mainly concentrated in the lower reaches of the Weihe
River in the eastern part of the northern slope of the Qinling Mountains, and the areas
with a risk grade of V are Baqiao, Linwei, and Huazhou, accounting for 3.4% (Figure 6).
It is obvious that the risk of water quality in the Shaanxi section of the Weihe River
increases from west to east, reaching its peak in Linwei District, Weinan City. The water
quality risk subsystem describes the sustainability of conservation water resources in the
study area in terms of pollutant treatment, discharge, and water quality status. Figure 6b
shows that the three counties with a very high risk of quality suffer from high wastewater
emissions and fertilizer use. The Weihe River is the largest tributary of the Yellow River.
Xi’an and Weinan, the cities with the most developed economy, densest population, most
concentrated industry, and largest pollutant discharge in the Guanzhong area of Shaanxi
Province, are located on the lower reaches of the Weihe River, and the water quality of
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the Weihe River is greatly influenced by domestic sewage and industrial and agricultural
waste from these cities [70]. In 2018, the wastewater emissions of Linwei, Baqiao, and
Huazhou were 15.62 tons/CNY 10,000, 17.62 tons/CNY 10,000, and 19.73 tons/CNY 10,000,
respectively, which were 2.44~3.09 times that found in the Shaanxi section of the Qinling
Mountains. Although the water quality of the Weihe River has continued to improve over
the past ten years, which is related to the strict policy on water pollution control, the Weihe
River is still the most important potential source of pollution in the Yellow River. The
restoration and maintenance of Weihe River health remain important goals of Weihe River
Basin management and conservation.
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compliance rate of section water quality, Q2—wastewater emissions per unit of GDP, Q3—ratio of
wastewater to runoff, Q4—fertilizer use per unit area, Q5—ratio of treated sewage).

The risk of disaster is mainly concentrated in the eastern part of the northern slope
and the Hanjiang River Basin of the southern slope, and the counties with risk grade of
V are Mei, Lintong, Chang’an, Lantian, Zhouzhi, Huazhou, Tongguan, Huayin, Hanbin,
Ziyang, Xixiang, Ningqiang, and Foping, accounting for 30.4% (Figure 7). This disaster risk
subsystem is described from the perspective of disaster sensitivity and anti-disaster ability.
Among the above extremely high-risk areas, most of the counties on the northern slope are
located in the transitional area from the Qinling Mountains to the plain, with large terrain
fall and low vegetation coverage, which are vulnerable to disasters. On the southern slope,
the upper Han River has a large curvature, many tributaries, and abundant water. In case
of heavy or prolonged rain, the water collection speed is too fast for it to be discharged
in time, which makes the river flood-prone. Moreover, the soil and water loss rates of
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Chang’an, Lantian, Ziyang, Mei, Huayin, and Tongguan are more than 60%, with fragile
ecological environments. The per capita GDP of Huazhou, Ningqiang, Lantian, Zhouzhi,
and Tongguan counties is less than CNY 30,000, indicating a poor ability for disaster
prevention and reduction. According to the Flash Flood Investigation and Evaluation
Dataset of Shaanxi Province and historical disaster statistics provided by the emergency
management bureaus, all of the above 13 counties with very high risk have been flooded in
recent years, and Ziyang County has been flooded more than 45 times.
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Figure 8a,c reflects the integrated water risk from five aspects: endowment conditions,
development and utilization efficiency, engineering construction, water quality, and the
probability of disasters. The results show that the integrated water risk covers four grades:
II, III, IV, and V. The proportion of risk for grade III is the largest (around 45%), followed
by grade II (around 36%). The risk of grade V accounts for 14.8%, mainly concentrated in
the eastern part of the northern slope of the Qinling Mountains. The above risk evaluation
results of different types and layers are summarized and compared in Figure 8b. The
boxplot showed that the mean evaluation values of the risk of engineering, disaster, and
resource are 3.69, 3.62, and 3.20, respectively, which are higher than that of the integrated
water risk of 2.81. The median evaluation values of these three types of risk were also
higher than that of the integrated risk. The proportion of risk for grades IV and V of
engineering, disaster, and resource exceed 40%, which means that these three risks need
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prior control. The resource risk assessment value has the largest range, indicating that
the results have a high degree of dispersion and obvious spatial differences. The average
and median evaluation values of quality and management risk are lower than others, and
the evaluation value of these two risks are mostly less than 3, which shows that the water
quality and management risks in the Shaanxi section of the Qinling Mountains are not
major, but there is still room for improvement.
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4. Discussion

Generally, risk mitigation and management can be divided into three phases: (1) eval-
uation and analysis; (2) the implementation of mitigation and preventive measures based
on the understanding of the spatial distribution of risk; and (3) the design of the plan to
reduce and control risk [71]. The purpose of this work is to propose a tool for the integrated
and systematic evaluation and analysis of the spatial distribution of water risk, under
the guidance of SDG 6. The results contribute to the first phase of risk management by
providing evidence to local authorities to develop preventive measures to reduce future
water risk. For different risk sources, risks can be controlled through the appropriate
adjustment of corresponding factors.

In high-risk areas of resource, the conflict stems from the mismatch between the lim-
ited amount of natural water resources and the water demands of a growing population.
Controlling population growth may relieve the pressure on water resources, but it will
also bring new social problems and is not conducive to sustainable development [72]. En-
couraging the utilization of unconventional water resources, such as reclaimed wastewater,
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brackish water, and rainwater, is a viable way to control resource risk [73]. Formulating
corresponding preferential policies in terms of water prices and finances can help promote
the utilization of reclaimed water [74]. In high-risk areas of management, the different
sources of conflict require different responses. For example, counties with low water use
benefits should try to adjust their industrial structure [75], while counties with low agricul-
tural water use efficiency should promote water-saving irrigation technology according to
local conditions and increase water-saving publicity [76]. The core of these measures is the
constraint of water consumption, including strengthening water resource management and
improving the efficiency of water resource use, which contributes to the construction of
a water-saving society. In high-risk areas of engineering, improvement in the regulation
and storage capacity of water resources requires both the construction of storage projects
and a focus on reservoir dredging [77]. In high-risk areas of quality, strengthening the
supervision of pollution discharge and developing sewage purification technology can
reduce the concentration of pollutants discharged. In high-risk areas of disasters, risk
mitigation measures include improving hazard-resistance by structural measures, building
resilient cities through non-structural measures, and restoring ecological vulnerability by
expanding forest areas and controlling soil erosion [78].

The contributions of this work, compared to previous studies, are as follows: (1) Guided
by the targets of SDG 6, an integrated water risk assessment framework was constructed in-
cluding five dimensions: resource, quality, management, engineering, and disaster. (2) The
combination of the PSR framework, CRITIC method, hierarchical cluster, and SPA method
reduced the influence of subjective consciousness on the evaluation results, while fully
exploiting the hidden information in the data, and uncertainties in risk assessment were
well characterized. (3) A compiling method of spatial atlas of water resource risk was
proposed, which achieved the stratification and visualization of water risk perception,
helped indicate the primary localities for the application of mitigation measures and the
general direction of risk control, and provided a reference for the layout of risk control
measures. In order to improve the effectiveness of the prevention and control measures,
research on the main influencing factors that contributed to the high risk under different
risk types deserves to be further promoted. Additionally, compared to using water resource
regionalization as the study unit, using counties as the study unit can lessen the difficulty
of obtaining some data and assist in the implementation of the policy. However, it would
destroy the integrity of the watershed and cannot characterize regional water resources
well, which is also the direction of the optimization of future research.

5. Conclusions

In this work, the definition and framework of the water risk atlas were proposed under
the guidance of SDG 6 first. A multidimensional water risk assessment model based on
the PSR framework, CRITIC method, hierarchical cluster, and SPA theory was established
by classifying water risks into five categories, i.e., the risk of resource, management, engi-
neering, quality, and disaster. Then, a compiling method of water risk atlas, consisting of
sunbursts, heatmaps, and risk spatial distribution maps was proposed. Risks in the Shaanxi
section of the Qinling Mountains, as a case study were evaluated under the different types
by using the constructed model, which laid the data foundation for the water risk atlas.
The main conclusions are as follows:

1. The integrated water risk is significantly higher in the northern Qinling Mountains
than in the southern part. The mean and median evaluation values of the risk of
engineering, disaster, and resource are higher than that of integrated water risk, and
their proportion of risk for grades IV and V exceeds 40%, which means that these three
risks are the main causes of water risk in the study area and need to be controlled as a
priority.

2. The multidimensional water risk atlas proposed in this paper can effectively help
users to visualize the types and spatial distribution of risks faced by the region and
provide a reference for the layout of risk control measures.
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• The risk of resource shows a decreasing trend from the eastern part of the north-
ern slope to the western part of the southern slope of the Qinling Mountains. The
encouragement of the use of unconventional water sources is a practical strategy
to reduce resource risk in high-risk locations. In order to encourage the use of
reclaimed water, suitable preferential policies with regard to water prices and
finances can be developed.

• Counties with high risks of management are concentrated in the western part
of the southern slope and need to adjust their industrial structure or promote
water-saving irrigation technology, according to local conditions, to improve the
efficiency of water use.

• The risk of engineering is mainly concentrated in the Danjiang River Basin,
Jialingjiang River Basin, and the middle mountainous area. The construction of
storage projects and reservoir dredging could help to improve the regulation and
storage capacity of water resources.

• Counties with high risks of water quality are mainly concentrated on the lower
reaches of the Weihe River in the eastern part of the northern slope of the Qinling
Mountains and should reduce the concentration of pollutants discharged by im-
proving wastewater purification technology and pollution discharge monitoring.

• The risk of disaster is mainly concentrated in the eastern part of the northern
slope and the Hanjiang River Basin of the southern slope. Structural measures,
non-structural measures, and ecological vulnerability protection measures could
all help reduce disaster risk.
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